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Abstract

Background: DNA instability profiles have been used recently for predicting the transcriptional start site and the
location of core promoters, and to gain insight into promoter action. It was also shown that the use of these
profiles can significantly improve the performance of motif finding programs.

Results: In this work we introduce a new method for computing DNA instability profiles. The model that we use is
a modified Ising-type model and it is implemented via statistical mechanics. Our linear time algorithm computes
the profile of a 10,000 base-pair long sequence in less than one second. The method we use also allows the
computation of the probability that several consecutive bases are unpaired simultaneously. This is a feature that is
not available in other linear-time algorithms. We use the model to compare the thermodynamic trends of
promoter sequences of several genomes. In addition, we report results that associate the location of local extrema
in the instability profiles with the presence of core promoter elements at these locations and with the location of
the transcription start sites (TSS). We also analyzed the instability scores of binding sites of several human core
promoter elements. We show that the instability scores of functional binding sites of a given core promoter
element are significantly different than the scores of sites with the same motif occurring outside the functional
range (relative to the TSS).

Conclusions: The time efficiency of the algorithm and its genome-wide applications makes this work of broad
interest to scientists interested in transcriptional regulation, motif discovery, and comparative genomics.

Background
DNA duplex instability is manifested as the ease at
denaturating the DNA double strand, i.e., as the partial
melting and unfolding of double stranded DNA. The
study of DNA duplex instability has been a fascinating
subject for many reasons: its importance for techniques
such as PCR, sequencing by hybridization, antigene tar-
geting, and for understanding replication, mutation,
repair, and transcription, see [1] and references therein.
With respect to understanding transcription initiation,

in the very recent past, there has been increased evi-
dence that duplex instability, as well as other physio-
chemical properties, reveal specific signatures of TSS
and core promoter elements. In this context, there have

been several comprehensive analyses of genomes such
as that of the Plasmodium falciparum [2], yeast [3],
human, and other animals [4-7]. To a smaller scale,
structural properties of DNA have also been used to
predict DNA function in viral sequences [8,9].
It has also been shown that the DNA duplex instabil-

ity profiles can be used to aid motif discovery in yeast
[3]. The instability profiles, computed with the on-line
tool WebSIDD [10], were used to derive informative
positional priors and incorporated into a motif finding
algorithm. As a result, the performance of the motif
finding program improved significantly.
The need for an efficient method to compute the pro-

files was stressed in [3], since the on-line tool WebSIDD
could not be used to efficiently compute profiles of
sequences that were several thousands base pairs long.
The algorithms used for computing DNA instability
profiles for the above applications [2-9] either have
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non-linear time complexity (such as the algorithms
based on the Peyrard-Bishop-Dauxois (PBD) model
[11,12] and WebSIDD, based on the Benham model
[13,14]) or are linear time approximations to a non-lin-
ear-time model (e.g., [6]).
Some progress in this direction has been made.

Recently, in [15] the Zimm-Brag model was used for a
genome wide comparison between coding domains and
thermodynamically stable regions. In some organisms
the corellation between coding domains and thermody-
namic stability allowed the identification of putative
exons or genes. The authors state that the algorithm is
linear in the length of the sequence. Also, using the
Poland-Scheraga model in [16] another algorithm for
DNA melting calculations was reported with time com-
plexity less than quadratic.
In this work we modified an Ising-type model [17-19]

that identifies as major contributions to DNA stability
the hydrogen bonds between the complementary bases
and the nearest-neighbor stacking interaction. One of
the advantages of this model is that it can be implemen-
ted efficiently, since the time complexity of the algo-
rithm is linear in the length of the sequence.
Another feature of the method we use is that it

directly computes the probability of bubble formation of
any size k. Our operational definition of a bubble is that
of a strand separation, or DNA ‘opening’ spanning sev-
eral base pairs. Here, a bubble of size k means that at
least k base pairs are open.
Studies have suggested that the ability of the DNA to

form a ‘transcriptional bubble’ at the transcriptional
start site is essential to initiate transcription. Using the
PBD model, in [20], it was argued that thermodynamic
instability profiles are able to identify the location of
TSS. In [21] it was demonstrated that bubble size is
important, in the sense that when the simulated bubble
size equals the transcriptional bubble size, the highest
peak in the instability profile appears at the TSS. Most
previous algorithms (in particular, [3,4,6]), only compute
the opening probabilities of one base-pair at a time and
use averaging techniques to measure the propensity of
the DNA to form a bubble of size k >1 at a specific
location. This averaging process is not equivalent to
computing the opening probability of the whole window
of size k.
Using the Ising-type model, we computed the DNA

instability profiles for the human promoter regions in
Database of Transcriptional Start Sites (DBTSS). We
show that these profiles provide an insight into core
promoter elements such as the downstream promoter
element (DPE), transcription factor II recognition ele-
ment (BRE), initiator (Inr) and GC box. We show that
there is an association between the location of local
extrema in the instability profiles and the presence of

core promoter elements at these locations. We present
evidence that BRE and DPE prefer stability, whereas the
TATA box and the Inr prefer instability.
Finally, we examine the applications of the DNA

duplex instability profiles to motif discovery. Our find-
ings raise a concern that the “one size fits all” approach
to transcription factors used in [3], may not be
appropriate.

Related approaches
Most of the approaches for the computation of DNA
instability profiles use models that are coarse-grained, in
the sense that they take into account only the major
contributions to DNA stability.
The Peyrard-Bishop-Dauxois model [11,12] assumes

that the hydrogen bonds and stacking interaction are
the main contributions to DNA stability. Like the modi-
fied Ising-type model, it does not take into account
explicitly the three-dimensional structure of the double
helix and neglects torsional effects. The main difference
with the approach we use in this work is that the
variable that describes the stretching of the bonds is
continuous rather than discrete. The computational
complexity of this model is non-linear in the length of
the sequence. By direct integration an algorithm was
devised in [22] that reduces the complexity of function
evaluations to being linear in the length of the sequence
and quadratic in the number of grid points used in the
integration.
The Benham model [10,13,14] uses the free energy

needed to separate the two strands and destroy the heli-
cal structure as a measure of instability. This model pre-
dicts the location and extend of destabilization given the
DNA sequence and imposed super-helical stress and is
discrete: the base pair is assumed to be either separated
or not. The Benham model has non-linear time
complexity.
In [6] the human genomic melting map was obtained

based on the Poland model [23], which uses recurrence
relations to calculate the probabilities of transition of
the double helix from the helical to the coil state, rather
than considering the state of the hydrogen bonds and
stacking interactions. The approach we use here is more
general since it allows for the study of localized open-
ings that are precursors to melting, instead of consider-
ing only the complete melting of a DNA sequence. The
algorithm used in [6] is a linear time approximation to
the non-linear-time Poland model.
In [4] an approach to predict promoters in whole-gen-

ome sequences was used, with the aid of large-scale
structural properties of DNA, such as GC content, stabi-
lizing energy of Z-DNA, DNA denaturation values, pro-
tein induced deformability, and duplex free energy. First,
structural profiles are calculated by converting the
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nucleotide sequence into a numerical profile, by repla-
cing each di-or trinucleotide with its corresponding
structural value. Next, the values are averaged over a
window of size 400. The approach we use is different in
the sense that no averaging is taking place, rather we
calculate conditional probabilities of having k base pairs
in the open state and loss of stacking interactions. The
cooperative and long range effects in the Ising type
model used here, are due to that fact that in the calcula-
tion of the probabilities, the entire sequence is taken
into account in the evaluation of the partition function
(normalizing constant so the probabilities at a given
base pair add up to one). In this sense, our approach is
an effective smoothing and no averaging within the
same sequence takes place.
Other approaches to the study of DNA denaturation

include the examination of the breathing dynamics from
a probabilistic point of view [24] and [25]. In [24] the
authors develop a master equation, which together with
a Gillepsie algorithm, generates sequence-specific sto-
chastic time series of partially melted regions in DNA.
In [25] the dynamics and thermodynamics of twist-
induced denaturation was studied in a long, random
sequence of DNA, using large deviation theory, scaling
arguments, and Monte Carlo simulations.

Results and Discussion
The model
Our results are based on the calculation of the thermal
equilibrium statistical properties of dsDNA using a
modified version of the model introduced in [17]. The
model was proposed as a tool to study the thermal
fluctuations that lead to the infrequent events of the
Watson-Crick base-pair opening, also referred to as
DNA breathing. This fluctuational base-pair opening
implies the disruption of hydrogen bonds between the
complementary bases and the loss of stacking interac-
tions between adjacent base-pairs by the flipping of the
base pair out of the helical stack.
Like other models that are designed to predict the

propensity of DNA to breathe (such as [11]), this model
takes into account two major contributions to DNA sta-
bility: the lateral pairing between the complementary
bases and the stacking interactions of the pairs with
both immediate neighbors along the helical axis. The
model in [17] also introduced a novel term accounting
for the unfavorable positioning of the exposed base,
which proceeds through the formation of a highly con-
strained small loop, and was described as the ring factor.
In this work, we neglect the ring factor, since quantita-
tively it was found to be an adjustable parameter and in
our simulations it had the effect of mainly translating
vertically the opening propensity profiles - the plot of
the propensity to open of base-pair n vs. n.

This Ising-type model distinguishes two states of base-
pairs, the open state in which the hydrogen bonds are
broken and the bases are flipped out of the stack, and
the closed state in which the opposite is true. The
instability profiles are obtained by calculating the prob-
ability Pk(n) for k consecutive base-pairs to be open at
the same time, starting at base pair n. The parameter k
is called the bubble-size. In the original version of the
model [17] only the case k = 1 was considered. In this
work, we generalized the model to be able to calculate
the propensity Pk(n) for k ≥ 1. Our choice for k in this
work varies from k = 1 to k = 9. The need to consider
more than one value of k, stems from the fact that new
features of the opening profiles emerge with different
values. For example, k = 1 gives an implementation of
the original model introduced in [17], but it tends to be
noisy (see examples in [Additional file 1]).
It is important to note that the way in which the

opening probabilities are calculated by our method for a
bubble of size k >1 is fundamentally different from con-
sidering the probabilities that each individual base-pair
is open and then averaging over a window of size k. Our
method computes the probability that all k base-pairs in
the window of size k are open simultaneously.
The inhomogeneity of the sequence is taken care of by

2 sets of parameters for the hydrogen bonds and 10
parameters for the stacking interaction of the adjacent
bases. There are no free parameters in this approach.
The thermodynamic parameter values used in our simu-
lations are the ones reported in [18,19] and were deter-
mined experimentally [18].
The approach we use provides an efficient method for

a genome-wide scan: the time complexity of our algo-
rithm is linear in the length of the sequence. It took less
than one second to compute the profile of a 10,000 bp
long sequence, while it took more than two hours for
WebSIDD [10].

Average Profiles of human, mouse and zebrafish
promoter sequences
The average profile of the promoter sequences from
Database of Transcriptional Start Sites (DBTSS) is shown
in Figure 1 (k = 4). There are two clear peaks at about
-30 and 1 relative to the TSS. The peaks coincide with
the location of the TATA box and the Inr/TSS, respec-
tively. We also see a trend of the opening probabilities to
decrease toward the TSS and increase after the TSS. This
is similar to the trend observed in other DNA physical-
properties profiles, see for example [5] or [4].

Signatures of the human core promoter elements
To obtain a signature for a given core promoter element,
we compared the average profile of all sequences classi-
fied as containing the functional promoter element vs.
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the average profile of the complement set of sequences
(see methods section). The average profiles are shown in
Figure 2 (k = 4). The TATA box has a clear signature of
a high peak about -30. The Inr’s signature seems to be a
higher peak at the TSS together with a higher baseline
around TSS. BRE’s signature is a dip at about -40
together with a lower baseline on [-100, 100]. DPE’s sig-
nature is a low dip around +25. Note that the k = 1 aver-
age profiles did not detect a signature for DPE, see Figure
3. The signature for the GC box is an overall lower base-
line. The signatures of these core promoters suggest that
the TATA box and Inr prefer DNA instability while BRE
and DPE prefer DNA stability.
“Shape recognition” of DNA is a major determinant in

protein-DNA interactions [26]. Examination of DNA-
protein complex structures has revealed that transcrip-
tion factor (TF) binding sites can exhibit characteristic
structural signatures, e.g. in terms of deformability [27],
bending, groove width, or the presence of kinked bases
[26]. These properties may in some instances be corre-
lated to thermodynamic stability and the presented here
characteristic profiles for the various promoter elements
may reflect conformational properties of the correspond-
ing DNA-protein complexes. In the case of the TATA

box, the relationship is easy to see. The TATA box bind-
ing protein (TBP) unwinds and bends the DNA double
helix almost at 90 degree angle to achieve specific bind-
ing [28], suggesting that sequences that are resistant to
such deformation would not bind TBP well. For the Inr
element, it has been proposed that a propensity for
strand separation assists in the formation of the “tran-
scriptional bubble” [29], the exposed single strand DNA
required by RNA polymerases to initiate transcription.
Moreover, YY1 transcription factor, which recognizes Inr
motifs such as CCATTT, makes specific contacts with
one strand only [30,31], raising the possibility that its
binding also assists in formation of the transcriptional
bubble. Generally however, DNA conformational proper-
ties are determined by a complex interplay of hydrogen
bonding, base stacking energies, hydration, counterions,
and steric effects well past the predictive ability of a sim-
ple thermodynamic stability model.

DNA instability scores differentiate functional binding
sites from non-functional binding sites
For each motif, we compared the scores of its functional
sites versus its non-functional sites. We classified an
occurrence of a motif in a sequence as a functional site

Figure 1 Average profiles of human, mouse, and zebrafish promoter sequences. The averaged opening profile of the promoter sequences
in human, mouse, and zebrafish. The bubble size is 4.
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if it occured within the functional window for the motif,
as specified in Table 1. Occurrences of motifs outside
their functional window were classified as non-
functional sites. For example, for the Inr motif YYAN-
WYY, we divided the sites where YYANWYY occurred

into two sets: functional sites and non-functional sites.
The set of functional sites consisted of all sites, in all
sequences considered, where YYANWYY occurred
between -5 and +6 relative to the TSS. The set of non-
functional sites consisted of all other sites where

Figure 2 Signature of the human core promoter elements. We show the average profiles of all sequences that are (a) containing and
lacking the TATA box, (b) containing and lacking Inr, (c) containing and lacking BRE, (d) containing and lacking DPE, and (e) containing and
lacking the GC box. The bubble size is 4. In (d), the DPE’s signature is circled.

Kantorovitz et al. BMC Bioinformatics 2010, 11:604
http://www.biomedcentral.com/1471-2105/11/604

Page 5 of 12



YYANWYY occurred. We then compared the distribu-
tion of the instability scores at the functional YYAN-
WYY sites with the distribution of the scores of the
non-functional YYANWYY sites.
For each motif, we found that the distribution of the

scores of the functional sites was significantly different
than the distribution of the scores of the non-functional
sites (see Figure 4). We observed that, per motif, the
scores of the functional sites were lower, on average,
than the scores of non-functional sites. Figure 4 shows
that per motif, the graph of the empirical cumulative

distribution function (ecdf) of the functional sites lies
above the ecdf of the non-functional sites. It means that,
regardless of the GC content of the motif, the scores of
the functional binding sites were lower in general than
those of the non-functional binding sites. This result
suggests that, per motif, functional binding site prefer
stability when compared with non-functional binding
sites.

DNA instability scores of functional binding sites vs.
random sites
For each core promoter motif, we compared the distri-
bution of the DNA instability scores of the functional
sites with the distribution of the scores of random sites.
The random sites were picked at random from the same
promoter sequences that the functional motif sites
where found (see methods section). Random sites, in
general, do not share any common feature. For each
motif, the distribution of the scores of the functional
sites was significantly different than the distribution of
the scores of random sites (see Figure 5).
We observed that for the TATA box and Inr, the

scores of the functional sites were higher, on average,

Figure 3 Bubble size effects signature. The averaged profile using bubble size k = 1 of the sequences containing and lacking the DPE motif
did not produce an apparent signature for DPE.

Table 1 Core promoter elements, their consensus
sequences and functional window

Name Consensus Sequence Functional Window

TATA box TATAWA -33 to -23

Inr YYANWYY -5 to +6

DPE RGWYV +23 to +33

BRE SSRCGCC -42 to -32

GC box GGGCGGG -170 to -5

Core promoter element motifs and functional windows, with the IUPAC
convention of R = [GA], Y = [TC], W = [AT], S = [GC], V = [GCA] and N = [AGCT].
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than the scores of random sites. On the other hand, for
BRE, DPE and GC box, the scores of the functional sites
were lower, on average, than the scores of random sites.
Figure 5 shows that for TATA box and Inr, the graph of
the ecdf of the functional sites lies below the ecdf of the
random sites, while for BRE, DPE and GC box, the ecdf
of the functional sites lies above the ecdf of the random
sites. This suggests that functional sites of TATA box
and Inr “prefer” less stability but BRE, DPE and GC box
“prefer” more stability, when compared to random sites.
In [3], Gordân et al. incorporated the DNA instability

profiles into a motif finding algorithm based on the

following observation regarding high-confidence tran-
scription factors binding sites ("functional TFBS”) in
yeast. They noticed that the the distributions of the
instability scores were significantly different for the
high-confidence TFBS compared to random sites. This
information was then used to derive informative posi-
tional priors.
Gordân et al. also observed that, when their set of

high-confidence yeast TFBS was compared with random
sites, it had, in general, lower instability scores. They
hypothesized that TFBS occur preferentially in regions
with high DNA duplex stability.

Figure 4 Functional vs. non-functional TFBS. The figure shows the empirical cumulative distribution functions of the functional and non-
functional binding sites for the TATA box (p-value 6.4 10-7), Inr (p = 1.2 10-5), BRE (p = 0.01758), DPE (p = 3.8 10-6) and GC box (p <2.2 10-16).
The black lines correspond to the functional binding sites, while the broken lines correspond to the on-functional sites. The bubble size is k = 4.
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Our findings for individual core promoter elements in
human suggest that, compared to random sites, TFs with
AT-rich motifs prefer instability while GC-rich motifs
prefer stability. This is consistent with our results on the
human core promoters signature. We hypothesize that
the set of Yeast motifs used in [3] was GC-rich, therefore
skewing the results when compared to random sites and

improving the overall performance of the motif discovery
tool on the GC-rich motif data set. This relationship
between the GC content and stability preference is sup-
ported by the following results on shuffled motifs.

DNA instability scores of functional binding sites vs.
shuffled motif sites
In this context, a shuffled motif is a biologically mean-
ingless motif created from the original core promoter
motif by shuffling the regular expression for the motif.
For example, for the Inr motif YYANWYY, a shuffled
motif can be ANYYYYW. In this case we considered the
instability scores at all sites in the sequences where
ANYYYYW occurred.
For each core promoter motif, we compared the dis-

tribution of the DNA instability scores of shuffled-motif
sites with the distribution of the scores of random sites.
The results were similar to the previous comparison of
functional motif sites with random sites. The two distri-
butions were significantly different. For the shuffled
motifs that were highly AT-rich (such as a shuffled
TATA box), the graph of the ecdf of the shuffled motif
sites lied below the ecdf of the random sites, while for
the GC-rich shuffled-motifs (such as shuffled BRE and
GC box) the ecdf of the functional sites lied above the
ecdf of the random sites (see Figure 6).
These results show that, on average, the AT-rich

shuffled motifs scored higher (more instability) than
random sites, while the GC-rich shuffled motifs scored
lower than random sites.
We also compared the distribution of the instability

scores of functional motif sites with the distribution of
the scores of the shuffled-motif sites. For each core pro-
moter motif, the two distributions were significantly dif-
ferent. For the highly AT-rich motifs, such as the TATA
box, the instability scores of the functional binding sites

Figure 5 Functional TFBS vs. random sites . The empirical
cumulative distribution functions of functional binding sites vs.
random sites for the TATA box, Inr, BRE, DPE, and GC box. All with
p-value <2.2 10-16. The bubble size is k = 4.

Figure 6 Functional TFBS vs. shuffled motif sites. The empirical cumulative distribution functions of functional binding sites vs. shuffled-motif
sites for the TATA box (p <2.2 10-16) and GC box (p <2.2 10-16). The bubble size is k = 4.
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of the motifs were, in general, higher than the scores of
the shuffled motif sites. For the highly GC-rich motifs,
such as the GC box, the scores of the functional sites
were lower in general, than the scores of the shuffled
motif sites (see Figure 7).
It is not surprising that (per motif) the two distribu-

tions compared were significantly different. The instabil-
ity score of a word at a site depends in large on the
content of the word. Therefore it is expected that scores
at sites of one selected set of words and scores of sites
of a different set of words (or random words) will have
different distributions. But it is important to note how
the GC content of the motif effect the results. These
results suggest that binding sites for different TFs have
different instability profiles when compared to random
sites, even when the GC content of the random sites is
similar to the GC content of the TFBS. Therefore, in
order to capture biologically significant features, one
should be careful when combining instability scores of
binding sites from different TFs.

Conclusions
We have introduced a linear time algorithm for computing
DNA duplex instability profiles. The algorithm has the fea-
ture that it can compute the probability of formation of
localized openings of any size k. Our analysis has shown
that when studying the signatures of functional sites, bub-
ble size matters. Specifically, considering the case of one
base pair open, which corresponds to case k = 1, in some
instances fails to identify the signatures. With our method,
one can easily perform the calculation with several bubble
sizes and be able to differentiate the signatures.
Our study has shown that core promoters with GC-

rich motifs prefer stability, while those with AT-rich
motif prefer instability. We have also shown that the
DNA instability scores can differentiate functional

binding sites from non-functional binding sites. We
have demonstrated that a fast algorithm for the calcula-
tion of instability profiles can be a powerful tool in the
investigation of entire genomes, with potential applica-
tions to motif discovery.

Methods
The model
A standard statistical mechanical approach to calculate
the propensity of base-pair opening in dsDNA is
applied. The total partition function for a sequence
whose length is N base-pairs reads
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and ai and δi are the base-pairing and base-stacking
parameters, respectively. ξ is the ring factor (entropic
factor parameter) introduced in [17]. The base-pairing
and base-stacking parameters used in our simulations
are given by
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Figure 7 Shuffled motif sites vs. random sites. The empirical cumulative distribution functions of shuffled-motif sites vs. random sites for the
TATA box (p <2.2 10-16) and BRE (p <2.2 10-16). The bubble size is k = 4.
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The conditional partition function with k consecutive
base-pairs open in positions n, n + 1,..., n + k - 1 is
given by
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and with δ1 = 1, δN+1 = 1, sN+1 = 1, and sj = 1 for j =
n,..., n + k - 1. The opening propensity of base-pairs n
through n + k - 1 is the ratio of the two partition functions
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We used a MATLAB (The MathWorks, Natick, MA)
program to calculate the partition functions in the equa-
tions above directly, using the matrix representation
described in [17] that reduces the calculations of the par-
tition functions to matrix multiplications. For example:
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For all the computations in this paper, the tempera-
ture parameter, T , was set to 37C and the ring factor
parameter, ξ, to 1.

Data
Promoter sequences were obtained from the DBTSS
website, version 6 [32]. Only sequences with NM ids

were considered, and redundancies were dealt with by
choosing one representative at random. For human, the
total number of sequences considered was 15,194, for
mouse 15,337 and for zebrafish 5,343.

Average Profiles
Given a collection C of N promoter sequences, the aver-
age score at position n relative to TSS is

avg N P nnk k

S C

S( ) = ( )
∈
∑1 / ,

where nS is position n (relative to TSS) in sequence S
and Pk(nS) is the opening propensity of k base pairs
being open, starting at position nS.

Signature of the human core promoter elements
Five core promoters were considered: the transcription
factor II recognition element (BRE), the downstream
promoter element (DPE), initiator (Inr), the TATA box,
and the GC box. The sequence motifs and functional
windows are shown in Table 1.
Sequence classification
A sequence was classified as containing a given core
promoter if the motif for that core promoter had a
match inside the appropriate functional window.
A match here is an exact match of the regular expres-
sions given in Table 1 on the positive strand.

DNA instability scores differentiate functional binding
sites from non-functional binding sites
For a given motif, the sites where the motif occurred in
the sequences where divided into two sets: functional
sites and non-functional sites. The functional sites were
those inside the functional window. Non-functional sites
were sites outside the functional window with a buffer
zone of 10 base-pairs. The count of all non-overlapping
sites is given in Table 3. Note that one can have more
than one non-overlapping motif in a functional window.
For each motif site we assigned an average score as fol-

lows. For k smaller than the motif length, we took the aver-
age opening probabilities of the k-windows that are

Table 2 Stacking and base-pairing parameters

ΔGKL
ST KL A T G C

A -1.49 -1.72 -1.44 -2.19

T -0.57 -1.49 -0.93 -1.81

G -1.81 -2.19 -1.82 -2.55

C -0.93 -1.44 -1.29 -1.82

AT 0.64

ΔGBP GC 0.12

Hydrogen-bond and base-stacking parameter values used in the numerical
calculations of the destabilization profiles.

Table 3 Number of functional sites and non-functional
sites per motif

functional sites non-functional sites

TATA box 513 3,582

Inr 2,015 59,525

BRE 315 11,029

DPE 3,817 154,847

GC box 3,601 2,557

The count of functional and non-functional sites where each core promoter
occurs.
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contained in the site. For k greater than the motif length, we
averaged the scores of the k-windows that contained the
site. The distributions of these scores of the functional sites
was compared to the distribution of the scores of the non-
functional sites using two sample Kolmogorov-Smirnov test.

DNA instability scores of functional binding sites vs.
random sites
For each functional site we picked at random 10 sites of
equal length from the same promoter region. For each
site we assigned an average score as was done for the
functional sites.

DNA instability scores of functional binding sites vs.
shuffled motif sites
For each core promoter we tested several shuffles of its
motif. Note that some motifs do not have many non-
redundant shuffles. For example, the GC box motif,
GGGCGGG, has only 7 non redundant shuffles. The tests
were performed for one shuffle at a time. For each core
promoter, the different shuffles produced similar results.
The results shown in the Results Section are for one repre-
sentative shuffle per core promoter (see Table 4).

Additional material

Additional file 1: Examples of DNA duplex instability profiles. This
file contains figures showing the DNA duplex instability profiles for two
promoter sequences, with bubble size ranging from k = 1 to k = 9 for
each sequence. The genes used for these examples are CFTR and TJP2.
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