organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,4-Bis(4-propoxyphenyl)-3-azabicyclo-[3.3.1]nonan-9-one

P. Parthiban,^a V. Ramkumar^b and Yeon Tae Jeong^a*

^aDepartment of Image Science and Engineering, Pukyong National University, Busan 608 739, Republic of Korea, and ^bDepartment of Chemistry, IIT Madras, Chennai, TamilNadu, India

Correspondence e-mail: ytjeong@pknu.ac.kr

Received 19 February 2011; accepted 28 February 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.104; data-to-parameter ratio = 12.7.

In the title compound, $C_{26}H_{33}NO_3$, a crystallographic mirror plane bisects the molecule (two C atoms, one O atom and one N atom lie on the mirror plane). The molecule exists in a twinchair conformation with equatorial orientations of the 4propoxyphenyl groups. The dihedral angle between the 4propoxyphenyl groups is 31.58 (3)°.

Related literature

For background to 3-azabicyclononanes, see: Jeyaraman & Avila (1981); Barker *et al.* (2005); Parthiban *et al.* (2009*a*, 2010*b*,*c*). For related stuctures, see: Parthiban *et al.* (2009*b*,*c*, 2010*a*); Smith-Verdier *et al.* (1983); Padegimas & Kovacic (1972). For ring puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental

Crystal data $C_{26}H_{33}NO_3$ $M_r = 407.53$ Orthorhombic, Pnma

a = 7.3846 (4) Å

Mo $K\alpha$ radiation	
$\mu = 0.08 \text{ mm}^{-1}$	

Data collection

146 parameters

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) T_{min} = 0.981, T_{max} = 0.985

Refinement $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.104$ S = 1.001860 reflections T = 298 K $0.25 \times 0.22 \times 0.20 \text{ mm}$

7260 measured reflections 1860 independent reflections 1121 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.047$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.14\ e\ \mathring{A}^{-3}\\ &\Delta\rho_{min}=-0.21\ e\ \mathring{A}^{-3} \end{split}$$

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT-Plus* (Bruker, 2004); data reduction: *SAINT-Plus* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection. This research was supported by the Industrial Technology Development program, which was conducted by the Ministry of Knowledge Economy of the Korean Government.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5803).

References

- Barker, D., Lin, D. H. S., Carland, J. E., Chu, C. P. Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). *Bioorg. Med. Chem.* 13, 4565– 4575.
- Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Padegimas, S. J. & Kovacic, P. (1972). J. Org. Chem. 37, 2672-2676.
- Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009a). Bioorg. Med. Chem. Lett. 19, 6981–6985.
- Parthiban, P., Ramkumar, V., Amirthaganesan, S. & Jeong, Y. T. (2009b). Acta Cryst. E65, 01356.
- Parthiban, P., Ramkumar, V. & Jeong, Y. T. (2010*a*). Acta Cryst. E66, 048–049. Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2009*c*).
- Acta Cryst. E65, 01383. Parthiban, P., Rathika, P., Park, K. S. & Jeong, Y. T. (2010b). Monatsh. Chem.
- Partiniban, P., Ratnika, P., Park, K. S. & Jeong, Y. I. (2010b). Monatsh. Chem. 141, 79–93.
- Parthiban, P., Rathika, P., Ramkumar, V., Son, S. M. & Jeong, Y. T. (2010c). Bioorg. Med. Chem. Lett. 20, 1642–1647.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith-Verdier, P., Florencio, F. & García-Blanco, S. (1983). Acta Cryst. C39, 101–103.

supplementary materials

Acta Cryst. (2011). E67, o790 [doi:10.1107/S1600536811007483]

2,4-Bis(4-propoxyphenyl)-3-azabicyclo[3.3.1]nonan-9-one

P. Parthiban, V. Ramkumar and Y. T. Jeong

Comment

3-Azabicyclononanes are important class of heterocycles due to their broad spectrum of biological activities such as antibacterial, antimycobacterial, antifungal, anticancer, antitussive, anti-inflammatory, sedative, antipyretic and calcium antagonistic activities (Jeyaraman & Avila, 1981; Barker *et al.*, 2005; Parthiban *et al.*, 2009*a*, 2010*b,c*). Since the stereochemistry plays an important role in biological actions, it is important to establish the stereochemistry of the synthesized biologically potent molecules. Owing to the diverse possibilities in conformation of the 3-azabicycles, *viz.*, chair-chair (Parthiban *et al.*, 2009*a*), chair-boat (Smith-Verdier *et al.*, 1983) and boat-boat (Padegimas & Kovacic, 1972). This crystal study has been carried out to expose the conformation of the title bicyclic compound.

The analysis of torsion angles, asymmetry parameters and puckering parameters calculated for the title compound shows that the piperidine ring adopts near ideal chair conformation with a total puckering amplitude, Q_T of 0.615 (2)Å and the phase angle θ is 0.00 (1)°. (Cremer & Pople, 1975). The smallest displacement asymmetry parameters q_2 and q_3 are 0.00 and 0.615 (2)°, respectively (Nardelli, 1983). However, the cyclohexane ring deviates from the ideal chair conformation according to Cremer and Pople by $Q_T = 0.562$ (2) and $\theta = 16.8$ (2)° (Cremer & Pople, 1975) as well as Nardelli by $q_2 = 0.162$ (2) and $q_3 = 0.538$ (2)° (Nardelli, 1983). Hence, the title compound C₂₈ H₃₃ N O₃, exists in a twin-chair conformation with equatorial orientation of 4-propoxyphenyl groups on the heterocycle and are orientated at an angle of 31.58 (3)° to each other. The torsion angle of C3—C2—C1—C6 are 64.09 (3)°. The crystal crystal packing is stabilized by weak van der Waals interaction.

Experimental

To the warm solution of 0.075 mol (5.78 g) ammonium acetate in 50 ml of absolute ethanol, 0.1 mol (16.42 g/15.80 ml)of *para*-n-propoxybenzaldehyde and 0.05 mol (4.90 g/5.18 ml) of cyclohexanone were added. The mixture was gently warmed on a hot plate at 303-308 K ($30-35^{\circ}$ C) with moderate stirring till the complete consumption of the starting materials, monitored by TLC. At the end, the crude azabicyclic ketone was separated by filtration and washed with 1:5 cold ethanol-ether mixture. Colourless blocks of the title compound were obtained by recrystallization from ethanol.

Refinement

Nitrogen H atoms were located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms, with aromatic C—H =0.93 Å, aliphatic C—H = 0.98Å and methylene C—H = 0.97 Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. : Anistropic displacement representation of the molecule with atoms represented with 30% probability ellipsoids. Symmetry code: (i) x, 1/2–y, z.

2,4-Bis(4-propoxyphenyl)-3-azabicyclo[3.3.1]nonan-9-one

C ₂₆ H ₃₃ NO ₃	F(000) = 880
$M_r = 407.53$	$D_{\rm x} = 1.214 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pnma	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2n	Cell parameters from 1042 reflections
a = 7.3846 (4) Å	$\theta = 2.3 - 20.8^{\circ}$
b = 29.3963 (19) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 10.2739 (7) Å	T = 298 K
$V = 2230.3 (2) Å^3$	Block, colourless
<i>Z</i> = 4	$0.25 \times 0.22 \times 0.20 \text{ mm}$

Data collection

Bruker APEXII CCD diffractometer	1860 independent reflections
Radiation source: fine-focus sealed tube	1121 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.047$
ϕ and ω scans	$\theta_{\text{max}} = 26.2^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2004)	$h = -8 \rightarrow 8$
$T_{\min} = 0.981, T_{\max} = 0.985$	$k = -31 \rightarrow 32$
7260 measured reflections	$l = -12 \rightarrow 10$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.104$	H atoms treated by a mixture of independent and constrained refinement
S = 1.00	$w = 1/[\sigma^2(F_o^2) + (0.0404P)^2 + 0.4368P]$ where $P = (F_o^2 + 2F_c^2)/3$
1860 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
146 parameters	$\Delta \rho_{max} = 0.14 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.21 \ e \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C1 0.6512 (3) 0.29134 (6) 0.6070 (2) 0.0384 (5) H1 0.6934 0.2893 0.6972 0.046* C2 0.8207 (3) 0.29225 (7) 0.5180 (2) 0.0426 (6) H2 0.8944 0.3188 0.5408 0.051* C3 0.7815 (3) 0.29351 (7) 0.3708 (2) 0.0474 (6) H3A 0.7004 0.3187 0.3529 0.057* C4 0.6973 (4) 0.2500 0.3174 (3) 0.0482 (8) H4A 0.7093 0.2500 0.3377 0.058* C5 0.9286 (4) 0.2500 0.3471 (3) 0.0437 (8) C6 0.5396 (3) 0.33407 (7) 0.5491 (2) 0.0364 (5) C7 0.3900 (3) 0.33809 (7) 0.5140 (2) 0.0418 (6) H7 0.3506 0.3130 0.4666 0.050* C8 0.2990 (3) 0.37892 (7) 0.5032 (2) 0.0426 (6) H8 0.1988 0.3811 0.4488 0.051* C9 <th></th> <th>x</th> <th>У</th> <th>Ζ</th> <th>$U_{\rm iso}*/U_{\rm eq}$</th>		x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
H10.69340.28930.69720.046*C20.8207 (3)0.29225 (7)0.5180 (2)0.0426 (6)H20.89440.31880.54080.051*C30.7815 (3)0.29351 (7)0.3708 (2)0.0474 (6)H3A0.70040.31870.35290.057*H3B0.89400.29930.32490.057*C40.6973 (4)0.25000.3174 (3)0.0482 (8)H4A0.70930.25000.33770.058*C50.9286 (4)0.25000.33770.058*C60.5396 (3)0.33407 (7)0.5949 (2)0.0364 (5)C70.3900 (3)0.33809 (7)0.5140 (2)0.0418 (6)H70.35060.31300.46660.050*C80.2990 (3)0.37892 (7)0.5032 (2)0.0426 (6)H80.19880.38110.44880.051*C90.3553 (3)0.41666 (7)0.5724 (2)0.0389 (6)C100.5009 (3)0.41290 (7)0.6550 (2)0.0448 (6)H100.53840.43780.70400.55*C120.3046 (3)0.49521 (7)0.6265 (2)0.0484 (6)H12A0.42840.50390.60700.058*C130.1778 (3)0.53290 (7)0.5904 (2)0.0578 (7)H13A0.05450.52370.60960.669*C140.2201 (4)0.57630 (8)0.6634 (3)0.0768 (9)H14A0.21160.57080.75540.115* <td>C1</td> <td>0.6512 (3)</td> <td>0.29134 (6)</td> <td>0.6070 (2)</td> <td>0.0384 (5)</td>	C1	0.6512 (3)	0.29134 (6)	0.6070 (2)	0.0384 (5)
C2 $0.8207 (3)$ $0.29225 (7)$ $0.5180 (2)$ $0.0426 (6)$ H2 0.8944 0.3188 0.5408 0.051^* C3 $0.7815 (3)$ $0.29351 (7)$ $0.3708 (2)$ $0.0474 (6)$ H3A 0.7004 0.3187 0.3529 0.057^* H3B 0.8940 0.2993 0.3249 0.057^* C4 $0.6973 (4)$ 0.2500 $0.3174 (3)$ $0.0482 (8)$ H4A 0.7093 0.2500 0.3377 0.058^* H4B 0.5691 0.2500 0.3377 0.058^* C5 $0.9286 (4)$ 0.2500 $0.5451 (3)$ $0.0437 (8)$ C6 $0.5396 (3)$ $0.33407 (7)$ $0.5949 (2)$ $0.0364 (5)$ C7 $0.3900 (3)$ $0.33809 (7)$ $0.5140 (2)$ $0.0418 (6)$ H7 0.3506 0.3130 0.4666 0.050^* C8 $0.2990 (3)$ $0.37892 (7)$ $0.5032 (2)$ $0.0426 (6)$ H8 0.1988 0.3811 0.4488 0.511^* C9 $0.353 (3)$ $0.41666 (7)$ $0.5724 (2)$ $0.0389 (6)$ C10 $0.5099 (3)$ $0.41290 (7)$ $0.6550 (2)$ $0.0480 (6)$ H10 0.5384 0.4378 0.7040 0.558^* C11 $0.5911 (3)$ $0.37188 (7)$ 0.6070 0.588^* C12 $0.3046 (3)$ $0.49521 (7)$ $0.6265 (2)$ $0.0484 (6)$ H12A 0.4284 0.5039 0.7190 0.058^* C13 $0.1778 (3)$ $0.53290 (7)$ $0.5904 (2)$ 0.05	H1	0.6934	0.2893	0.6972	0.046*
H20.89440.31880.54080.051*C30.7815 (3)0.29351 (7)0.3708 (2)0.0474 (6)H3A0.70040.31870.35290.057*H3B0.89400.29930.32490.057*C40.6973 (4)0.25000.3174 (3)0.0482 (8)H4A0.70930.25000.22340.058*H4B0.56910.25000.33770.058*C50.9286 (4)0.25000.5451 (3)0.0437 (8)C60.5396 (3)0.33407 (7)0.5949 (2)0.0364 (5)C70.3900 (3)0.33809 (7)0.5140 (2)0.0418 (6)H70.35060.31300.46660.050*C80.2990 (3)0.37892 (7)0.5032 (2)0.0426 (6)H80.19880.38110.44880.051*C90.3553 (3)0.41666 (7)0.5724 (2)0.0389 (6)C100.5099 (3)0.41290 (7)0.6550 (2)0.0480 (6)H100.53840.43780.70400.055*C120.3046 (3)0.49521 (7)0.6265 (2)0.0484 (6)H12B0.29590.48890.71900.58*C130.1778 (3)0.52370.60960.069*H13B0.18630.53860.49760.069*H13B0.18630.53860.49760.069*H14A0.21160.57080.53900.115*H14B0.13500.59950.63900.115*H14B0.1350 <t< td=""><td>C2</td><td>0.8207 (3)</td><td>0.29225 (7)</td><td>0.5180 (2)</td><td>0.0426 (6)</td></t<>	C2	0.8207 (3)	0.29225 (7)	0.5180 (2)	0.0426 (6)
C3 $0.7815 (3)$ $0.29351 (7)$ $0.3708 (2)$ $0.0474 (6)$ H3A 0.7004 0.3187 0.3529 0.057^* H3B 0.8940 0.2993 0.3249 0.057^* C4 $0.6973 (4)$ 0.2500 $0.3174 (3)$ $0.0482 (8)$ H4A 0.7093 0.2500 0.2234 0.058^* H4B 0.5691 0.2500 0.3377 0.588^* C5 $0.9286 (4)$ 0.2500 0.3377 0.058^* C6 $0.5396 (3)$ $0.33407 (7)$ $0.5949 (2)$ $0.0364 (5)$ C7 $0.3900 (3)$ $0.33809 (7)$ $0.5140 (2)$ $0.0418 (6)$ H7 0.3506 0.3130 0.4666 0.509^* C8 $0.2990 (3)$ $0.37892 (7)$ $0.5032 (2)$ $0.0426 (6)$ H8 0.1988 0.3811 0.4488 0.051^* C9 $0.3553 (3)$ $0.41666 (7)$ $0.5724 (2)$ $0.389 (6)$ C10 $0.509 (3)$ $0.41290 (7)$ $0.6550 (2)$ $0.4480 (6)$ H10 0.5384 0.4378 0.7040 0.558^* C11 $0.5911 (3)$ $0.37188 (7)$ $0.6647 (2)$ $0.0482 (6)$ H11 0.6901 0.3697 0.7204 0.558^* C12 $0.3046 (3)$ $0.49521 (7)$ $0.6265 (2)$ $0.484 (6)$ H12B 0.2959 0.4889 0.7190 0.588^* C13 $0.1778 (3)$ 0.5237 0.6096 0.69^* H13B 0.1863 0.5386 0.4976 0.698^* H14	H2	0.8944	0.3188	0.5408	0.051*
H3A0.70040.31870.35290.057*H3B0.89400.29930.32490.057*C40.6973 (4)0.25000.3174 (3)0.0482 (8)H4A0.70930.25000.22340.058*H4B0.56910.25000.33770.058*C50.9286 (4)0.25000.5451 (3)0.0437 (8)C60.5396 (3)0.33407 (7)0.5949 (2)0.0364 (5)C70.3900 (3)0.33809 (7)0.5140 (2)0.0418 (6)H70.35060.31300.46660.050*C80.2990 (3)0.37892 (7)0.5032 (2)0.0426 (6)H80.19880.38110.44880.051*C90.3553 (3)0.41666 (7)0.5724 (2)0.0389 (6)C100.5099 (3)0.41290 (7)0.6550 (2)0.0480 (6)H100.53840.43780.70400.058*C110.5911 (3)0.37188 (7)0.6647 (2)0.0462 (6)H110.69010.36970.72040.055*C120.3046 (3)0.49521 (7)0.6265 (2)0.0484 (6)H12A0.42840.50390.60700.058*C130.1778 (3)0.53290 (7)0.5904 (2)0.0578 (7)H13A0.05450.52370.60960.69*H13B0.18630.53860.49760.609*C140.2201 (4)0.57630 (8)0.6634 (3)0.0768 (9)H14A0.21160.57080.5790 (3)0.115* <td>C3</td> <td>0.7815 (3)</td> <td>0.29351 (7)</td> <td>0.3708 (2)</td> <td>0.0474 (6)</td>	C3	0.7815 (3)	0.29351 (7)	0.3708 (2)	0.0474 (6)
H3B0.89400.29930.32490.057*C40.6973 (4)0.25000.3174 (3)0.0482 (8)H4A0.70930.25000.22340.058*H4B0.56910.25000.33770.058*C50.9286 (4)0.25000.5451 (3)0.0437 (8)C60.5396 (3)0.33407 (7)0.5949 (2)0.0364 (5)C70.3900 (3)0.33809 (7)0.5140 (2)0.0418 (6)H70.35060.31300.46660.050*C80.2990 (3)0.37892 (7)0.5032 (2)0.0426 (6)H80.19880.38110.44880.51*C90.3553 (3)0.41666 (7)0.5724 (2)0.0389 (6)C100.5099 (3)0.41290 (7)0.6550 (2)0.0480 (6)H100.53840.43780.70400.058*C110.5911 (3)0.37188 (7)0.6647 (2)0.0452 (6)H110.69010.36970.72040.055*C120.3046 (3)0.49521 (7)0.6265 (2)0.0484 (6)H12A0.42840.50390.60700.058*C130.1778 (3)0.53290 (7)0.5904 (2)0.578 (7)H13A0.05450.52370.60960.69*C140.2201 (4)0.5763 (8)0.6634 (3)0.0768 (9)H14A0.21160.57080.53900.115*H14B0.13500.59950.63900.115*H14C0.34050.58610.6251 (7)0.4050 (7) </td <td>H3A</td> <td>0.7004</td> <td>0.3187</td> <td>0.3529</td> <td>0.057*</td>	H3A	0.7004	0.3187	0.3529	0.057*
C40.6973 (4)0.25000.3174 (3)0.0482 (8)H4A0.70930.25000.22340.058*H4B0.56910.25000.33770.058*C50.9286 (4)0.25000.5451 (3)0.0437 (8)C60.5396 (3)0.33407 (7)0.5949 (2)0.0364 (5)C70.3900 (3)0.33809 (7)0.5140 (2)0.0418 (6)H70.35060.31300.46660.050*C80.2990 (3)0.37892 (7)0.5032 (2)0.0426 (6)H80.19880.38110.44880.051*C90.3553 (3)0.41666 (7)0.5724 (2)0.0389 (6)C100.5009 (3)0.41290 (7)0.6550 (2)0.0480 (6)H100.53840.43780.70400.058*C110.5911 (3)0.37188 (7)0.6647 (2)0.0482 (6)H110.69010.36970.72040.055*C120.3046 (3)0.49521 (7)0.6265 (2)0.0484 (6)H12A0.42840.50390.60700.58*C130.1778 (3)0.53290 (7)0.5904 (2)0.0578 (7)H13A0.05450.52370.60960.609*H13B0.18630.53860.49760.069*C140.2201 (4)0.57630 (8)0.6634 (3)0.0768 (9)H14A0.21160.59950.63900.115*H14B0.13500.59950.63900.115*H14C0.34050.58610.64230.115*<	H3B	0.8940	0.2993	0.3249	0.057*
H4A0.70930.25000.22340.058*H4B0.56910.25000.33770.058*C50.9286 (4)0.25000.5451 (3)0.0437 (8)C60.5396 (3)0.33407 (7)0.5949 (2)0.0364 (5)C70.3900 (3)0.33809 (7)0.5140 (2)0.0418 (6)H70.35060.31300.46660.050*C80.2990 (3)0.37892 (7)0.5032 (2)0.0426 (6)H80.19880.38110.44880.051*C90.3553 (3)0.41666 (7)0.5724 (2)0.0389 (6)C100.5009 (3)0.41290 (7)0.6550 (2)0.0480 (6)H100.53840.43780.70400.058*C110.5911 (3)0.37188 (7)0.6647 (2)0.0462 (6)H110.69010.36970.72040.055*C120.3046 (3)0.49521 (7)0.6265 (2)0.0484 (6)H12A0.42840.50390.60700.58*C130.1778 (3)0.53290 (7)0.5904 (2)0.0578 (7)H13A0.05450.52370.60960.609*H13B0.18630.53860.49760.069*C140.2201 (4)0.57630 (8)0.6634 (3)0.0768 (9)H14A0.21160.59950.63900.115*H14B0.13500.59950.63900.115*H14C0.34050.58610.64230.115*N10.5477 (4)0.25000.5791 (6)0.0405 (7)<	C4	0.6973 (4)	0.2500	0.3174 (3)	0.0482 (8)
H4B0.56910.25000.33770.058*C50.9286 (4)0.25000.5451 (3)0.0437 (8)C60.5396 (3)0.33407 (7)0.5949 (2)0.0364 (5)C70.3900 (3)0.33809 (7)0.5140 (2)0.0418 (6)H70.35060.31300.46660.050*C80.2990 (3)0.37892 (7)0.5032 (2)0.0426 (6)H80.19880.38110.44880.051*C90.3553 (3)0.41666 (7)0.5724 (2)0.0389 (6)C100.5009 (3)0.41290 (7)0.6550 (2)0.0480 (6)H100.53840.43780.70400.058*C110.5911 (3)0.37188 (7)0.6647 (2)0.0462 (6)H110.69010.36970.72040.055*C120.3046 (3)0.49521 (7)0.6265 (2)0.0484 (6)H12A0.42840.50390.60700.058*L12B0.29590.48890.71900.058*C130.1778 (3)0.53290 (7)0.5904 (2)0.0578 (7)H13A0.05450.52370.60960.069*H13B0.18630.53860.49760.069*C140.2201 (4)0.57630 (8)0.6634 (3)0.0768 (9)H14A0.21160.57080.75540.115*H14B0.13500.59950.63900.115*H14C0.34050.58610.64230.115*N10.5477 (4)0.25000.5796 (3)0.0405 (7) <td>H4A</td> <td>0.7093</td> <td>0.2500</td> <td>0.2234</td> <td>0.058*</td>	H4A	0.7093	0.2500	0.2234	0.058*
C50.9286 (4)0.25000.5451 (3)0.0437 (8)C60.5396 (3)0.33407 (7)0.5949 (2)0.0364 (5)C70.3900 (3)0.33809 (7)0.5140 (2)0.0418 (6)H70.35060.31300.46660.050*C80.2990 (3)0.37892 (7)0.5032 (2)0.0426 (6)H80.19880.38110.44880.051*C90.3553 (3)0.41666 (7)0.5724 (2)0.0389 (6)C100.5009 (3)0.41290 (7)0.6550 (2)0.0480 (6)H100.53840.43780.70400.058*C110.5911 (3)0.37188 (7)0.6647 (2)0.0462 (6)H110.69010.36970.72040.055*C120.3046 (3)0.49521 (7)0.6265 (2)0.0484 (6)H12B0.29590.48890.71900.058*C130.1778 (3)0.53290 (7)0.5904 (2)0.0578 (7)H13A0.05450.52370.60960.069*H13B0.18630.53860.49760.069*C140.2201 (4)0.57630 (8)0.6634 (3)0.0768 (9)H14A0.21160.57080.75540.115*H14B0.13500.59950.63900.115*H14C0.34050.58610.64230.115*N10.5477 (4)0.25000.5790 (3)0.0405 (7)	H4B	0.5691	0.2500	0.3377	0.058*
C60.5396 (3)0.33407 (7)0.5949 (2)0.0364 (5)C70.3900 (3)0.33809 (7)0.5140 (2)0.0418 (6)H70.35060.31300.46660.050*C80.2990 (3)0.37892 (7)0.5032 (2)0.0426 (6)H80.19880.38110.44880.051*C90.3553 (3)0.41666 (7)0.5724 (2)0.0389 (6)C100.5009 (3)0.41290 (7)0.6550 (2)0.0480 (6)H100.53840.43780.70400.058*C110.5911 (3)0.37188 (7)0.6647 (2)0.0462 (6)H110.69010.36970.72040.055*C120.3046 (3)0.49521 (7)0.6265 (2)0.0484 (6)H12A0.42840.50390.60700.058*C130.1778 (3)0.53290 (7)0.5904 (2)0.0578 (7)H13A0.05450.52370.60960.069*H13B0.18630.53860.49760.069*C140.2201 (4)0.57630 (8)0.6634 (3)0.0768 (9)H14A0.21160.57080.75540.115*H14B0.13500.59950.63900.115*H14C0.34050.58610.64230.115*N10.5477 (4)0.25000.5790 (3)0.0405 (7)	C5	0.9286 (4)	0.2500	0.5451 (3)	0.0437 (8)
C70.3900 (3)0.33809 (7)0.5140 (2)0.0418 (6)H70.35060.31300.46660.050*C80.2990 (3)0.37892 (7)0.5032 (2)0.0426 (6)H80.19880.38110.44880.051*C90.3553 (3)0.41666 (7)0.5724 (2)0.0389 (6)C100.5009 (3)0.41290 (7)0.6550 (2)0.0480 (6)H100.53840.43780.70400.058*C110.5911 (3)0.37188 (7)0.6647 (2)0.0462 (6)H110.69010.36970.72040.055*C120.3046 (3)0.49521 (7)0.6265 (2)0.0484 (6)H12A0.42840.50390.60700.058*H12B0.29590.48890.71900.058*C130.1778 (3)0.53290 (7)0.5904 (2)0.0578 (7)H13A0.05450.52370.60960.069*H13B0.18630.53860.49760.069*C140.2201 (4)0.57630 (8)0.634 (3)0.0768 (9)H14A0.21160.57080.75540.115*H14B0.13500.59950.63900.115*H14C0.34050.58610.64230.115*N10.5477 (4)0.25000.5790 (3)0.0405 (7)	C6	0.5396 (3)	0.33407 (7)	0.5949 (2)	0.0364 (5)
H70.35060.31300.46660.050*C80.2990 (3)0.37892 (7)0.5032 (2)0.0426 (6)H80.19880.38110.44880.051*C90.3553 (3)0.41666 (7)0.5724 (2)0.0389 (6)C100.5009 (3)0.41290 (7)0.6550 (2)0.0480 (6)H100.53840.43780.70400.058*C110.5911 (3)0.37188 (7)0.6647 (2)0.0462 (6)H110.69010.36970.72040.055*C120.3046 (3)0.49521 (7)0.6265 (2)0.0484 (6)H12B0.29590.48890.71900.58*C130.1778 (3)0.53290 (7)0.5904 (2)0.0578 (7)H13A0.05450.52370.60960.069*H13B0.18630.53860.49760.069*C140.2201 (4)0.57630 (8)0.6634 (3)0.0768 (9)H14A0.11560.59950.63900.115*H14B0.13500.59950.63900.115*H14C0.34050.58610.64230.115*N10.5477 (4)0.25000.5790 (3)0.0405 (7)	C7	0.3900 (3)	0.33809 (7)	0.5140 (2)	0.0418 (6)
C80.2990 (3)0.37892 (7)0.5032 (2)0.0426 (6)H80.19880.38110.44880.051*C90.3553 (3)0.41666 (7)0.5724 (2)0.0389 (6)C100.5009 (3)0.41290 (7)0.6550 (2)0.0480 (6)H100.53840.43780.70400.058*C110.5911 (3)0.37188 (7)0.6647 (2)0.0462 (6)H110.69010.36970.72040.055*C120.3046 (3)0.49521 (7)0.6265 (2)0.0484 (6)H12A0.42840.50390.60700.058*C130.1778 (3)0.53290 (7)0.5904 (2)0.0578 (7)H13A0.05450.52370.60960.069*H13B0.18630.53860.49760.069*C140.2201 (4)0.57630 (8)0.6634 (3)0.0768 (9)H14A0.21160.57080.75540.115*H14B0.13500.58610.64230.115*N10.5477 (4)0.25000.5790 (3)0.0405 (7)	H7	0.3506	0.3130	0.4666	0.050*
H80.19880.38110.44880.051*C90.3553 (3)0.41666 (7)0.5724 (2)0.0389 (6)C100.5009 (3)0.41290 (7)0.6550 (2)0.0480 (6)H100.53840.43780.70400.058*C110.5911 (3)0.37188 (7)0.6647 (2)0.0462 (6)H110.69010.36970.72040.055*C120.3046 (3)0.49521 (7)0.6265 (2)0.0484 (6)H12A0.42840.50390.60700.058*H12B0.29590.48890.71900.058*C130.1778 (3)0.53290 (7)0.5904 (2)0.0578 (7)H13A0.05450.52370.60960.069*H13B0.18630.53860.49760.069*C140.2201 (4)0.57630 (8)0.6634 (3)0.0768 (9)H14A0.21160.57080.75540.115*H14B0.13500.59950.63900.115*N10.5477 (4)0.25000.5790 (3)0.0405 (7)	C8	0.2990 (3)	0.37892 (7)	0.5032 (2)	0.0426 (6)
C90.3553 (3)0.41666 (7)0.5724 (2)0.0389 (6)C100.5009 (3)0.41290 (7)0.6550 (2)0.0480 (6)H100.53840.43780.70400.058*C110.5911 (3)0.37188 (7)0.6647 (2)0.0462 (6)H110.69010.36970.72040.055*C120.3046 (3)0.49521 (7)0.6265 (2)0.0484 (6)H12A0.42840.50390.60700.058*C130.1778 (3)0.53290 (7)0.5904 (2)0.0578 (7)H13B0.18630.53860.49760.069*C140.2201 (4)0.57630 (8)0.6634 (3)0.0768 (9)H14A0.31500.59950.63900.115*H14B0.13500.59950.63900.115*N10.5477 (4)0.25000.5790 (3)0.0405 (7)	H8	0.1988	0.3811	0.4488	0.051*
C100.5009 (3)0.41290 (7)0.6550 (2)0.0480 (6)H100.53840.43780.70400.058*C110.5911 (3)0.37188 (7)0.6647 (2)0.0462 (6)H110.69010.36970.72040.055*C120.3046 (3)0.49521 (7)0.6265 (2)0.0484 (6)H12A0.42840.50390.60700.058*H12B0.29590.48890.71900.058*C130.1778 (3)0.53290 (7)0.5904 (2)0.0578 (7)H13A0.05450.52370.60960.069*H13B0.18630.53860.49760.069*C140.2201 (4)0.57630 (8)0.6634 (3)0.0768 (9)H14A0.21160.57080.75540.115*H14B0.13500.59950.63900.115*N10.5477 (4)0.25000.5790 (3)0.0405 (7)	С9	0.3553 (3)	0.41666 (7)	0.5724 (2)	0.0389 (6)
H100.53840.43780.70400.058*C110.5911 (3)0.37188 (7)0.6647 (2)0.0462 (6)H110.69010.36970.72040.055*C120.3046 (3)0.49521 (7)0.6265 (2)0.0484 (6)H12A0.42840.50390.60700.058*H12B0.29590.48890.71900.058*C130.1778 (3)0.53290 (7)0.5904 (2)0.0578 (7)H13A0.05450.52370.60960.069*H13B0.18630.53860.49760.069*C140.2201 (4)0.57630 (8)0.6634 (3)0.0768 (9)H14A0.21160.57080.75540.115*H14B0.13500.59950.63900.115*H14C0.34050.58610.64230.115*N10.5477 (4)0.25000.5790 (3)0.0405 (7)	C10	0.5009 (3)	0.41290 (7)	0.6550 (2)	0.0480 (6)
C110.5911 (3)0.37188 (7)0.6647 (2)0.0462 (6)H110.69010.36970.72040.055*C120.3046 (3)0.49521 (7)0.6265 (2)0.0484 (6)H12A0.42840.50390.60700.058*H12B0.29590.48890.71900.058*C130.1778 (3)0.53290 (7)0.5904 (2)0.0578 (7)H13A0.05450.52370.60960.069*H13B0.18630.53860.49760.069*C140.2201 (4)0.57630 (8)0.6634 (3)0.0768 (9)H14A0.21160.59950.63900.115*H14B0.13500.59950.63900.115*N10.5477 (4)0.25000.5790 (3)0.0405 (7)	H10	0.5384	0.4378	0.7040	0.058*
H110.69010.36970.72040.055*C120.3046 (3)0.49521 (7)0.6265 (2)0.0484 (6)H12A0.42840.50390.60700.058*H12B0.29590.48890.71900.058*C130.1778 (3)0.53290 (7)0.5904 (2)0.0578 (7)H13A0.05450.52370.60960.069*H13B0.18630.53860.49760.069*C140.2201 (4)0.57630 (8)0.6634 (3)0.0768 (9)H14A0.21160.57080.75540.115*H14B0.13500.59950.63900.115*H14C0.34050.58610.64230.115*N10.5477 (4)0.25000.5790 (3)0.0405 (7)	C11	0.5911 (3)	0.37188 (7)	0.6647 (2)	0.0462 (6)
C120.3046 (3)0.49521 (7)0.6265 (2)0.0484 (6)H12A0.42840.50390.60700.058*H12B0.29590.48890.71900.058*C130.1778 (3)0.53290 (7)0.5904 (2)0.0578 (7)H13A0.05450.52370.60960.069*H13B0.18630.53860.49760.069*C140.2201 (4)0.57630 (8)0.6634 (3)0.0768 (9)H14A0.21160.57080.75540.115*H14B0.13500.59950.63900.115*H14C0.34050.58610.64230.115*N10.5477 (4)0.25000.5790 (3)0.0405 (7)	H11	0.6901	0.3697	0.7204	0.055*
H12A0.42840.50390.60700.058*H12B0.29590.48890.71900.058*C130.1778 (3)0.53290 (7)0.5904 (2)0.0578 (7)H13A0.05450.52370.60960.069*H13B0.18630.53860.49760.069*C140.2201 (4)0.57630 (8)0.6634 (3)0.0768 (9)H14A0.21160.57080.75540.115*H14B0.13500.59950.63900.115*H14C0.34050.58610.64230.115*N10.5477 (4)0.25000.5790 (3)0.0405 (7)	C12	0.3046 (3)	0.49521 (7)	0.6265 (2)	0.0484 (6)
H12B0.29590.48890.71900.058*C130.1778 (3)0.53290 (7)0.5904 (2)0.0578 (7)H13A0.05450.52370.60960.069*H13B0.18630.53860.49760.069*C140.2201 (4)0.57630 (8)0.6634 (3)0.0768 (9)H14A0.21160.57080.75540.115*H14B0.13500.59950.63900.115*H14C0.34050.58610.64230.115*N10.5477 (4)0.25000.5790 (3)0.0405 (7)	H12A	0.4284	0.5039	0.6070	0.058*
C130.1778 (3)0.53290 (7)0.5904 (2)0.0578 (7)H13A0.05450.52370.60960.069*H13B0.18630.53860.49760.069*C140.2201 (4)0.57630 (8)0.6634 (3)0.0768 (9)H14A0.21160.57080.75540.115*H14B0.13500.59950.63900.115*H14C0.34050.58610.64230.115*N10.5477 (4)0.25000.5790 (3)0.0405 (7)	H12B	0.2959	0.4889	0.7190	0.058*
H13A0.05450.52370.60960.069*H13B0.18630.53860.49760.069*C140.2201 (4)0.57630 (8)0.6634 (3)0.0768 (9)H14A0.21160.57080.75540.115*H14B0.13500.59950.63900.115*H14C0.34050.58610.64230.115*N10.5477 (4)0.25000.5790 (3)0.0405 (7)Ol0.5921 (2)0.5861 (2)0.2622 (7)	C13	0.1778 (3)	0.53290 (7)	0.5904 (2)	0.0578 (7)
H13B0.18630.53860.49760.069*C140.2201 (4)0.57630 (8)0.6634 (3)0.0768 (9)H14A0.21160.57080.75540.115*H14B0.13500.59950.63900.115*H14C0.34050.58610.64230.115*N10.5477 (4)0.25000.5790 (3)0.0405 (7)010.0911 (2)0.25020.5851 (2)0.0222 (7)	H13A	0.0545	0.5237	0.6096	0.069*
C140.2201 (4)0.57630 (8)0.6634 (3)0.0768 (9)H14A0.21160.57080.75540.115*H14B0.13500.59950.63900.115*H14C0.34050.58610.64230.115*N10.5477 (4)0.25000.5790 (3)0.0405 (7)011.0821 (2)0.25020.5851 (2)0.2622 (7)	H13B	0.1863	0.5386	0.4976	0.069*
H14A0.21160.57080.75540.115*H14B0.13500.59950.63900.115*H14C0.34050.58610.64230.115*N10.5477 (4)0.25000.5790 (3)0.0405 (7)011.0821 (2)0.25020.5851 (2)0.2622 (7)	C14	0.2201 (4)	0.57630 (8)	0.6634 (3)	0.0768 (9)
H14B0.13500.59950.63900.115*H14C0.34050.58610.64230.115*N10.5477 (4)0.25000.5790 (3)0.0405 (7)O11.0931 (2)0.25000.5851 (2)0.2622 (7)	H14A	0.2116	0.5708	0.7554	0.115*
H14C 0.3405 0.5861 0.6423 0.115* N1 0.5477 (4) 0.2500 0.5790 (3) 0.0405 (7) 01 1.0921 (2) 0.2500 0.5851 (2) 0.2(22 (7))	H14B	0.1350	0.5995	0.6390	0.115*
N1 0.5477 (4) 0.2500 0.5790 (3) 0.0405 (7) 01 1.0931 (2) 0.2500 0.5851 (2) 0.0422 (7)	H14C	0.3405	0.5861	0.6423	0.115*
	N1	0.5477 (4)	0.2500	0.5790 (3)	0.0405 (7)
01 1.0851(3) 0.2500 0.5851(2) 0.0633(7)	01	1.0831 (3)	0.2500	0.5851 (2)	0.0633 (7)

supplementary materials

O2	0.25630 (19)	0.45579 (5)	0.55359 (16)	0.0531 (5)
H1N	0.458 (4)	0.2500	0.623 (3)	0.029 (9)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0415 (12)	0.0358 (12)	0.0380 (13)	-0.0030 (10)	-0.0027 (10)	-0.0016 (10)
C2	0.0377 (13)	0.0352 (12)	0.0548 (16)	-0.0049 (10)	0.0003 (11)	-0.0056 (11)
C3	0.0497 (14)	0.0433 (13)	0.0492 (15)	0.0036 (11)	0.0091 (12)	0.0038 (12)
C4	0.055 (2)	0.049 (2)	0.0407 (19)	0.000	0.0047 (16)	0.000
C5	0.0354 (19)	0.049 (2)	0.047 (2)	0.000	0.0018 (16)	0.000
C6	0.0379 (12)	0.0346 (12)	0.0368 (13)	-0.0022 (10)	0.0005 (10)	-0.0019 (10)
C7	0.0445 (13)	0.0362 (13)	0.0445 (14)	-0.0045 (11)	-0.0023 (11)	-0.0051 (11)
C8	0.0439 (13)	0.0424 (14)	0.0415 (14)	-0.0020 (11)	-0.0081 (11)	-0.0027 (11)
C9	0.0413 (13)	0.0318 (13)	0.0436 (14)	-0.0017 (10)	0.0042 (11)	0.0011 (10)
C10	0.0508 (15)	0.0388 (14)	0.0543 (16)	-0.0033 (11)	-0.0069 (13)	-0.0129 (12)
C11	0.0435 (14)	0.0436 (14)	0.0515 (15)	0.0004 (11)	-0.0117 (12)	-0.0081 (12)
C12	0.0519 (14)	0.0357 (13)	0.0575 (15)	-0.0046 (11)	0.0027 (12)	-0.0054 (12)
C13	0.0594 (15)	0.0400 (14)	0.0740 (18)	0.0013 (12)	0.0019 (14)	-0.0047 (13)
C14	0.0743 (19)	0.0471 (15)	0.109 (3)	0.0032 (14)	-0.0007 (17)	-0.0183 (16)
N1	0.0371 (16)	0.0360 (16)	0.0483 (18)	0.000	0.0066 (15)	0.000
O1	0.0369 (14)	0.0686 (16)	0.0845 (18)	0.000	-0.0115 (13)	0.000
O2	0.0604 (10)	0.0345 (9)	0.0644 (11)	0.0053 (7)	-0.0124 (8)	-0.0074 (8)

Geometric parameters (Å, °)

C1—N1	1.464 (2)	C8—C9	1.381 (3)
C1—C6	1.507 (3)	С8—Н8	0.9300
C1—C2	1.551 (3)	C9—C10	1.375 (3)
С1—Н1	0.9800	С9—О2	1.376 (2)
C2—C5	1.502 (3)	C10-C11	1.381 (3)
C2—C3	1.540 (3)	С10—Н10	0.9300
С2—Н2	0.9800	C11—H11	0.9300
C3—C4	1.524 (3)	C12—O2	1.425 (2)
С3—НЗА	0.9700	C12—C13	1.497 (3)
С3—Н3В	0.9700	C12—H12A	0.9700
C4—C3 ⁱ	1.524 (3)	C12—H12B	0.9700
C4—H4A	0.9700	C13—C14	1.512 (3)
C4—H4B	0.9700	C13—H13A	0.9700
C5—O1	1.213 (3)	С13—Н13В	0.9700
C5—C2 ⁱ	1.502 (3)	C14—H14A	0.9600
C6—C11	1.377 (3)	C14—H14B	0.9600
C6—C7	1.387 (3)	C14—H14C	0.9600
С7—С8	1.380 (3)	N1—C1 ⁱ	1.464 (2)
С7—Н7	0.9300	N1—H1N	0.80 (3)
N1—C1—C6	112.97 (17)	С7—С8—Н8	119.6
N1—C1—C2	108.69 (19)	С9—С8—Н8	119.6
C6—C1—C2	112.25 (17)	С10—С9—О2	124.69 (19)

N1—C1—H1	107.6	C10—C9—C8	119.24 (19)
C6—C1—H1	107.6	O2—C9—C8	116.06 (19)
C2—C1—H1	107.6	C9—C10—C11	119.5 (2)
C5—C2—C3	107.6 (2)	С9—С10—Н10	120.3
C5—C2—C1	107.73 (19)	C11—C10—H10	120.3
C3—C2—C1	115.30 (17)	C6—C11—C10	122.3 (2)
С5—С2—Н2	108.7	С6—С11—Н11	118.9
С3—С2—Н2	108.7	C10-C11-H11	118.9
С1—С2—Н2	108.7	O2—C12—C13	108.35 (18)
C4—C3—C2	114.2 (2)	O2-C12-H12A	110.0
С4—С3—НЗА	108.7	C13—C12—H12A	110.0
С2—С3—НЗА	108.7	O2—C12—H12B	110.0
C4—C3—H3B	108.7	C13—C12—H12B	110.0
С2—С3—Н3В	108.7	H12A—C12—H12B	108.4
НЗА—СЗ—НЗВ	107.6	C12—C13—C14	111.9 (2)
C3—C4—C3 ⁱ	114.1 (3)	C12—C13—H13A	109.2
C3—C4—H4A	108.7	C14—C13—H13A	109.2
C3 ⁱ —C4—H4A	108.7	C12—C13—H13B	109.2
C3—C4—H4B	108.7	C14—C13—H13B	109.2
$C3^{i}$ —C4—H4B	108.7	H13A—C13—H13B	107.9
H4A—C4—H4B	107.6	C13—C14—H14A	109.5
$01-05-02^{i}$	124 19 (13)	C13—C14—H14B	109.5
01 - C5 - C2	124.19 (13)	H14A - C14 - H14B	109.5
C^{i} C^{5} C^{2}	111 6 (3)	C13-C14-H14C	109.5
$C_2 = C_3 = C_2$	117.62(10)		109.5
$C_{11} = C_{0} = C_{1}$	117.02 (19)	$H_{14} = C_{14} = H_{14} C_{14}$	109.5
	122.75 (10)		107.5 112.2(2)
	123.73 (19)	CI_NI_CI	112.2(2)
	120.7 (2)	CI—NI—HIN	108.6 (10)
С8—С/—Н/	119.7	C1 ¹ —N1—H1N	108.6 (10)
С6—С7—Н7	119.7	C9—O2—C12	118.21 (16)
C7—C8—C9	120.7 (2)		
N1—C1—C2—C5	-58.5 (2)	C1—C6—C7—C8	-177.0 (2)
C6—C1—C2—C5	175.77 (19)	C6—C7—C8—C9	0.2 (3)
N1—C1—C2—C3	61.6 (2)	C7—C8—C9—C10	-1.6 (3)
C6—C1—C2—C3	-64.1 (2)	C7—C8—C9—O2	179.35 (19)
C5—C2—C3—C4	52.0 (3)	O2—C9—C10—C11	-179.3 (2)
C1—C2—C3—C4	-68.2 (3)	C8—C9—C10—C11	1.7 (3)
$C2-C3-C4-C3^{i}$	-42.1 (3)	C7—C6—C11—C10	-0.9 (3)
C3—C2—C5—O1	115.5 (3)	C1—C6—C11—C10	177.2 (2)
C1—C2—C5—O1	-119.6 (3)	C9—C10—C11—C6	-0.5 (3)
$C3-C2-C5-C2^{i}$	-65.1 (3)	O2—C12—C13—C14	-179.8 (2)
C1C2C2 ⁱ	59.8 (3)	C6—C1—N1—C1 ⁱ	-172.82 (15)
N1—C1—C6—C11	154.5 (2)	C2-C1-N1-C1 ⁱ	61.9 (3)
C2-C1-C6-C11	-82.1 (2)	C10—C9—O2—C12	-1.4 (3)
N1—C1—C6—C7	-27.5 (3)	C8—C9—O2—C12	177.64 (18)
C2-C1-C6-C7	95.8 (2)	C13—C12—O2—C9	-179.52 (18)

C11—C6—C7—C8 1.0 (3) Symmetry codes: (i) *x*, -*y*+1/2, *z*.

Fig. 1

