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Understanding soil microbial element limitation and its relation with the microbial community 
can help in elucidating the soil fertility status and improving nutrient management of planted 
forest ecosystems. The stand age of a planted forest determines the aboveground forest 
biomass and structure and underground microbial function and diversity. In this study, 
we investigated 30 plantations of Camellia oleifera distributed across the subtropical region 
of China that we classified into four stand ages (planted <9 years, 9–20 years, 21–60 years, 
and >60 years age). Enzymatic stoichiometry analysis showed that microbial metabolism 
in the forests was mainly limited by C and P. P limitation significantly decreased and C 
limitation slightly increased along the stand age gradient. The alpha diversity of the soil 
microbiota remained steady along stand age, while microbial communities gradually 
converged from scattered to clustered, which was accompanied by a decrease in network 
complexity. The soil bacterial community assembly shifted from stochastic to deterministic 
processes, which probably contributed to a decrease in soil pH along stand age. Our 
findings emphasize that the stand age regulated the soil microbial metabolism limitation 
and community assembly, which provides new insight into the improvement of C and P 
management in subtropical planted forest.

Keywords: soil microbial limitation, community assembly, stand age, planted forest, Camellia oleifera

INTRODUCTION

Planted forests, established by planting and/or deliberate seeding, provide critical ecosystem 
services, such as carbon storage, soil conservation, and wood production (FAO, 2015). Planted 
forests have been estimated to have increased globally from 277.9 million ha to 320 million 
ha between 2015 and 2020 (Nepal et  al., 2019). Compared to natural forests, planted forests, 
which are generally established with the aim to restore plant cover on agricultural and mined 
lands, are characterized by a lower plant diversity (Martínez-Jauregui et  al., 2016). According 
to the widely accepted resource diversity hypothesis, plant communities with a high diversity 
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support higher soil microbial activity and diversity owing to 
a diverse and complex organic substrate input from the various 
species planted. For example, the soil microbial activity in a 
mixed hornbeam and ironwood forest was found to be  higher 
than in an ash planted forest (Kooch et al., 2018). The microbial 
diversity in a natural hygrophilic deciduous mixed forest was 
higher than that in the poplar planted forest (Vitali et  al., 
2016). The investigation of soil microbial processes in planted 
forests is expected to deepen our understanding of why the 
microbes show a low activity and diversity in such forests.

Soil microbial metabolic limitation, which reflects the nutrient 
demands of soil microorganisms for microbial metabolic 
processes, can be  analyzed based on microbial enzyme activity 
as indicated by eco-enzymatic stoichiometry (Sinsabaugh et al., 
2015). Previous studies have reported that soil microbial carbon 
(C) limitation is common in terrestrial ecosystems (Schimel 
and Weintraub, 2003), whereas microbial nitrogen (N) and 
phosphorus (P) limitations are more generally found in grassland 
and wetland ecosystems (Hill et  al., 2018; Yang et  al., 2020). 
Soil microbial metabolic limitation is influenced by multiple 
environmental factors, including climatic and plant-related 
factors. Microbial C limitation reportedly decreases with 
increasing precipitation in the Loess Plateau region (Cui et  al., 
2019). Soil microbial P limitation increases during forest 
succession from coniferous to broad-leaf forest due to substantial 
competition for P in the later stages of forest succession (Huang 
et  al., 2013). Thus, the identification of the variation in soil 
microbial metabolic limitation in a specific forest ecosystem 
will improve our knowledge of the soil biogeochemical constraints 
in the system.

Stand age is a primary driver of forest structure and function, 
including plant net primary productivity, carbon storage (Pregitzer 
and Euskirchen, 2004), and the soil microbial community (Kang 
et  al., 2018). A previous study showed that soil bacterial alpha 
diversity increased linearly with increasing stand age in Caragana 
liouana plantations (Na et al., 2018), whereas it exhibited a nonlinear 
pattern along stand age in Hevea brasiliensis plantations (Zhou 
et  al., 2017). The inconsistency of microbial diversity patterns is 
usually attributed to the plant species involved and the soil 
physicochemical properties. For example, Alnus cremastogyne, as 
a pioneer species, gradually decreases the soil pH through the 
secretion of organic acids during tree growth, thus increasing 
soil bacterial diversity (Sun et  al., 2018). The progressive 
accumulation of lignin-rich litter from oak trees on the soil surface 
along stand age provides a moist soil microclimate that supports 
the growth of anaerobic bacterial species (Canessa et  al., 2020). 
Additionally, forest stand age also affects microbial metabolic 
limitation via influencing soil nutrients. A study in a Douglas-fir 
forest revealed that microbial N limitation increased with stand 
age (Vittori Antisari et  al., 2018). In Eucalyptus plantations, 
microbial metabolism was mainly limited by P and increased 
with stand age (Fan et  al., 2015). Thus, the effect of stand age 
on the soil microbial diversity depends on the forest species.

Shifts in a microbial community along ecological successions 
are controlled by microbial assembly processes (Stegen et  al., 
2012). Deterministic processes result from environmental abiotic 
and biotic filtering that shapes species abundances, whereas 

stochastic processes reflect changes in species abundances by 
random processes, such as ecological drift and dispersal (Dini-
Andreote et  al., 2015). The relative importance of these two 
processes is determined by various factors, including spatial 
variation (Gao et al., 2019), ecosystem succession (Måren et al., 
2018), and environmental disturbances (Ferrenberg et al., 2013). 
For example, the soil bacterial community assembly generally 
shifts with the spatial scale, with stochastic processes dominating 
at small spatial scales and deterministic processes dominating 
at larger scales (Feng et  al., 2019). In a subtropical forest 
succession, deterministic processes have been found to govern 
the soil fungal assembly in the early succession stage, whereas 
both deterministic and stochastic processes were predominant 
in later succession stages (Chai et  al., 2016). However, the 
factors influencing soil microbial assembly on a short time 
scale, such as stand age, remain largely unknown.

Camellia oleifera, one of the four major woody oil plants in 
the world, is widely planted in the subtropical zone of South 
China (Jin and Ning, 2012). The planting area of C. oleifera increases 
at the rate of 0.1 million ha annually and covers about 4.5 million 
ha as of 2019 (State Forestry Bureau, 2009). Besides the economic 
purpose of oil production, C. oleifera is planted as a pioneer species 
to colonize acid, infertile soils for ecological restoration (Yang et al., 
2016). However, continuous product harvesting has been shown 
to decrease soil fertility in C. oleifera forests. Under infertile 
conditions, soil microbes compete with plants for nutrients, such 
as N and P, resulting in low tea quality and oil yield (Liu et  al., 
2017). Understanding soil microbial metabolism and community 
dynamics is expected to provide useful information for soil fertility 
management. In this study, field investigation experiments were 
conducted to examine the effects of stand age on soil microbial 
metabolic limitation and community assembly in C. oleifera 
plantations. We hypothesized that (i) microbial C limitation would 
increase with stand age due to a decrease in soil fertility along 
stand age, and (ii) deterministic processes rather than random 
processes determine the soil bacterial community assembly along 
stand age because C. oleifera plants secrete organic acids from 
their roots and thus decrease soil pH.

MATERIALS AND METHODS

Field Experimental Design and Sample 
Collection
We collected soil samples in plantations of four stand ages, 
classified as young (planted <9 years ago), near-mature (planted 
9–20 years ago), mature (planted 21–60 years ago), or over-
mature (planted >60 years ago), based on the space-for-time 
substitution method, during from December 2017 and January 
2018. In total, 30 C. oleifera plantations across South China 
[from a latitude of 25°21′ to 29°42′ (N) and a longitude of 
110°28′ to 115°34′ (E)] were investigated (Figure  1). Three 
independent 100 m2 (10 m × 10 m) plots within each plantation 
were randomly designated for soil sampling. Twelve soil cores 
taken to a depth of 15 cm were randomly collected within the 
drip line of a tree in each plot as composite soil samples. 
The samples were transported to the laboratory in ice boxes. 
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After homogenization, the soil samples were passed through 
a 2 mm sieve to remove plant residues and stones and were 
then divided into three subsamples. One subsample was stored 
at −80°C for microbial DNA analysis, one was air-dried for 
physicochemical analysis, and one was stored at 4°C until 
determination of the soil microbial biomass and enzyme activities.

Determination of Soil Enzyme Activities 
and Quantification of Microbial Metabolic 
Limitation
The activities of five extracellular enzymes, including two C 
acquisition enzymes [β-1,4-glucosidase (BG) and β-D-cellobiosidase 
(CBH)], two N acquisition enzymes [L-leucine aminopeptidase 
(LAP) and β-N-acetylglucosaminidase (NAG)], and P acquisition 
enzyme [acid phosphatase (AP)], were determined using published 
standard fluorometric techniques (Supplementary Table S1; Saiya-
Cork et  al., 2002). Briefly, 1 g of fresh soil was homogenously 
suspended in 125 ml of 50 mm sodium acetate trihydrate (CAS). 
Then, 250 μl of CAS, 200 μl of the soil suspensions, 50 μl of 10 M 
methylumbelliferyl solution, and 50 μl of substrate were added 
into each well of 96-well microplates and incubated at 25°C in 
the dark for 4 h. Then, 10 μl of 1 M NaOH was added to stop 
the reaction. Fluorescence was determined using a Synergy H4 
multimode microplate reader (Infinite 200 Pro, Tecan, Switzerland).

Soil microbial metabolic limitation was evaluated by two 
different methods. The first method uses a scatter plot of soil 
enzymatic activities, represented by the N:P versus C:N enzymatic 
activity ratios (Sinsabaugh et al., 2009). This quadrantal diagram 
provides information regarding four types of microbial metabolic 
limitation, that is, P limitation, N limitation, C&P limitation, 
and N&P limitation (Schmidt et al., 2016). The second method 
uses vector analysis of the enzymatic stoichiometry and considers 
the lowest kurtosis for vector angle, as suggested by Moorhead 
et  al. (2016). Vector length (L) was used to describe the 
microbial C limitation (i.e., increased vector L suggests increased 

microbial C limitation), whereas the vector angle (A°) was 
used to indicate microbial N and P limitation, with vector 
A > 45° and < 45° representing P limitation and N limitation, 
respectively. Vector L and vector A were calculated using the 
following formulae (Moorhead et  al., 2016):
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DNA Extraction, PCR, and  
High-Throughput Sequencing
Soil DNA was extracted using the PowerSoil DNA Isolation 
Kit (MoBIo Laboratories, Carlsbad, CA, United States), according 
to the manufacturer’s manual. DNA quality was evaluated 
using a NanoDrop ND-2000 spectrophotometer (Thermo 
Scientific, United  States). The 16S rRNA gene V3-V4 region 
was amplified using the primer set 343F (5′-TACGGR 
AGGCAGCAG-3′)/798R (5′-AGGGTATCTAATCCT-3′; Nossa 
et  al., 2010). A unique 8-mer tag was designed and linked 
to the 5′ end of each primer to allow sample identification 
in multiplex samples. PCRs were run using 25 μl reaction 
mixtures containing 12.5 μl of 2× KAPA HiFi HotStart ReadyMix, 
5 μl of each primer (1 μm), and 2.5 μl of diluted DNA (5 ng/
μl) and the following thermal cycling program: 95°C for 3 min, 
30 cycles of 95°C for 30 s, 60°C for 30 s, and 72°C for 30 s, 
and 72°C for 10 min. PCR products were purified using AMPure 
XP Beads (Beckman Coulter, United  Kingdom). Purified PCR 
amplicons were combined at equimolar concentrations after 
quantification using the Qubit dsDNA HS Assay Kit (Invitrogen, 
United  States) for sequencing library construction. The library 
was sequenced on an Illumina MiSeq platform (2 × 300 bp) at 
Shanghai Hanyu Biotech (Shanghai, China).

Pair-end raw reads were assembled, screened, and trimmed 
using the mothur software (v.1.36.1; Schloss et al., 2009). Briefly, 
stringent quality-based trimming was first used to minimize 
sequencing error effects (Kunin et  al., 2010). Sequences were 
removed based on the following criteria: average quality score 
of 50-bp windows <25, homopolymers of more than eight 
bases, primer sequence, ambiguous base call, and read 
length < 200 bp. The remaining sequences were sorted by tag 
sequence and then checked for chimeras using the “screen.
seqs” command. The USEARCH algorithm with a 97% identity 
threshold was adopted for operational taxonomic units (OTUs) 
clustering (Edgar, 2010). Representative sequences of OTUs 
were used for BLAST searches against the Greengenes Database 
(release 13.5) for taxonomic annotation (DeSantis et  al., 2006). 
Each soil bacterial 16S gene sequence was rarified to the same 
sequencing depth (6,996 sequences per sample) for community 
analysis. The raw reads were deposited in the NCBI Sequence 
Read Archive under accession number PRJNA577346.

FIGURE 1 | Geographical locations of the sampling sites.
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Soil Bacterial Community Assembly 
Processes and Co-occurrence Network 
Analysis
Soil bacterial community assembly was inferred based on 
deterministic and stochastic processes. The β-nearest taxon index 
(βNTI) was calculated to discriminate these processes using the 
“picante” package in R. Soil bacterial community assembly was 
inferred based on deterministic and stochastic processes. The 
βNTI was calculated to discriminate these processes using the 
“picante” package in R. Values of |βNTI| > 2 indicated that 
deterministic processes are dominant, and βNTI > +2 and 
βNTI < −2 reflected variable selection and homogeneous selection, 
respectively. However, |βNTI| values < 2 indicated stochastic 
processes are dominant, the Raup-Crick metric (RCbray) based 
on Bray-Curtis distance were calculated to distinguish these 
stochastic scenarios, including homogenizing dispersal, dispersal 
limitation, and undominated. The relative influence of 
homogenizing dispersal and dispersal limitation denoted by 
|βNTI| < 2 but RCbray < −0.95 and |βNTI| < 2 but RCbray > +0.95, 
respectively. The scenario of |βNTI| < 2 but |RCbray| < 0.95 indicated 
the undominated fraction (Stegen et  al., 2015). Relationships 
between βNTI values and soil properties based on Euclidean 
distance matrices were evaluated using a Mantel test with 999 
permutations using the “vegan” package in R.

Soil bacterial co-occurrence networks were constructed based 
on the sparse correlations for compositional data (sparCC) 
correction, using bacterial OTU profiles. The random matrix 
theory-based method was first used to assess the threshold value 
for the correlation coefficients between the OTUs, using the 
“RMThreshold” package in R. Correlation coefficients with an 
absolute value of ≥0.5924 and p < 0.05 were considered for 
co-occurrence networks analysis (Supplementary Figure S1). 
Then, we  constructed a global co-occurrence network using all 
selected significant species-species (OTU-OTU) associations using 
the “igraph” package (Csardi and Nepusz, 2006). Sub-networks 
were extracted from the global network to identify topological 
network features for each soil sample using the “induced_subgraph” 
function. Topological features, including transitivity, average degree, 
betweenness centrality, average path length, and density, were 
calculated. Additionally, the topological characteristic of each 
node in the network was assessed based on within-module 
connectivity (Zi) and among-module connectivity (Pi). All species 
were divided into four groups, that is, module hubs (Zi > 2.5), 
network hubs (Zi > 2.5 and Pi > 0.62), peripherals (Zi < 2.5 and 
Pi < 0.62), and connectors (Pi > 0.62; Olesen et  al., 2007). The 
species identified as module hubs, network hubs, or connectors 
were suggested as keystone species. Network visualization and 
modular analysis were achieved using the interactive Gephi 0.9.2 
platform (Bastian et  al., 2009).

Measurements of Soil Physicochemical 
Properties
Soil pH was measured in a 1:2.5 (v:v) soil:water suspension 
with a digital pH meter (Mettler-Toledo 320, China; Bao, 
2000). Soil organic carbon (SOC) was determined using the 

Walkley-Black method (Walkley and Black, 1934). Soil total 
N (TN) was measured by flow injection analysis based on 
the Kjeldahl method (Bremner, 1960). Soil total P (TP) and 
Olsen-P were determined using the ammonium molybdate 
method on an UV spectrophotometer (UV-2550, Shimadzu, 
Japan) at 700 nm (Olsen and Sommers, 1982). TP was extracted 
by NaOH digestion, and Olsen-P was extracted using 
0.5 M NaHCO3.

Statistical Analysis
Significant differences in soil physicochemical properties, vector 
characteristics, enzyme activities, enzymatic stoichiometry, 
bacterial diversity indices, and βNTI values across stand ages 
were determined by ANOVA using the “aov” function. Linear 
regressions were used to examine relationships between vector 
L, vector A, and soil physicochemical properties. A simple 
clustering heatmap of dominant soil bacterial species was 
produced using the “heatmap” package. Principal co-ordinates 
analysis (PCoA) was carried out to detect bacterial community 
dissimilarity based on the Bray-Curtis distance. The multivariate 
dispersion index analysis (MVDISP) and permutational analysis 
of multivariate dispersions (PERMDISP) were adopted to examine 
the significant differences in bacterial communities among stand 
ages using the “vegan” package in R. Redundancy analysis 
(RDA) was performed to investigate the effect of soil 
physicochemical properties on soil bacterial community structure 
using the “vegan” package. Data visualization was achieved 
using the “ggplot2” package. Phylogenetic tree was annotated 
and visualized in iTOL website1 (Letunic and Bork, 2019). 
Statistical analysis was conducted in R 3.6.1.2

RESULTS

Soil Enzymatic Activities and Soil Microbial 
Metabolic Limitations Along a Stand Age 
Gradient
C-acquiring (CBH and BG), N-acquiring (LAP and NAG), 
and P-acquiring (AP) enzyme activities tended to increase 
along stand age (Supplementary Figure S2). The enzymatic 
stoichiometry of N:P, represented by (LAP + NAG):AP, showed 
a gradually increasing trend along stand age, whereas stand 
age had no effect on the enzymatic ratios of C:N and C:P, 
indicated by (BG + CBH):(LAP + NAG) and (BG + CBH):AP, 
respectively (Supplementary Figure S3). The scatter plot of 
enzymatic stoichiometry showed that all soil samples tested 
were P-limited or co-C- and P-limited (Figure  2). Vector L, 
as an indicator of microbial C limitation, tended to slightly 
increase along stand age (Figure  3A). In contrast, vector A, 
indicating microbial N and P limitations, significantly decreased 
with increasing stand age (Figure 3B). Soil parameters, including 
SOC, TN, and TP, were negatively related to vector A, whereas 
TN was positively related to vector L (Supplementary Figure S4).

1 https://itol.embl.de/
2 https://cran.r-project.org/
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Soil Bacterial Diversity and Community 
Structure
Soil bacterial alpha diversity, including richness and the Shannon 
index, showed a decreasing trend in near-mature plantations 
(planted 9–20 years ago) when compared to plantations of the 
other three stand ages (Supplementary Figure S5). To better 
characterize bacterial community, we  established phylogenetic 
tree using the top  100 OTUs with high relative abundance. 
The results showed these dominant OTUs were mainly affiliated 
within phyla Proteobacteria, Acidobacteria, and Actinobacteria, 
with a relative abundance of 38–42%, 31–34% and 18–23% 
among four stand ages (Supplementary Figure S6). The 
Alphproteobacteria contain the largest number of OTUs which 

was classified to seven families. The dominant bacterial species 
(i.e., the 30 most abundant OTUs) comprised Proteobacteria 
(31.9–46.5%), Acidobacteria (12.0–46.6%), and Actinobacteria 
(10.7–42.6%; Figures  4A,B, Supplementary Figure S7). There 
were no significant differences in bacterial phyla with a relative 
abundance >10% across all stand ages. Gemmatimonadetes, 
Chloroflexi, and Cyanobacteria, whose relative abundances were 
<10%, tended to decrease, whereas TM6 and OD1 showed an 
opposite trend along stand age. The relative abundance of TM7 
was higher in mature plantations (planted 21–60 years ago) 
than in plantations of other stand ages.

We found significant difference in bacterial community 
among stand ages based on PERMDISP (Table  1). The soil 
bacterial communities under both young and near-mature 
plantations had significant difference with mature plantation, 
as well as over-mature plantation (Supplementary Table S2). 
Moreover, the PCoA plot showed that soil samples clustered 
tighter with increasing stand age (Figure 4C). Soil pH (F = 1.51, 
p = 0.016) and SOC content (F = 1.56, p = 0.012) were identified 
as drivers of the bacterial community structure based on RDA 
(Figure  4D).

Assembly Processes of Bacterial 
Communities Along Stand Age
β-nearest taxon index values provide insights into the potential 
roles of deterministic and stochastic forces in bacterial community 
dynamics. The βNTI distribution gradually shifted along stand 
age, from stochastic community assembly (|βNTI| < 2) to 
homogeneous selection (βNTI < −2; Figure  5A). Specifically, 
stochastic processes contributed to the community assembly 
in young plantations (53.6%), whereas deterministic process 
mostly contributed to assembly in near-mature (60.0%), mature 
(50.0%), and over-mature plantations (81.0%). The community 
assembly in young plantations was primarily governed by 
homogenizing dispersal (21.4%) and dispersal limitation (32.1%), 

FIGURE 2 | Scatter plots of soil enzymatic stoichiometry for the studied 
sites. Dots with different colors represent different stand ages.

A B

FIGURE 3 | Variations in vector characteristics for Camellia oleifera plantations of different stand ages. (A) vector length; (B) vector angle. Different letters denote 
significant differences among stand ages (p < 0.05).
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respectively. Conversely, strong homogeneous selection of 
deterministic processes dominated the near-mature (51.1%), 
mature (50.0%), and over-mature plantations (71.4%; Table  2). 
The Mantel test results suggested that βNTI values were 
significantly affected by soil pH (ρ = 0.130, p < 0.05; Figure  5B, 
Supplementary Table S3).

Global Co-occurrence Patterns of 
Bacterial Communities
The global co-occurrence network generated based on soil 
bacterial OTU profiles comprised 218 nodes and 478 links. 
The global network contained six modules, and two main 

modules accounted for 48.62 and 38.99% of the total number 
of nodes (Figure  6A). Alphaproteobacteria, Acidobacteria, 
Actinobacteria, and DA052 mainly occupied the nodes 
(Figure  6B). Sixty-eight percent of the links in the global 
co-occurrence network were positive. According to the Zi-Pi 
plot, most OTUs were identified as peripherals. Only OTU0113, 
assigned to Acidobacteria, served as a connector, and four 
OTUs, including OTU0046 (Proteobacteria), OTU0134 
(Proteobacteria), OTU0003 (Acidobacteria), and OTU0378 
(Acidobacteria), were module hubs (Figure 7). The topological 
properties of transitivity, average degree, and density tended 
to slightly decrease, whereas the average path length increased 
along stand age (Supplementary Table S4).

A C

B D

FIGURE 4 | Bacterial community composition along stand age. (A) Relative bacterial abundances at the phylum level. (B) Heatmap of relative abundances of the 
30 most abundant operational taxonomic units (OTUs). (C) Principal co-ordinates analysis (PCoA) for bacterial community structure based on Bray-Curtis 
dissimilarity. (D) Redundancy analysis (RDA) showing the effects of different factors on bacterial communities. SOC, soil organic carbon; TN, total nitrogen; TP, total 
phosphorous; Olsen-P, Olsen phosphorous.

TABLE 1 | Significance test of the differences of centroids with the succession age.a

Centroid of <9 years 
communities

Centroid of 9–20 years 
communities

Centroid of 21–60 years 
communities

Centroid of >60 years 
communities

F p

0.5008 0.4870 0.4262 0.4218 8.1067 0.001

aPermutational analysis of multivariate dispersions (PERMDISP) was performed to test the significance of the difference.
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DISCUSSION

Soil Microbial Resource Limitations Along 
Stand Age
Microbial C limitation is widespread in forest ecosystems (Soong 
et  al., 2020). Although the SOC was gradually accumulated 
(Supplementary Table S5), we found that microbial C limitation 
progressively increased with increasing stand age. This is 
inconsistent with a previous finding that microbial C limitation 
decreased with increasing stand age in Robinia pseudoacacia 
planted forest (Zhong et  al., 2020). One possible reason for 
this discrepancy is that microbial C limitation is, at least in 
part, determined by plant litter quality. Refractory organic 
materials from C. oleifera are more abundant in lignin than 
in cellulose (Hu et  al., 2015), which result in a lower efficient 
C resource for soil microbe.

Our results indicated that microbial P limitation rather 
than microbial N limitation is common in the subtropical 
region, which was supported by the eco-enzymatic stoichiometry 
plot and vector analyses. Dissolved N reportedly is three 
times higher in subtropical areas than in temperate regions 

(Wu et  al., 2019; Xiao et  al., 2019), leading to the alleviation 
of microbial N limitation in those areas. Artificial N input 
in the initial stage of C. oleifera cultivation may also explain 
this result. Considering that P deficiency due to the strong 
adsorption of orthophosphates to soil aluminum (Al) and 
iron (Fe) oxides is common in subtropical regions, the 
widespread microbial P limitation observed in the soils 
evaluated in our study was not surprising. Notably, microbial 
P limitation tended to decrease along stand age, which is 
inconsistent with a previous finding that forest succession 
aggravated microbial P limitation (Huang et  al., 2013). One 
possible explanation is that the continuous release of organic 
acids from C. oleifera roots can mobilize soil fixed P and 
alleviate microbial P limitation in more mature stands (Yuan 
et  al., 2013).

Soil Bacterial Community Changes Along 
Stand Age
Our results indicated that soil bacterial alpha diversity did not 
significantly change with stand age, which is inconsistent with 
a previous finding that the soil bacterial alpha diversity increased 

A B

FIGURE 5 | (A) Distribution patterns of β-nearest taxon index (βNTI) values along stand age. (B) The relationship between βNTI values and changes of soil pH. 
Horizontal dashed lines indicate lower and upper significance thresholds at −2 and +2, respectively.

TABLE 2 | The relative contributions of ecological assembly processes across successional age.

Years Variable 
selection

Homogeneous 
selection

Deterministica Homogenizing 
dispersal

Dispersal 
limitation

Stochasticb Undominated

<9 0.107 0.250 0.357 0.214 0.321 0.536 0.107
9–20 0.089 0.511 0.600 0.200 0.111 0.311 0.089
21–60 0 0.500 0.500 0.300 0 0.300 0.200
>60 0.095 0.714 0.810 0.190 0 0.190 0

aDeterministic = Variable selection + Homogeneous selection.
bStochastic = Dispersal limitation + Homogenizing dispersal.
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with succession age in a reforestation context (Jiao et  al., 2018). 
This may be  explained by plant diversity; as mentioned above, 
the resource diversity hypothesis states that diversified plant 
species provide various organic substrates and thus, diverse C 

resources, to the soil microorganisms (Liu et al., 2018). In contrast, 
in the C. oleifera plantations in our study, due to management 
practices such as weeding, only one species was present, providing 
only a simple carbon substrate for the soil microbes. Additionally, 
soil bacterial community was irrelevant to microbial C and P 
limitation when we analysis the effect of enzymatic stoichiometric 
parameters on soil bacterial community using the RDA selection, 
the possible reason could be  that microbial metabolic limitation 
calculated by both soil bacterial and fungal enzyme activity.

Soil bacterial communities are strongly influenced by the 
plant communities in forest ecosystems (Dang et al., 2017). Our 
study indicated that the soil bacterial communities have significant 
change among stand ages, and the soil bacterial communities 
become more clustered in the later stage, suggesting that the 
special plant could shape soil bacterial community, because of 
the special plant has distinctive root characteristics including 
morphology, quantity, and exudates components (Wang et  al., 
2018). Previous studies revealed that root exudates in certain 
plant can modify soil bacterial community. For example, the 
root exudates of barrel clover and wheat enriched Proteobacteria 
and Actinobacteria in the rhizosphere (Haichar et  al., 2008).

Besides Acidobacteria, Proteobacteria was reported to 
be  the most abundant bacterial phyla in terrestrial soil (Wei 
et  al., 2018), which is consistent with our study that 
Proteobacteria always was a major abundant phylum in the 
soil samples among stand ages. Interestingly, although the 
soil fundamental physic-chemistry parameters varied with 
stand age, such as SOC, the relative abundance of phylum 

A B

FIGURE 6 | Co-occurrence patterns of OTUs in bacterial communities. Nodes are colored according to different (A) modularity classes and (B) class-level 
taxonomy.

FIGURE 7 | Z-P plot showing the classification of nodes to identify putative 
keystone species in the C. oleifera plantations. Each symbol represents an 
OTU. One connector was identified, assigned to Acidobacteria. There were 
four module hubs in the network, two belonging to Acidobacteria and two 
belonging to Proteobacteria.
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Proteobacteria had no significant change along the stand 
age, suggesting that the Proteobacteria has strong sophisticated 
adaptations. Proteobacteria are also predominant in glacial 
ice and deep undersurface soils, suggesting that species 
within this phylum are highly resistant to various harsh 
environments (Shtarkman et  al., 2013). Notably, Chloroflexi 
were more abundant in young stands than in older stands. 
Chloroflexi are reported to prefer nutrient-poor soils (Wang 
et  al., 2019). Before the plantation of the C. oleifera stands 
evaluated in our study, the topsoil was widely destroyed by 
land leveling, which had caused runoff loss of soil nutrients 
and resulted in high microbial nutrient limitation in the 
young stands. High Gemmatimonadetes abundance was more 
often found in younger than in older stands. 
Gemmatimonadetes reportedly better prevail in dry soils 
than in moisture soils (Fawaz, 2013). The young C. oleifera 
plantations had lower vegetation coverage, and therefore, a 
lower ability to maintain soil moisture. Interestingly, we found 
that the relative abundances of some soil rare bacteria, such 
as TM7, TM6, and OD1, increased along stand age. Previous 
studies have shown that these species are widely detected 
in anaerobic environments (Winsley et  al., 2014). Indeed, 
in the old C. oleifera plantations, the soil surface was covered 
with litter, which would have provided a more anaerobic 
soil condition.

Assembly Processes and Co-occurrence 
Network of the Soil Bacterial Community
Stochastic and deterministic processes control the assembly 
of microbial communities along ecological succession (Fargione 
et  al., 2003). We  found that the soil bacterial community 
assembly of the C. oleifera plantations initially was governed 
by stochasticity. A possible reason may be  that the strong 
soil disturbance before the establishment of the C. oleifera 
plantations destroyed the microbial community structure, 
resulting in a weak environmental filter. A previous study 
showed that stochastic processes dominated plant community 
assembly after fire disturbance (Måren et al., 2018). Therefore, 
plant-associated and soil microbes may undergo the same 
assemblage processes after intense disturbance. Interestingly, 
we  found that the contribution of homogeneous selection 
was far more than the variable selection in all stand ages, 
which indicated that the bacterial community driven by 
consistent selective pressure of local environmental condition. 
A previous study demonstrated that deterministic processes 
are more likely to be  driven by environmental gradients, 
for example, in soil pH and soil temperature (Jiao and Lu, 
2020). In line herewith, we  observed a decreasing trend in 
soil pH with stand age, and βNTI values were highly correlated 
with soil pH. Interestingly, a previous study showed that 
stochasticity drove soil bacterial community assemblage also 
under neutral pH (Tripathi et  al., 2018). Therefore, the soil 
pH range may control soil bacterial community assembly. 
Considering that the fairly low soil pH in our studied 
ecosystem, a small decrease of pH in acid soil may provide 
a strong selection pressure on certain bacterial species. 

Furthermore, according to the established conceptual model, 
the stochastic processes governed the bacterial community 
initially. With the microbial succession, consistent microbial 
interaction progressively altered shelter environment through 
products of microbial metabolism and the change of nutrients, 
which provided a selective pressure from stochastic processes 
to deterministic processes.

An ecological soil bacterial network can reflect the complex 
interactions of soil bacteria (Chow et  al., 2014). We  found 
more positive than negative links in our global co-occurrence 
network, suggesting a high level of cooperation between 
the soil bacterial species in the C. oleifera plantations. The 
main modules, including modules I and II, mainly comprised 
Proteobacteria and Acidobacteria. Modules I and II represented 
two ecological types (Ishimoto et  al., 2021), suggesting that 
those species belong to Proteobacterial and Acidobacterial 
phyla could be  located in different functional niche. 
Intriguingly, rare species were found to occupy several 
modules with a few nodes, which implied that these species 
exist in distinct ecological niches. Keystone species in our 
study belonged to Koribacteraceae, Hyphomicrobiaceae, and 
Rhodospirillaceae. Previous studies have demonstrated that 
Koribacteraceae, which can decompose complex carbon 
polymers, are widely distributed in woodlands (Ward et  al., 
2009). Additionally, Koribacteraceae are involved in iron 
redox reactions in iron-rich environments, which may have 
benefited their survival in the C. oleifera plantations in this 
study (Su et  al., 2020). The C. oleifera plantations were 
located in subtropical regions, where the soil is rich in iron 
and low in C due to strong weathering and nutrient leaching. 
Hyphomicrobiaceae and Rhodospirillales reportedly commonly 
occur in hypoxic environments, and species of these classes 
can photosynthesize and are involved in oxidative metabolism 
(Anderson et al., 2011). The possible reasons for the occurrence 
of these species may be  that the compact soil structure led 
to a low soil oxygen content, and the occasional heavy 
rains diminished soil aeration.

Stand age contributes to the topological features of bacterial 
co-occurrence networks in Cunninghamia lanceolata planted 
forests (Cao et  al., 2020). We  observed a loss of network 
complexity with stand age, suggesting a progressively weaker 
interaction between bacteria. The soil disturbance before the 
establishment of the C. oleifera plantations may have contributed 
to a more diverse array of ecologically functional groups, which 
would imply more potential interactions. Subsequent the 
progressive acidification of soil in the C. oleifera ecosystem 
would have decreased the microbial growth condition along 
the stand age, which may have inhibited the activity of soil 
bacteria, resulting in weaker cooperation among the 
bacterial species.

CONCLUSION

This study investigated soil microbial limitation and soil 
microbial community dynamics along stand age in a planted 
C. oleifera forest in a subtropical region in China. Our study 
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provided solid evidence that P and co-C and P limitations 
were dominant soil microbial resource limitations in this 
ecosystem. Soil microbial P limitation tended to decrease 
with stand age. Microbial community assembly tended to 
shift from stochastic to deterministic processes along stand 
age, and soil pH was identified as filtering factor for soil 
bacterial community assembly. Additionally, we  found that 
soil bacteria likely experienced more extensive nutrient depletion 
in young stands, suggesting that low soil fertility promotes 
microbial cooperation to obtain essential nutrients. Our findings 
shed light on microbial limitations and assemblage patterns 
in planted forest ecosystems and improve our knowledge 
regarding the drivers of community assembly along stand 
age. In addition, our finding suggested the importance of 
proper nutriment management, especially for P, in C. oleifera 
plantations in subtropical area.
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