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ABSTRACT

A group of genes controlled as a unit, usually by
the same repressor or activator gene, is known as a
regulon. The ability to identify active regulons within
a specific cell type, i.e., cell-type-specific regulons
(CTSR), provides an extraordinary opportunity to pin-
point crucial regulators and target genes responsi-
ble for complex diseases. However, the identifica-
tion of CTSRs from single-cell RNA-Seq (scRNA-Seq)
data is computationally challenging. We introduce
IRIS3, the first-of-its-kind web server for CTSR in-
ference from scRNA-Seq data for human and mouse.
IRIS3 is an easy-to-use server empowered by over 20
functionalities to support comprehensive interpreta-
tions and graphical visualizations of identified CT-
SRs. CTSR data can be used to reliably characterize
and distinguish the corresponding cell type from oth-
ers and can be combined with other computational
or experimental analyses for biomedical studies. CT-
SRs can, therefore, aid in the discovery of major
regulatory mechanisms and allow reliable construc-
tions of global transcriptional regulation networks
encoded in a specific cell type. The broader impact
of IRIS3 includes, but is not limited to, investigation
of complex diseases hierarchies and heterogeneity,
causal gene regulatory network construction, and
drug development. IRIS3 is freely accessible from
https://bmbl.bmi.osumc.edu/iris3/ with no login re-
quirement.

BACKGROUND

Sophisticated gene regulatory mechanisms define and main-
tain transcriptional states, and in turn, these diverse states
influence the heterogeneous cellular functions in different
cell types (1). Within a global gene regulatory system, a
regulon represents a maximal group of genes co-regulated
by the same transcription factors (TFs). A clear assessment
and annotation of regulons and the TFs that control them is
an effective strategy to pinpoint crucial and heterogeneous
regulatory mechanisms encoded in diverse cell types, and
those responsible for the development of diseases (2,3).

In the past decade, several computational tools have been
developed to identify regulons in human and mouse using
bulk RNA-Sequencing (RNA-Seq) data, e.g. iRegulon (4)
and Onco-regulon (5). However, bulk tissue RNA-Seq data
only enables the prediction of regulons at sample/patient
levels, with the assumption that cells maintain the same reg-
ulatory mechanisms across diverse cell types. In addition,
these tools rely heavily on prior knowledge of benchmarked
connections between TFs and their target genes. As a re-
sult, single-cell RNA-Seq (scRNA-Seq) technologies have
rapidly developed. Massive repositories of scRNA-Seq data
in the past five years provide an unprecedented opportunity
to predict regulons that are specifically active in heteroge-
neous cell types and during transitions between different
cell types (6). In 2017, Aibar et al. developed SCENIC to
identify regulons and construct gene regulatory networks
from scRNA-Seq data (7). Using SCENIC, Rambow et al.
found that the Retinoid X Receptor signaling is promis-
ing for the relapse in melanoma, and proposed a poten-
tial therapy for delaying the development of drug resistance
by blocking the signal-related regulons exhibited in neural
crest stem cells (8); Kristofer et al. built a single-cell tran-
scriptional and TF-regulon atlas revealing the regulatory
heterogeneity of different cell types in the aging Drosophila
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brain (9); Suo et al. created a mouse cell atlas containing
8,461 genes in 61 637 cells sampled from 98 cell types across
40 organs (10). They identified 202 cell type activated reg-
ulons and essential regulators which serve as valuable re-
sources for the broad biological community.

Not surprisingly, the successful identification of regulons
at the single-cell level can improve the detection of het-
erogeneous transcriptional regulatory mechanisms across
various cell types and allows for reliable constructions of
global gene regulatory networks encoded in complex dis-
eases. Hence, it is critical to study cell-type-specific regu-
lons (CTSRs). A CTSR is a group of genes co-regulated
by the same TF within a specific cell type, and therefore
shares the same cis-regulatory motif (motif) of the under-
lying TF. However, current limitations for CTSR identifica-
tion include: (i) existing tools focus on inferring regulons in
static cell types or given cell types and ignore the dynamic
changes of the gene regulatory mechanisms across differ-
ent cell types; (ii) de novo motif prediction has not been or-
ganically integrated into existing tools, giving rise to lim-
ited power in predicting novel regulons that are not doc-
umented in the literature and (iii) these tools require sub-
stantial programming skills in practical applications and are
not suitable for the scientists without systematic computa-
tional training. Hence, gaps still exist in identifying mean-
ingful CTSRs and no user-friendly web servers are available
to identify CTSRs from scRNA-Seq data. All these chal-
lenges drive the need to develop an easy-to-use and effective
tool for CTSR identification.

In this study, we developed the first-of-its-kind web server
for CTSR inference from human or mouse scRNA-Seq
data, named IRIS3 (Integrative Cell-type-specific Regulon
Inference Server from Single-cell RNA-Seq). It is stream-
lined by a seamless integration of multiple widely-used
tools, e.g., DrImpute (11), scran (12), Seurat (13), QUBIC2
(14), DMINDA2.0 (15) and MEME (16). Specifically, there
are four unique features in the IRIS3 framework: (i) it is an
all-in-one framework for CTSR identification, incorporat-
ing biclustering for cell-type-specific gene module detection
and de novo motif prediction for potential novel regulons
discovery; (ii) it provides informative CTSR interpretations
in support of the in-depth analysis of heterogeneous regula-
tory mechanisms; (iii) it is equipped with a user-friendly web
interface that requires no programming knowledge, with
a simple submission process, comprehensive scRNA-Seq
data analysis functionalities, and highly-interactive visual-
izations and (iv) it substantially improves the identification
of novel regulatory mechanisms compared to current tools,
and allows reliable constructions of global transcriptional
regulation networks encoded in a specific cell type.

We used 19 scRNA-Seq datasets to benchmark IRIS3,
in terms of the motif specificity and cell type specificity
of the identified CTSR, number of differentially expressed
genes (DEGs) covered by CTSRs, and the biological mean-
ing of predicted CTSRs. IRIS3 demonstrated superior per-
formance compared to the widely used tool, SCENIC, in
CTSR identification from the benchmark datasets. More-
over, another 27 datasets (including 49–8522 cells, 13
10× datasets and 12 different tissues) have been tested by
independent users demonstrating the reproducibility and
robustness of IRIS3. Overall, our tool provides informa-

tive interpretations of all the identified CTSRs with in-
teractive visualizations. We believe that IRIS3 is a highly
advantageous and easy-to-use web server for CTSR infer-
ence. Finally, IRIS3 has the potential to be integrated with
other computational or experimental tools in biomedical re-
search, including but not limited to complex disease hierar-
chies and heterogeneities, causal gene regulatory network
construction, and drug development (17–19).

OVERALL DESIGN OF THE IRIS3 FRAMEWORK

IRIS3 is an integrated framework and takes scRNA-Seq
data as the only input for submission. Compatible files in-
clude gene expression matrices (with each row represent-
ing a gene, each column representing a cell, and each el-
ement representing the expression value of a gene in the
corresponding cell) and the standard output folder of Cell
Ranger from 10X Genomics (20). Specifically, there are
three acceptable formats of the required input: (i) a single
.txt or .csv formatted gene expression matrix, (ii) an hdf5
feature barcode matrix or (iii) a 10× unique output folder
with three files recording information of barcodes, features,
and gene expressions. Compressed files are encouraged to
decrease the uploading time. IRIS3 accepted Gene Symbols
(e.g. HSPA9), Ensembl Gene IDs (e.g. ENSG00000113013),
or Transcript IDs (e.g. ENSMUST00000074805). Human
and mouse genes are annotated by using the org.HS.eg.db
and org.Mn.eg.db R package, respectively. Once an input
file is successfully uploaded, users can specify the species
and can change parameter settings, such as turn on/off im-
putation of scRNA-Seq data. Users also have the option to
upload a benchmarked cell type file (with the first column
representing cell names and the second column represent-
ing cell types), or a gene module list file (one gene list per
column) in support of CTSR identification (Supplementary
Methods).

A submission screenshot of an example dataset is shown
in Supplementary Figure S1. Empowered by the de novo
motif finding function, IRIS3 can identify putative TFs and
TF-gene interactions for a specific cell type. However, the de
novo algorithm is usually time-consuming, especially when
a large number of cell-type-specific gene modules are iden-
tified (∼10–20 h). Because of this, users can select the fast
version to only identify the top 100 gene modules (five times
quicker than the default setting), which will identify the top
significant CTSRs. In the accelerated mode, fewer CTSRs
will be identified but the most significant CTSRs are usually
retained. The specific parameter settings for default and fast
versions are listed in Supplementary Table S1. Specifically,
seven major steps are included (Figure 1):

Step I: Data pre-processing

The gene expression data is first loaded through the sub-
mission page, and a Seurat object is created. Genes with
zero values in >99.9% of cells, and cells with less than
200 non-zero expressed genes, are removed to obtain re-
liable and robust analytical performance (21). Data nor-
malization status is auto-detected by considering integers
as non-normalized values, whereas decimals are consid-
ered normalized. The unnormalized data will be normal-
ized by scran (12). An optional imputation step is provided
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Figure 1. The workflow of IRIS3. The only required input is the scRNA-Seq expression matrix. Seven steps are used to infer CTSRs. A user can upload
reference gene modules (lists) for an additional CTSR inference, and the uploaded cell labels can be used as a benchmark for predicted cell type evaluation
and substitution for CTSR inference. The output report, along with a unique job ID, will be generated and emailed to the user once the analysis is complete.
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on the submission page. Finally, the expression values are
log-normalized log(x + 1) to rescale the data.

Step II: Cell clustering

Cell types are predicted by Seurat (version 3.1), with most
of the parameters set to their default values. The default
number of principal components is ten, as suggested by the
Seurat tutorial, and an elbow plot is generated for each test
dataset (22). Normally, the top ten principal components
can cover 85–95% of the data variation, which is enough for
feature selection. Cells are clustered using the top ten prin-
cipal components and a clustering resolution of 0.8 (both
default values in Seurat). Note that the cell types mentioned
in the following sections of this study are referred to as the
computationally predicted cell clusters. The output of this
step is a two-column cell label that will be used in Step IV
and additional trajectory analysis.

Step III: Gene module detection

The pre-processed gene expression data from Step I is ana-
lyzed by our in-house biclustering tool, QUBIC2, for gene
module detection (Supplementary Method S1). The pre-
vious version of QUBIC has been proven to be one of
the top-performing methods in capturing a high propor-
tion of biclusters, enriched by functional biological path-
ways, effectively and efficiently (23,24). We have demon-
strated QUBIC2 shows improved performance compared
to QUBIC, especially in scRNA-seq analysis (14). Each of
the identified biclusters represents a group of co-expressed
genes under a specific subset of cells.

Step IV: Active gene module determination

We consider the component genes of a bicluster respon-
sive to the regulatory signals in a specific cell type if the
cells in the bicluster are highly consistent with the cells in
the cell type cluster. To determine the consistency, a hy-
pergeometric enrichment test is performed using the cell
types predicted from Step II (or the uploaded cell types
by users) and the cell components of identified biclusters
from Step III. The P-value of a bicluster corresponding to
a specific cell type is Bonferroni-adjusted by multiplying
Ncell type × Nbicluster , where Ncell type denotes the number of
cell types and Nbicluster denotes the total number of biclus-
ters. A bicluster is considered to be active in the correspond-
ing cell type if the cell hypergeometric result is significant
(adj.P < 0.05) (Supplementary Method S2). Genes included
in the bicluster are assigned as an active gene module in that
cell type.

Step V: Motif finding and comparison

For each cell type, motifs are identified in each active gene
module via de novo motif prediction functions in MEME
(16) and DMINDA2 (15,25) (Supplementary Methods S3
and S4). The upstream promoter sequences of each gene are
extracted (1,000-bp length by default, and are adjustable by
users on the submission page) using the hg38/mm10 refer-
ence genome. The reference genomes of human and mouse

are integrated in the BSgenome.Hsapiens.UCSC.hg38 and
BSgenome.Mmusculus.UCSC.mm10 R packages, respec-
tively.

Step VI: Regulon determination

The identified motifs in a specific cell type are clustered and
annotated with the best matching known motifs from the
HOCOMOCO database (V11) (26) using TOMTOM (27).
Matching motifs are filtered by removing HOCOMOCO
targets for those with a q-value of greater than 0.05. The
q-value is the minimal false discovery rate at which the ob-
served similarity would be deemed significant. For each of
the motif clusters, the corresponding nonredundant gene
list is named as a regulon.

Step VII: CTSR inference

For each regulon, its regulon activity score (RAS) in a cell is
calculated based on the rank of the expression value in the
cell for all the involved genes. The regulon specificity score
(RSS) for a cell type can then be calculated according to
the entropy of RAS of cells within the cell type compared
to other cell types. A RSS ranges from 0 to 1, with a higher
value representing greater specificity of a regulon in the cell
type. An empirical P-value of a regulon’s RSS can be esti-
mated by comparing it with the RSSs of randomly selected
gene sets (having the same number of genes in this regulon
through a bootstrap method) in the same cell type, 10 000
times. Regulon P-values are Bonferroni-adjusted by multi-
plying the number of regulons in the exact cell type. Reg-
ulons with adjusted P-values <0.05 (by default) are con-
sidered CTSRs (see details in the Supplementary Method
S5 and Figure S2). We provide an option at the top of the
‘Regulon details’ page, allowing users to choose the signif-
icance threshold of the RSS adjusted P-value from 0.001,
0.01, 0.05.

A final comprehensive report is generated to sup-
port result interpretation, including interactive cell clus-
tering UMAP (28), cell-gene-regulon heatmap, TF and de
novo motif information, pathway enrichment, ATAC-Seq
peak enrichment, topologically-associated-domain cover-
age, CTSR inference, trajectory analysis, DEGs and regulon
RAS UMAP. All integrated tools are listed in Supplemen-
tary Table S2.

PERFORMANCE AND EVALUATION

To evaluate the performance of IRIS3, we compare the
predicted CTSRs with those identified by SCENIC from
19 scRNA-Seq datasets (Supplementary Table S3) (8,29–
45). These datasets have cell counts between 148 and 5069
(including three 10X Genomics datasets) and were col-
lected from Gene Expression Omnibus and the Euro-
pean Bioinformatics Institute. Results of the 19 datasets
can be accessed at (https://bmbl.bmi.osumc.edu/iris3/more.
php#6test data) or searching corresponding job IDs from
the main page. The same cell types, either predicted us-
ing Seurat or provided by the original paper, were used for
CTSR identification in both IRIS3 and SCENIC. More-
over, another 27 datasets (including 49–8522 cells, 13 10×

https://bmbl.bmi.osumc.edu/iris3/more.php#6test_data
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datasets and 12 different tissues) have been tested by in-
dependent users demonstrating the reproducibility and ro-
bustness of IRIS3 (Supplementary Table S3).

As shown in Figure 2 and Supplementary Table S4, reg-
ulons identified by IRIS3 have higher RSSs than SCENIC,
indicating that these regulons are more specifically active in
the corresponding cell types. Among all 19 datasets, 50.7%
of the regulons predicted by IRIS3 are CTSRs per cell type,
whereas only 14.8% of the regulons predicted SCENIC are
CTSRs. Meanwhile, a CTSR with more DEGs derived from
differential expression analysis can be used to define the cell
types and generally have a higher RSS. Our analysis sug-
gested the CTSRs identified by IRIS3 are more enriched by
DEGs than the ones identified by SCENIC. To assess the
biological functions of the CTSRs, we performed pathway
enrichment analysis against KEGG pathways by using the
Enrichr R package (46). The precision of the enrichment
test is the number of KEGG-pathway-enriched CTSRs di-
vided by the total number of CTSRs in a cell type. In 17
out of 19 datasets, IRIS3 achieved significantly higher av-
erage precision scores (average precision score: 0.45) than
SCENIC (average precision score: 0.16) in all the cell types,
indicating that the CTSRs identified by IRIS3 are more bi-
ologically meaningful. Overall, IRIS3 shows better perfor-
mance in identifying CTSRs in terms of effectiveness and
biological relevance.

CASE STUDY OF MOUSE BRAIN CELLS

To illustrate the data analysis and integration functions of
IRIS3, we used a mouse dataset, containing 19 972 genes
and 3005 cells isolated from the mouse somatosensory cor-
tex and hippocampal CA1 region (40). Seven general cell
types (CT) are annotated in the original paper: cells of
oligodendrocyte lineage (for simplicity, labeled ‘oligoden-
drocytes’ in the IRIS server and in Figure 5A), hippocam-
pal (CA1) pyramidal cells, primary somatosensory cortex
(SS) pyramidal cells, microglia, interneurons, endothelial
and mural cells and astrocytes and ependymal cells. The
CT are simply annotated CT1-CT7 in this section. We con-
sidered these cell labels as benchmarks and used them for
CTSR identification.

Clustering and differentially expressed genes

A job ID and a download button are located at the top
of the result page of IRIS3 for retrieving detailed and in-
termediate outcomes (e.g. biclusters, gene modules, etc.).
With default parameters for the mouse brain cell dataset,
IRIS3 identified 164 regulons, including 95 CTSRs among
all seven CTs. We integrated an interactive UMAP visual-
ization to provide a dynamic and clear interpretation of cell
types (Figure 3A). The UMAP can be downloaded in di-
verse formats (e.g. pdf and jpeg) by clicking on the three-bar
symbol at the right corner. The performance of cell cluster-
ing is evaluated by comparing the similarity of clustering
labels with users’ labels via four indexes: Rand Index, Ad-
justed Rand Index, Jaccard Index and Fowlkes and Mal-
lows’s Index (Supplementary Method S6). The clustering
function will be retained, even when users upload a cell type
label file. Additional information is provided with separate

active buttons to show a high-resolution UMAP, a trajec-
tory plot, the top-100 DEGs in each cluster, a Silhouette
plot, and a Sankey plot (Supplementary Figure S3).

Overall interpretation of regulons from one specific cell type

To aid in the overall interpretation of regulons, we inte-
grate Clustergrammer, an interactive heatmap visualization
method (47), to display the cell-gene-regulon heatmap of
each cell type (Figure 3B). Both gene compositions of regu-
lons and their expression values across different cell types
can be intuitively displayed in such a heatmap. Regulons
are ranked in increasing order of the empirical P-values of
RSS as described above, and a regulon is named as CTn-
Rm with n representing the index of cell type and m repre-
sents the regulon rank. Due to space limitations, only the
top ten regulons and their corresponding genes are shown
in the heatmap, with the component genes of each regu-
lon indicated by green rectangles. The heatmap records the
log-transformed expression level of each top-ten-regulon-
covered gene across all cells (Supplementary Method S7).
Cell names, user-provided cell type labels (if submitted),
and cell types labels predicted by Seurat are shown on the
heatmap. This heatmap can also be sorted by gene and cell
by double-clicking on the appropriate area on the image.
Conveniently, a series of gene enrichment tests can be di-
rectly performed on the heatmap using the integrated En-
richr function in the Clustergrammer framework. The com-
plete regulon-gene list can be downloaded by clicking on the
download buttons above the heatmap (either in gene sym-
bol or Ensembl ID), and users can switch to regulon results
in other cell types by clicking on the corresponding labels.

Comprehensive interpretation of a regulon

IRIS3 provides detailed analyses for each individual regu-
lon to interpret detailed information for the involved genes,
motifs, and TF. Taking CT1-R1 (the first regulon in cell type
1) as an example (Figure 4), this regulon includes 90 genes
co-regulated by the same TF, KLF4. CT1-R1 is marked as
a CTSR based on a significant RSS of 0.84, in which the ad-
justed empirical P-value is less than 1 × 10−4. Of all the 90
genes, 68 are differentially expressed in CT1 (marked with
stars), according to the differential expression analysis us-
ing Seurat. Details of each gene can be found through the
corresponding Gene Symbol and Ensembl Gene ID linking
the databases, respectively. The gene UMAP indicates the
expression distribution of the specific gene on all cells. Three
de novo identified motif patterns that are conservatively lo-
cated within the 1000 bp upstream region of all 90 genes
are listed and ranked in the increasing order of P-values of
the motif occurrence randomness. The representative motif
shown on the right panel and the interactive motif logo (the
12-bp consensus sequence) can direct users to a detailed mo-
tif mapping result page, including the motif P-value, related
genes, binding site occurrences, and motif position weight
matrix. Further motif validations were carried out by com-
paring the motif sequence occurrences to the TOMTOM
database. KLF4 is considered to be the TF regulating these
90 genes due to a significant TF-motif matching P-value to
CT1-R1-Motif-1, and more information can be found on
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Figure 2. CTSR evaluation and comparison between IRIS3 and SCENIC. All 19 scRNA-Seq datasets (eight human samples in yellow and 11 mouse
samples in purple) were tested using the default parameter settings in IRIS3 (red) and SCENIC (black). Note: SCENIC failed to identify any regulons
from the dataset by Kolodziejczyk et al. as the gene names are not compatible with its embedded database. The data are arranged from left to right in
increasing order of cell number, with, 10X datasets grouped and highlighted in the black box to the right. Line one: violin plots of RSS scores in all regulons;
Line 2: pie charts of the average percentages of CTSR in regulons per cell type; Line 3: box plots of covered DEGs percentage in each CTSR. We used
the same DEGs identified from Seurat for both IRIS3 and SCENIC, and the combination of genes in all SCENIC regulons were used as the denominator
since SCENIC was not defining cell-type-specific regulons; Line 4: the mean precision of KEGG pathway enrichment; Line 5: number of cells.
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Figure 3. Overall graphical interpretation of cell types and regulons. (A) An interactive UMAP is integrated to visualize cell types. Hovering over clusters
reveals CT1 includes cells of the oligodendrocyte lineage. The table below shows the overall number of cells and regulons in each cell type. (B) The heatmap,
empowered by Clustergrammer, showcases the expression pattern of genes from the top ten CTSRs in the corresponding cell type. Users can rearrange the
columns and rows by grouping genes in one CTSR or cells in a cell type.
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Figure 4. A single regulon interpretation. (1) Each regulon is named by the cell type index and regulon number. A regulon is a cell-type-specific regulon
(CTSR) if the adjusted P-value of the regulon specificity score (RSS) is less than 0.05. CTSRs are in orange, and insignificant regulons are in gray. All
regulons are ranked in decreasing order of RSS, so that, insignificant regulons are placed behind CTSRs. (2) Stars indicate differentially expressed genes
identified in each cluster using Seurat. (3) Gene symbols and links to the GeneCards (Human) or the Mouse Genome Informatics (MGI) website. (4)
Corresponding gene Ensembl ID and link to the website. (5) Gene expression UMAP and comparison to the cell types. (6) The corresponding TF with a
link to the HOCOMOCO database. (7) Detailed motif finding results including positions, sequences, position weight matrix, etc. (8) Motif details linking
to the TOMTOM database. (9) A Clustergrammer heatmap showing the expression values of all genes of this regulon and cell type. (10) The Enrichr link
to the enrichment analysis of this regulon. (11) Bulk ATAC peak enrichment test results. (12) Coverage of regulon genes and the topologically associated
regions. (13) The regulon activity UMAP and comparison to the cell types. (14) Trajectory analysis colored by cell type and regulon activity, respectively.
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the HOCOMOCO database by clicking on the TF name or
TF logo.

A local Clustergrammer heatmap can be generated by
clicking on the ‘Heatmap’ button to display the expres-
sion level of all CT1-R1 genes in cells of the oligodendro-
cyte lineage. Further functional enrichment analyses can
be conducted through the enrichment function integrated
with the heatmap as described above. Alternatively, users
can click the ‘Send gene list to Enrichr’ button to view the
complete enrichment results on the Enrichr website. Gene
regulation is also related to chromatin availability (ATAC-
Seq) and long-distance regulation in topologically associ-
ated domains (Hi-C). Due to the limited public availabil-
ity of single-cell ATAC-Seq and Hi-C, we choose to use
bulk-level data to provide soft validation of TF-gene link-
ages in one regulon. The ‘ATAC-seq peak enrichment’ func-
tion will provide feedback on genes included in CT1-R1
whose corresponding chromatin region is also accessible in
related ATAC-Seq samplings, ranked by the gene coverage
rate in the decreasing order (Supplementary Method S8).
Meanwhile, the ‘Additional TAD covered genes’ function
traces back potential genes not covered in CT1-R1 but may
be topologically co-regulated in oligodendrocytes (Supple-
mentary Method S9). Users can compare the distribution
of regulon activity of each cell among cell types using the
‘Regulon UMAP plot’ function. Furthermore, we use Sling-
shot (48) for cell trajectory inference. The users can access
this functionality by clicking on the ‘Trajectory plot’ button
and compare the trajectory path to RAS distributions.

Biological relevance of CTSRs

We reasoned that CTSRs can be used to reliably charac-
terize and distinguish cell types, and would have functional
relevance in these cell types. To illustrate the functional rele-
vance using two examples, all regulons identified in (i) oligo-
dendrocyte lineage cells and (ii) CA1 pyramidal cells are
CTSRs, and their co-regulated genes display significantly
higher expression values compared to other cell types (Fig-
ure 5A, B). TFs and genes included in the oligodendrocyte
lineage and CA1 pyramidal cell CTSRs are functionally re-
lated to each cell type and can be validated from the litera-
ture.

Example (i): oligodendrocyte lineage. Sensory enrichment
triggers oligodendrocyte progenitor cells (OPCs) to differ-
entiate into myelinating oligodendrocytes the mature so-
matosensory cortex, which accelerates information transfer
in these circuits (49,50). KLF6 is a key TF associated with
OPC differentiation, indeed OPCs in mice with lineage-
selective KLF6 inactivation undergo maturation arrest fol-
lowed by apoptosis, and myelination of axons fails (51).
In line with this, we identified a major CTSR within CT1
(oligodendrocyte lineage, including OPCs) that is controlled
by KLF6 (CT1-R2 RSS = 0.84) (51) (Figure 5C).

Example (ii): CA1 pyramidal neurons. Hippocampal
long-term potentiation (LTP) is an activity-dependent pro-
cess that provides a means for learning and memory storage,
by causing causes long-term increases in synaptic strength
between neurons (52). To understand the TFs required for

gene transcription and translation during LTP, Chen et
al. used RiboTag technology to exclusively label excitatory
CA1–3 pyramidal neurons (53). The authors found signif-
icant upregulation of the transcription factors EGR1 and
STAT1 by pyramidal neurons during LTP (53). Consistent
with this, we identified CTSRs within CT2 (CA1 pyramidal
neurons) tightly controlled by EGR1 (CT2-R5 RSS = 0.80)
(Figure 5C) and STAT1 (CT2-R16 RSS = 0.76).

Finally, we also aimed to match our data against ATAC-
seq data. 51 out of 90 (56.6%) target genes in the KLF4
regulon in oligodendrocyte lineage cells (important for the
early stages of OPC differentiation) (54), were matched to
the same cranial neural crest ATAC-Seq data. This enrich-
ment test provides a way to validate the TF-gene interac-
tions in a CTSR, though the matching rate is moderate due
to the low specificity of bulk ATAC-Seq data.

CONCLUDING REMARKS

IRIS3 is not a static server, but is highly amenable to con-
tinuous improvements to increase the accuracy and effi-
ciency of CTSR inference. Indeed, current limitations of
IRIS3 that we aim to improve in future updates include:
(i) Gene imputation may induce false positives when ap-
plied to data with highly variable distributions. To alleviate
this issue, some studies have been carried out to integrate
bulk RNA-Seq data to correct dropouts in scRNA seq data
(55,56). In the future IRIS3 updates, we will recover expres-
sion estimates from scRNA-Seq data via iteratively integrat-
ing cell-type-specific co-expressed gene modules in a bulk
RNA-Seq deconvolution framework. (ii) Theoretically, fea-
tures retained in biclusters characterize the signals of cells.
Hence, the biclusters could be used for a simultaneous pre-
diction of cell types and inference of cell-type-specific gene
modules, rather than the current gene module assignment
step in IRIS3. (iii) Smart-Seq2 data and 10× Genomics data
have their respective advantages in deciphering cell hetero-
geneity. Smart-Seq2 data includes fewer cells and higher
read depth that can be used for recognizing gene expres-
sion patterns and capturing accurate DEGs; and 10× Ge-
nomics data includes more cells but lower read depth, which
is valuable for identifying major cell types. The integration
analysis of scRNA-Seq data from different sequencing tech-
nologies can potentially contribute to accurate CTSR iden-
tification. (iv) The joint analysis of single-cell multi-omics
data (i.e. matched scRNA-Seq and scATAC-Seq) presents
us with an unprecedented opportunity to build TF-gene
linkages (57), however, identifying the significant correla-
tions between scATAC-Seq peaks and scRNA-Seq genes is
a non-trivial task.

Overall, IRIS3 is a highly effective and easy-to-use web
server for biologically meaningful CTSR inference. CTSRs
inferred and validated by IRIS3 can provide a finer char-
acterization of complex regulatory mechanisms in diverse
cell types. The power and convenience of IRIS3 are further
enhanced by its ability to be integrated with other computa-
tional or experimental tools for important biomedical fields,
including mutation detection in complex diseases, tumor hi-
erarchies and heterogeneity, causal gene regulatory network
construction, and drug development.
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Figure 5. CTSRs identified by IRIS3 can elucidate the characteristics of mouse neuron cell types. (A) Gene conformations and expression heatmap of the
top ten regulons (all are CTSRs) identified in oligodendrocyte lineage cells, including OPCs. (B) Gene conformations and expression heatmap of the top
ten regulons (all are CTSRs) identified in CA1 Pyramidal. Most of these genes are also highly expressed in SS Pyramidal and Interneurons (C) UMAP
plots colored by cell types contrasts to the regulon UMAP of KLF6 and EGR1 regulons in oligodendrocyte lineage cells and CA1 Pyramidal, respectively.

IMPLEMENTATION

IRIS3 runs on a Red Hat Enterprise seven Linux system
with 28-core Intel Xeon E5–2650 CPU and 64GB RAM,
and each task is assigned to four cores and scalable based
on the server load. The front-end builds on top of technolo-
gies such as JQuery and Bootstrap, the interactive tables
and figures are generated utilizing libraries such as DataTa-
bles, Plotly.js, and Clustergrammer (58). We employed PHP
for the back-end server implementation, and the data parser
workflow is aggregated using the R programming language.
All data are stored and managed using a MySQL database.

AVAILABILITY OF DATA AND MATERIALS

IRIS3 is an open-source web server freely available from
https://bmbl.bmi.osumc.edu/iris3/ without login require-
ment. The source code is available at https://github.com/

OSU-BMBL/IRIS3. All data can be downloaded from the
IRIS3 server, and the source data can be retrieved from
Gene Expression Omnibus and European Bioinformatics
Institute databases using the data ID listed in Supplemen-
tary Table S3.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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