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Abstract
The Price equation shows the unity between the fundamental expressions of change 
in biology, in information and entropy descriptions of populations, and in aspects of 
thermodynamics. The Price equation partitions the change in the average value of a 
metric between two populations. A population may be composed of organisms or par-
ticles or any members of a set to which we can assign probabilities. A metric may be 
biological fitness or physical energy or the output of an arbitrarily complicated func-
tion that assigns quantitative values to members of the population. The first part of the 
Price equation describes how directly applied forces change the probabilities assigned 
to members of the population when holding constant the metrical values of the mem-
bers—a fixed metrical frame of reference. The second part describes how the metrical 
values change, altering the metrical frame of reference. In canonical examples, the di-
rect forces balance the changing metrical frame of reference, leaving the average or 
total metrical values unchanged. In biology, relative reproductive success (fitness) re-
mains invariant as a simple consequence of the conservation of total probability. In 
physics, systems often conserve total energy. Nonconservative metrics can be de-
scribed by starting with conserved metrics, and then studying how coordinate trans-
formations between conserved and nonconserved metrics alter the geometry of the 
dynamics and the aggregate values of populations. From this abstract perspective, key 
results from different subjects appear more simply as universal geometric principles 
for the dynamics of populations subject to the constraints of particular conserved 
quantities.
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1  | INTRODUCTION

Changes in populations can often be described by changes in proba-
bility distributions. The dynamics of probability distributions therefore 
sets the basis for much of theoretical population biology.

This article develops abstract principles for the dynamics of 
probability distributions. Those abstract principles deepen general 
understanding, leading to better connections of theoretical pop-
ulation biology to physics, statistics, and other population-based 
disciplines.
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To understand the dynamics of probability distributions, one must 
consider the forces and constraints that influence the change in pop-
ulations. Many methods can be used to study dynamics. Here, I apply 
the Price equation, a highly abstract description of change in popula-
tions. The abstractness of the Price equation facilitates discovery and 
understanding of connections between seemingly different disciplines.

I use the Price equation to show the essentially identical basis for 
fundamental equations of natural selection, entropy, and informa-
tion. I emphasize the first steps in how one might go about building 
a common framework in which to understand the similarities and dif-
ferences between various disciplines. From this abstract perspective, 
key results from different subjects appear more simply as universal 
geometric principles for the dynamics of populations subject to the 
constraints of particular conserved quantities.

2  | OVERVIEW

This article provides the basis for unifying diverse subjects. Given the 
incompatible goals, methods, languages, and cultures of the different 
disciplines, it is useful to begin with an extended overview.

This overview serves only to orient in the direction of what fol-
lows, not as a complete summary unto itself. Readers who prefer to 
start with the details may wish to skip this section.

Sections 3–5 introduce the Price equation and prepare for applica-
tion to different subjects. In the Price equation, a population consists of 
different types. Each type associates with a frequency or probability and 
with a property. I assume that the properties are quantitative values. 
I use the words frequency and probability interchangeably. In other con-
texts, there may be good reasons to distinguish between these words.

The Price equation partitions the total change between two popu-
lations into a part caused by changes in frequencies and a part caused 
by changes in properties. That separation allows clear understand-
ing of dynamics in terms of changes in probability distributions and 
changes in population quantities, such as biological fitness or physical 
energy or economic wealth.

Section 6 presents the canonical equation of conservation in pop-
ulations, in which the change caused by frequency differences bal-
ances the change caused by property value differences. In biology, this 
equation represents the fact that the average of relative reproductive 
success (fitness) cannot change, because increases in relative fitness 
caused by natural selection must be exactly balanced by decreases in 
relative fitness caused by the changed state of the population.

The conservation of relative fitness arises directly from the conser-
vation of total probability. Alternative measures of property values can 
be understood as geometric coordinate transformations from the prop-
erty of fitness (frequency change) to alternative measures that often 
lead to nonconservative changes in populations. For example, a loga-
rithmic measure of fitness leads to classical measures of information.

Section 7 describes various identities and alternative partitions for 
the conservation of total probability. The different notational forms 
provide the basis for connecting seemingly different subjects to the 
common underlying geometric principles.

Section 8 considers frequency changes in relation to an abstract 
notion of force. By expressing frequency changes in terms of force, 
the Price equation partitions the conservation of total probabil-
ity into two balancing components of change. The first component 
arises from directly acting forces with respect to a fixed frame of 
reference for the quantitative properties. The second balancing com-
ponent of change arises from the inertial forces that alter the frame 
of reference.

The balance between the consequences of the direct and inertial 
forces provides an analogy to d’Alembert’s principle of mechanics. 
That connection establishes a first step in relating different disciplines 
to the common underlying geometric foundation.

Sections 9–11 transform the quantitative property of frequency 
change into logarithmic coordinates. In the canonical Price equation’s 
partition of conserved total probability into direct and inertial compo-
nents, the property of each type is its frequency change or growth rate, 
an analogy with biological fitness. In particular, the relative growth, or 
fitness, of the ith type is wi=q�

i
∕qi, the ratio of the derived frequency, 

q′
i
, relative to the initial frequency, qi.
The change between the initial and derived frequency can be con-

sidered as a path divided into segments, in which the overall growth, 
or fitness, arises by multiplication of the fitnesses along each segment 
of the path.

If we transform our focal property of fitness to logarithmic coor-
dinates, then we can add component property values along the seg-
ments of a path, achieving an additive geometry of change that greatly 
enhances the power of analysis and interpretation. The classical no-
tions of information and entropy follow immediately from use of the 
logarithmic coordinates in the canonical Price equation partition of 
conserved total probability.

Sections 12 and 13 continue to set the geometric foundations for 
analysis. When we divide a path of change into many small segments, 
then we can think of overall change as the combination of many small 
instantaneous changes in response to directly applied force at each 
point along the path.

For small changes, the direct force at each point becomes approxi-
mately the same for the initial linear coordinates of change, wi, and the 
logarithmic coordinates, log wi, apart from a constant shift that does 
not alter the dynamics. The convergence of linear and logarithmic co-
ordinates with respect to small changes explains the common forms of 
many fundamental results in different fields of study.

Section 14 develops two complementary abstract notions of force. 
In the canonical expression of the Price equation for the conservation 
of total probability, the “fitness” term wi=q�

i
∕qi simply describes the 

change in frequencies relative to the fixed frame of reference given by 
the initial frequencies. One may treat this description of change as an 
inductive expression of an underlying force.

Alternatively, it often makes sense to consider the initial frequen-
cies and forces as given, from which one deduces the change in fre-
quency. This section expresses the given forces geometrically by the 
separation between the initial frequencies, qi, and the given point, q̂i. 
By expressing force in this way, we have a common geometric basis for 
the inductive and deductive perspectives.
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Section 15 develops the deductive perspective by deriving the 
changes in frequencies for given initial frequencies and given forces. 
The analysis applies the Lagrangian method, which maximizes the first 
component of the Price equation partition. That first component is an 
abstraction of the classical mechanics action term, as the virtual work 
of the direct forces with respect to a fixed frame of reference. The 
Lagrangian method generalizes the principle of least action.

The Lagrangian also includes various forces of constraint, such as 
the conservation of total probability, and any additional forces associ-
ated with other conserved quantities. The forces of constraint impose 
a limited set of potential paths that may be followed in the geomet-
ric space of frequency change. The actual path of change extremizes 
the action among those paths that are consistent with the forces of 
constraint.

Sections 16–18 present a partial maximum entropy production 
principle that follows from the dynamics of frequency change. To 
obtain this result, I partition the direct force into two components. 
The first component becomes an additional force of constraint that 
expresses the invariance imposed by the conservation of some system 
quantity, such as energy or biomass or the direct change in some value. 
The remaining component of the direct force is—log qi, which can be 
thought of as the entropy or information in the ith dimension.

The entropy becomes the action term maximized by the path of 
change, leading to a path that maximizes the production of entropy. 
Because the maximization is taken with respect to the fixed frame of 
reference defined by the initial population, ignoring any inertial forces 
that alter the frame of reference, one can think of the entropy pro-
duction as the result of a partial change holding constant the frame of 
reference—the partial maximum entropy production principle.

Sections 19 and 20 develop the notion of a conserved system 
quantity as a force of constraint. Jaynes maximum entropy analysis of 
thermodynamics and probability patterns follows as a special case of 
the general geometric principles of change in populations developed 
in earlier sections. From Jaynes’ work and the later extensions of his 
theory to simple invariance principles, we have a unified framework in 
which to understand the relations between commonly observed prob-
ability distributions.

Section 21 discusses alternative ways in which to interpret maxi-
mum entropy paths. I argue that the most basic principles derive from 
the underlying geometry. Notions of entropy and information are simply 
interpretations of that geometry applied to particular disciplines of study.

Section 22 relates the path of change for populations to the Fisher 
information metric. That metric arises frequently in particular disci-
plines, including the fundamental approaches of information geometry.

Sections 23 and 24 briefly review key results. The Appendix pro-
vides brief histories of key topics and background references.

3  | SEPARATION OF FREQUENCY AND  
PROPERTY

The Price equation provides an abstract way in which to analyze 
changes in populations. The equation separates the frequency of 

entities from the property of those entities (Frank, 2012a; Price, 
1972a).

Suppose, for example, that for entities with label i, we express fre-
quency as qi and the average of the associated property value as zi. The 
zi values can be height, or energy level, or any quantity.

If entities with label i always have an average value, zi, then fre-
quency change completely describes population change. If the change 
in frequency between two populations is Δqi=q�

i
−qi, then the change 

in the average value of z is 

in which the dot product, Δq · z, is understood in the usual way as the 
sum of the element-wise product of two vectors.

Alternatively, one may separate frequency from property. Thus, we 
have differences in frequency, Δqi=q�

i
−qi, and differences in property 

values, Δzi= z�
i
−zi.

For example, a transportation planner might study the overall as-
sessment of changing modes of transport in a population. The index i 
could label different transportation modes, such as automobile, train, 
and so on. The frequency qi is the fraction of individuals who travel by 
a particular mode. The quantity zi may be the relative assessment for 
the value associated with a transportation mode.

The separation of frequency and property allows a more general 
description of change. Changes in the total assessment of transporta-
tion can arise from changes in the frequencies of usage, Δqi=q�

i
−qi, 

and from changes in the assessment of value for each mode, Δzi= z�
i
−zi.

4  | SET MAPPING OF LABELS BETWEEN  
POPULATIONS

Our goal is to describe the change between two populations. We may 
arbitrarily label one population as the ancestor and the second popu-
lation as the descendant. The general formulation concerns only the 
differences between populations, independently of any particular un-
derlying scale of separation, such as space or time or updating in light 
of new evidence. In this section, I consider the example of separation 
between populations by time.

The term Δqi=q�
i
−qi is the change in the descendant frequency, 

q′
i
 , compared with the ancestral frequency, qi. For the transportation 
example, one would typically read this as the frequency of people trav-
eling by train or other mode, i, at two different times. If the frequency 
of people traveling by train is increasing, then Δqi is positive. That in-
terpretation makes a lot of sense and is nearly universal.

The Price equation allows a more abstract notion of the mapping 
between sets. Let q′

i
 be the frequency of entities in the second pop-

ulation that derive from type i in the first population. Thus, for travel 
mode by train, q′

i
 would be the frequency of individuals in the descen-

dant population who derived from, or map to, train travelers in the 
ancestral population.

Consider two interpretations. First, q′
i
 and qi could have their tra-

ditional meaning of the frequencies of train travelers at each point 
in time. For example, change may occur by social contagion, in which 

Δz̄=
∑

q�
i
zi−qizi=

∑
Δqizi=Δq ⋅z,
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people become train travelers only by learning about trains from some-
one who already travels by train; an individual train traveler maps to 
self as a descendant train traveler. In this case, each descendant train 
traveler maps to a train traveler in the ancestral population. Positive 
Δqi reflects growth of the ith class by successful recruitment.

In a second interpretation, we could map descendant individuals to 
their mothers. Then, Δqi has to do with the number of babies produced 
by each mother. In this case, a descendant’s label i is defined only by 
ancestral type. Descendants do not have their own types, only their 
mapping to an ancestral i.

We handle the fact that descendants may use travel modes that 
differ from their mother by adjusting the change in property value, 
Δzi= z�

i
−zi. For mothers who travel by train, with property value zi, 

their descendants have some average property value, z′
i
 , that accounts 

for both changes in travel mode by descendants and changes in prop-
erty value associated with each travel mode.

In the general, abstract interpretation, the label i applies only to 
the initial, or ancestral set. All entities from the second, or descendant, 
population map to ancestors, and thus derive their labels from their 
ancestors. We can use partial assignments, so that a descendant is 
made up of various fractions of ancestors, each descendant part ac-
counted for separately by its assignment to an ancestral label, i.

At first glance, this set mapping abstraction may seem rather com-
plicated and obscure. However, its great power arises from the fact 
that nearly all studies of changes in populations can be described by 
specific mapping assumptions and associated interpretations. Thus, 
anything that we can prove about the general abstract setup applies 
to the very many apparently different special cases that arise in differ-
ent applications.

5  | THE PRICE EQUATION

The Price equation (Frank, 2012a; Price, 1972a) describes the change 
between two populations in the aggregate value of some property 
(this section is modified from Frank, 2015). Each component of the 
population has a frequency weighting, q, and a property value, z. 
Begin with a discrete analog of the chain rule for differentiation of 
a product

in which q′ = q + Δq and z′ = z + Δz. The same chain rule can be ap-
plied to vectors. Using dot product notation, we obtain an abstract 
form of the Price equation (Frank, 2012a,b, 2013) 

in which a dot product is understood in the usual way as q · z = ∑ qi zi.
This equation can be interpreted in various ways, as discussed in 

prior sections. In general analysis, I adopt the most abstract interpre-
tation with regard to set mapping between two populations. Roughly 
speaking, we can take qi to be the frequency associated with a subset, 

i, of the initial population, such that the total frequency is ∑ qi = 1. 
Thus, z̄=

∑
qizi is the average of z.

Here, zi is an arbitrary function that maps i to some property value, 
and zi is interpreted as the average of z in each dimension or subset, 
i. Because z can be any quantity, calculated in any way, this equation 
gives the most general expression for Δz̄, the change in the average of 
z. One can think of z̄=

∑
qizi as a functional of the arbitrary function, 

z, that maps i ↦ zi.
For a second population, with frequencies q′

i
 and values z′

i
 , we have 

∑
q�
i
=1, in which the primes denote the abstract mapping described 

in the prior section. Our only restriction is that we can map the index i 
between the two populations. We may define the average value in the 
second population as z̄� =

∑
q�
i
z�
i
. Thus, 

so that we may write the Price equation in Equation (1) as 

an explicit expression for the change in average values. Because z can 
be defined in any way, this expression describes the change in any 
quantitative property of populations.

6  | BIOLOGICAL FITNESS AND THE 
CONSERVATION OF TOTAL PROBABILITY

We may define an abstract analog of biological fitness. For a type or 
subset with label i, comprising frequency qi in the ancestral popula-
tion, the fraction of the descendant population derived from i is q′

i
. 

Thus, the relative success of type i in contributing to the descendant 
population may be written as its relative fitness

Average relative fitness is always one

because the total frequency or probability is always a conserved value 
of one. In some articles, wi is taken as an absolute measure of the num-
ber of descendants assigned to type i, and w̄ is the average number of 
descendants, which may differ from one. In that case, wi∕w̄ is relative 
fitness. Here, I am using wi as the measure of relative fitness, with w̄ 
always equal to one. The following analysis does not differ under the 
alternative definitions, but it is important to keep in mind the distinct 
definitions that may be used.

If we use relative fitness for the abstract property in the Price 
equation of Equation (2), with z ↦ w, we obtain

It is often useful to express fitnesses as deviations from their average 
value, which we obtain by subtracting one from relative fitness

Δ(qz)= (q+Δq)(z+Δz)−qz

= (Δq)z+ (q+Δq)Δz

= (Δq)z+q�Δz,

(1)Δ(q ⋅z)=Δq ⋅z+q� ⋅Δz,

Δz̄= z̄� − z̄=Δ(q ⋅z),

(2)Δz̄=Δq ⋅z+q� ⋅Δz,

(3)wi=
q�
i

qi
.

w̄=
∑

i

qiwi=
∑

i

qi

(
q�
i

qi

)
=
∑

i

q�
i
=1,

(4)Δw̄=Δq ⋅w+q� ⋅Δw=0.

(5)ai=wi−1=
q�
i

qi
−1=

Δqi

qi
,
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which is known as Fisher’s average excess in fitness (Fisher, 1958). 
The average value a is always zero; thus, we can write Equation (4) as

7  | IDENTITIES FOR THE CONSERVATION  
OF PROBABILITY

We may express the conservation of total probability in a variety of 
equivalent forms. This section shows some of the variants. The pur-
pose of these variants is to set up the discussion in the next section, 
in which we interpret the Price equation partition in Equation (6) as 
a partition of total change into two parts. The first part is the change 
ascribed to direct forces, F. The second part is the change ascribed to 
the altered context of the population, which may be thought of as a 
change in the frame of reference caused by inertial forces, I.

I will discuss the interpretation of direct and inertial forces in the 
next section. Here, we must first consider various notational manip-
ulations, which by themselves do not have much obvious meaning. 
The goal will ultimately be to discuss general aspects of change in 
populations subject to the constraint set by the conservation of total 
probability, which allows us to write the Price equation partition in 
Equation (6) as

We will need a toolkit of notational variants to establish this form 
and to show the connections between seemingly different subjects. 
It is a bit tedious to set up the various notational identities, but it is 
important to do so to develop alternative interpretations and to avoid 
confusion. On first reading, one may wish skim quickly through this 
section and then refer back to the notations as needed.

To start, note that q′ = q + Δq and Δa = a′ − a, thus we can write 
the second term of Equation (6) as 

because q′ · a′ = q · a are the average values of a, which are always 
zero. Thus, we end up with the seemingly trivial partition 

which we will nonetheless find quite useful, because the partition pro-
vides some hints about the balance of direct and inertial forces in a 
conservative system. Before turning to that balance of forces in the 
next section, it is useful to consider some additional identities.

Each term in Equation (9) expresses the variance in fitness and, 
equivalently, a measure of the squared Euclidean distance through 
which the population moves 

in which a2 is the vector of the squared terms, a2
i
, and thus, q · a2 is 

the second moment of a. Here, Vw is the variance in relative fitness, 
because ai = wi − 1 is relative fitness shifted so that the mean value of 
a is zero. Thus, the second moment of a is the variance.

The term q · a2 can be thought of as a squared distance starting 
from an initial point at zero and moving through the distance given by 

the sum of the squared deviations in each dimension, a2
i
, each dimen-

sion weighted by its frequency, qi. Thus, the distance that the popu-
lation moves in frequency space, caused by the changes in frequency 
given by variable fitnesses, is equivalent to the variance in fitness. Put 
another way, the reason that the variance in fitness always arises as 
the key metric in population change is that the variance describes the 
distance that the population moves.

We can also write 

which are forms that arise in information theory interpretations of 
frequency changes, and also clarify the geometric squared distance 
interpretation of frequency changes (Amari & Nagaoka, 2000). We 
can write this equation in a nonstandard vector notation, which will 
be convenient to use in this article, as 

in which a ratio of vectors implies element-wise division, and vectors 
distribute through parentheses as dot products.

We can also rewrite the second term of Equation (6) by rearrang-
ing Equation (8) as

in which

which measures the nonlinearity, or bending, in the changes of q in 
subsequent steps, which is roughly like an acceleration.

Note that Equation (11) has Δqi terms in the denominator, which 
may appear to be problematic when such terms include zero values. 
However, each term is always part of a dot product, yielding values of 
Δq∗

i
 for each term; thus, we can always interpret such terms directly by 

their actual value. The reason for splitting the terms in the manner of 
Equation (11) follows at the end of this section.

Note also that 

by the conservation of total probability. However, in each individ-
ual dimension, i, the value of Δq∗

i
=Δq�

i
−Δqi is not necessarily zero. 

Although the total value is constrained to be zero, it is often useful to 
retain this term to emphasize the fact that the values in each dimen-
sion can vary.

We can combine the various pieces to express the Price equation 
partition for the change in relative fitness in Equation (6) as

or, using a = Δq/q, as 

(6)Δā=Δq ⋅a+q� ⋅Δa=0.

(7)Δā= (F+ I)Δq=0.

(8)q� ⋅Δa=q� ⋅a� −q ⋅a−Δq ⋅a=−Δq ⋅a,

(9)Δā=Δq ⋅a−Δq ⋅a=0,

Δq ⋅a=q ⋅a2=Vw,

Δq ⋅a=
∑

i

(Δqi)
2

qi
=
∑

i

qi

(
Δqi

qi

)2

,

(10)Δq ⋅a=
∑

i

(Δq2
i
)

qi
=

(
Δq

q

)
Δq,

(11)q� ⋅Δa=

(
Δq∗

Δq
−a

)
Δq,

Δq∗ =q�� −2q� +q=Δq� −Δq,

(12)
Δq∗

Δq
⋅Δq=

∑

i

Δq�
i
−Δqi=0

(13)Δā=

(
a+

Δq∗

Δq
−a

)
Δq=0,

(14)Δā=

(
Δq

q
+
Δq∗

Δq
−
Δq

q

)
Δq=0.



3386  |     FRANK

The second form emphasizes that this expression is given purely 
as the nondimensional description of changes in frequency or prob-
ability. Later, it will be useful to drop the middle term using the 
identity in Equation (12), leading to the form in Equation (9) ex-
pressed as

8  | BALANCE OF DIRECT AND INERTIAL  
FORCES

The previous sections described the conservation of total probabil-
ity, which imposes strong constraints on the geometry of change in 
populations. In particular, the dynamics of probability distributions 
must move along the constraint that the total probability remains 
unchanged. Within that constraint, the probability distributions that 
characterize populations may change in response to directly applied 
forces, such as biological fitness or physical forces or informational 
processes.

This section analyzes the changes in probability distributions 
in response to direct forces and subject to the constraint of con-
served total probability. The previous section established the key 
equations. On the abstract side, Equation (7) presented the par-
tition between the forces that directly change frequencies, F, and 
the forces that change the inertial frame of reference for the pop-
ulation, I, as 

which expresses a nondimensional analogy of d’Alembert’s principle 
with respect to the balance between the direct and inertial compo-
nents (Lanczos, 1986). d’Alembert’s principle describes classical physi-
cal laws of motion in systems that conserve total energy, for example, 
motion that does not lose energy by friction and dissipation of heat. 
I previously discussed d’Alembert’s principle in the context of fre-
quency changes in populations (Frank, 2015). Here, I repeat a few key 
points from my previous article.

The term F is the vector of direct forces acting on the system, 
and the term I is the vector of inertial forces that balance the di-
rect forces to achieve no net change. d’Alembert’s principle can be 
thought of as a generalization of Newton’s second law of motion 
(Lanczos, 1986), in which ̃F=μ ̃A is read as the total force, ̃F, equals 
mass, μ, times total acceleration, ̃A. Total force and total accelera-
tion must include forces of constraint, which in our case means that 
Σ Δqi = 0. If we write total inertial force as 

̃I=−μ ̃A, then Newton’s 
law is ̃F+ ̃I=0.

In d’Alembert’s formulation, the direct and inertial forces typically 
do not sum to zero, F + I = 0, because those terms do not include the 
constraining forces that act on Δq. Instead, in d’Alembert’s expression 
(F + I)Δq = 0, the term Δq · F combines the direct and constraining 
forces, and the term Δq · I combines all inertial forces, including any 
forces of constraint. Newton’s law is a special case of the more general 
principle of d’Alembert (Lanczos, 1986).

Here is a simple intuitive description of d’Alembert’s principle 
(Wikipedia, 2015). You are sitting in a car at rest, and the car suddenly 
accelerates. You feel thrown back into the seat. But, even as the car 
gains speed, you effectively do not move in relation to the frame of 
reference of the car: Your velocity relative to the car remains zero. That 
net zero velocity can be thought of as the balance between the direct 
force of the seat pushing on you and the inertial force sending you 
back as the car accelerates forward.

As long as your frame of reference moves with you, then your net 
motion in your frame of reference is zero. Put another way, there is a 
changing frame of reference that zeroes net change by balancing the 
work of direct forces against the work of inertial forces. Although the 
system is a dynamic expression of changing components, it also has an 
overall static, equilibrium quality that aids analysis. As Lanczos (1986) 
emphasizes, d’Alembert’s principle “focuses attention on the forces, 
not on the moving body…”

In terms of explicit notation for changes in frequencies, the previ-
ous section developed a Price equation expression for the partition of 
direct and inertial forces in Equation (14) as 

with analogy to d’Alembert’s form by expressing direct and inertial 
forces as 

For frequency changes, one can think of a coordinate system that 
locates a population as a point defined by the population’s frequency 
or probability distribution. The direct work done to move the popula-
tion in that coordinate system is Δq · F, the sum of the force multiplied 
by the displacement in each dimension, calculated when holding con-
stant the frame of reference defined by the coordinate system. That 
direct work is balanced by the inertial work done to accelerate the 
reference frame coordinate system by a total amount Δq · I, which 
relocates the altered population and its associated forces so that it 
appears in the new frame of reference to have a net total displacement 
multiplied by force of zero.

I use the word “force” here in an abstract, nondimensional manner, 
rather than in the specifically defined manner of classical physics. Such 
words can be a barrier to interdisciplinary insight and understanding. 
Readers highly trained in particular disciplines, such as physics, some-
times believe that a word such as “force” has a single correct mean-
ing and associated units of expression. Any variant use of the word is 
thought to be misleading or mistaken. I take the opposite view. The 
underlying nondimensional geometry expresses the purest abstract 
notion of such concepts.

In each separate discipline, the particular dynamics and related 
equations have terms that take on specific interpretations, units, and 
meaning. Those specific aspects arise from the application of the same 
underlying universal geometry to particular problems, which usually 
means the same underlying conserved quantities and associated sym-
metries. The same geometry and abstract concepts will take on differ-
ent units and interpretations in different disciplines.

(15)
(
Δq

q
−
Δq

q

)
Δq=

∑

i

(Δqi)
2

qi
−
(Δqi)

2

qi
=0.

Δā= (F+ I)Δq=0,

(16)Δā=

(
Δq

q
+
Δq∗

Δq
−
Δq

q

)
Δq=0

F=
Δq

q
and I=

Δq∗

Δq
−
Δq

q
.
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9  | AVERAGE FORCE ALONG A PATH

In the Price equation description of change, we have only the differ-
ences between two populations. The two populations describe the 
initial and final probability distributions, q and q′. Each distribution can 
be thought of as a single point in a space of probability distributions. 
The separation between the two points is a nondimensional change 
that can be small or large. There is no underlying parameter, such as 
time or spatial distance, that defines the scale of separation and the 
path of change that connects the points.

Most applications analyze changes along a path with respect to an un-
derlying parametric scale. To relate the Price equation to other theoretical 
frameworks, it is useful to add an abstract notion of change along a para-
metric path that connects the initial and final probability distributions.

Let θ be a parameter that describes change along a path that con-
nects q to q′

in which Δθ = θ − θ0. We can set θ0 = 0 and thus write θ ≡ Δθ. For no-
tational convenience, let the dependence of q(θ) on the parameter θ 
be implicit, so that we can write the same expression more simply as

We can think of ri as the average force acting along the path that 
moves the system from qi to q

′
i
 with respect to total path length, 

θ = Δs2, in the parametric length scale, s. Thus, riθ is the total force in 
the ith dimension along the path of change. For our purposes, we can 
treat s as a nondimensional scale, and think of ri as having nondimen-
sional units of 1/s2, interpreted as a nondimensional force or accelera-
tion. In biology, the force ri is interpreted as the Malthusian expression 
of biological fitness in analyses of natural selection, connecting the 
abstract analysis here to models of biological evolution (Frank, 2015).

Note that

So that we may think of ri as the average change in logarithmic 
coordinates of probability with respect to changes in the parametric 
length scale Δθ = Δs2.

We can express the total nondimensional force in these logarith-
mic coordinates acting along the path of change from q to q′ as

Because mi = log wi, we can think of mi as log fitness. Using mi to 
express fitness, or force, the expression for change along a path in 
Equation (17) becomes

10  | COMPARING LINEAR AND 
LOGARITHMIC COORDINATES

In linear coordinates, for each implicit i, we combine forces 
multiplicatively

in which q̃ separates (q,q′) into the segments (q,q̃)+ (q̃,q�), with q̃ 
between q and q′.

In logarithmic coordinate, we combine forces additively

The two coordinate systems describe the same total fitness, or 
force, as

We can decompose any fitness value and its associated vector, 
(q, q′), into a large number of small pieces. In principle, we could 
analyze large changes in frequency, Δq = q′ − q, by combining the 
changes along each small segment in a decomposition of total 
change.

11  | LOG COORDINATES,  ENTROPY AND  
INFORMATION

The average value of log fitness is

in which

is the Kullback–Leibler divergence (Cover & Thomas, 1991; Kullback, 
1959). This divergence measures relative entropy by extending the 
classical measure of entropy, −q · log q, for a probability vector q, to a 
measure of the entropic divergence of q relative to a given probability 
vector, q′.

One can think of classical entropy for a probability vector, q, 
as a special case of the more general relative entropy by compar-
ing q to a uniform distribution described by a constant probability 
vector in which q�

i
=1∕N for all i. The Kullback–Leibler divergence is 

also a primary measure of information in statistics and information 
theory.

The properties of entropy and information derive from the funda-
mental geometric properties of logarithmic coordinates, such as the 
additivity described in the previous section.

From the equality above, m̄=− (q||q�), we can write the change 
in mean log fitness as 

which measures the bending, or curvature, of the divergence between 
the populations in the sequence q→q′→q′′. When the divergence 
between successive steps remains constant, then mean log fitness is 
invariant.

We can use the Price equation in Equation (2) to partition the total 
change in log fitness into direct and inertial components

q�
i
(θ)=qi(θ0)e

riΔθ,

(17)q�
i
=qie

riθ.

ri=
1

Δθ
log

q�
i

qi
=
Δ log qi
Δθ

.

mi= riθ= log
q�
i

qi
= logwi=Δ log qi.

q�
i
=qie

mi .

w=
q�

q
=
q�

q̃

q̃

q
= w̃� × w̃,

m= log
q�

q
= log

q�

q̃

q̃

q
= log

q�

q̃
+ log

q̃

q
= m̃� +m̃.

(18)w=
q�

q
=em̃

�+m̃= w̃� × w̃.

m̄=q ⋅m=q ⋅ log
q�

q
=q ⋅Δ logq=− (q||q�),

(q||q�)=
∑

i

qi log
qi

q�
i

,

Δm̄= m̄� −m̄= (q||q�)− (q�||q��),
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The direct component is

in which

is the Jeffreys divergence. In earlier work, I showed that the Jeffreys 
divergence is the proper expression for the direct component of 
change caused by natural selection or, more generally, the compo-
nent associated with direct forces when evaluated with respect to the 
fixed frame of reference given by the initial probability vector (Frank, 
2012b).

For small changes,   and  converge to the Fisher information 
metric. Thus, analyses of small changes often invoke  ,  or Fisher 
information without distinguishing between the measures. For small 
changes, the Fisher information metric is often preferable, because it 
has many useful geometric properties (Amari & Nagaoka, 2000) and is 
more widely known than  . However, it is useful to keep in mind that, 
in general,   is the correct measure for the direct effect of natural 
selection, or for the direct component of change relative to a fixed 
frame of reference.

The inertial component is

12  | SMALL CHANGES: PRELUDE

In the remainder of this article, I focus only on the small changes that 
arise from forces acting at a given point. Small changes correspond to 
a single small segment in any larger path. I focus on small changes for 
two reasons.

First, the conceptual relations between different disciplines can be 
seen mostly clearly in small changes around a focal point.

Second, analysis of larger changes requires either an assumed con-
stancy of a force field, or potential function, or an explicit notion of 
how forces change with both time and the changing context of the 
population. Those required assumptions reduce the generality of any 
particular formulation and obscure the common conceptual basis of 
different subjects.

In the future, it would be useful to extend analysis to cases in 
which there is no meaningful decomposition of a large change vec-
tor into small segments and to cases in which there exists a constant 
force field for which one could reconstruct the path of change over a 
sequence of small segments. Such extensions exist within individual 
disciplines, but it remains unclear how to connect the analyses from 
those different subjects to a common unifying framework.

13  | SMALL CHANGES: ANALYSIS

When changes Δqi=q�
i
−qi are small, I use the notation Δqi→dqi≡ q̇i. 

For linear coordinates, we may write 

and for logarithmic coordinates when q̇i∕qi is small, we may write

Because the consequence of forces is shift invariant in expressions 
such as

the linear and logarithmic expressions of force, w and m, are equiv-
alent for small changes. We may express this equivalence explicitly 
by noting that, in general, the direct component of change was given 
earlier as

which, when q̇i∕qi is small, we may write as

This last expression is the Fisher information metric, which arises 
as the direct component of population change or natural selection 
(Frank, 2009), the limiting expression of the Jeffreys divergence given 
earlier.

14  | GIVEN FORCES

I have defined mi= log q�
i
∕qi→ q̇i∕qi as proportional to the force acting 

along the infinitesimal change q̇i=q�
i
−qi. These expressions describe a 

consistency relation between force and frequency change. Often, we 
wish to consider how extrinsic or given forces cause change, rather 
than simply express consistency.

Suppose, for example, that we have a given force vector acting at 
the point in frequency space, q. The given force is the nondimensional 
vector

Given the location, q, and the force vector, �̂, the vector q̂ pro-
vides an alternative way to express the intensity of the force vector as 
log q̂∕q. We can multiple q̂ by an arbitrary positive constant, because 
the net consequences of a force vector are shift invariant. Thus, we 
may implicitly consider cq̂ as the target and choose q̂ to sum to one, 
satisfying the conservation of total probability.

As with m, we can write the total nondimensional force as a de-
scription of an exponential growth process

in which q̂i is the endpoint of the exponential growth process that 
began at qi. Thus, the location q and the “target” location q̂ are suffi-
cient to describe the given force vector. In the following, we will only 
be interested in small changes, q̇, that result from the instantaneous 
given forces with respect to a fixed frame of reference. One goal will 

(19)Δm̄=Δq ⋅m+q� ⋅Δm.

Δq ⋅m=Δq ⋅Δ logq= (q||q�)+ (q�||q),

(20) (q,q�)=(q||q�)+(q�||q),

q� ⋅Δm=Δm̄− (q,q�)=− (q�||q)− (q�||q��).

wi=
q�
i

qi
=1+

Δqi

qi
→1+

q̇i

qi
,

mi= logwi→
q̇i

qi
.

Δq ⋅w→ q̇ ⋅m,

Δq ⋅w=Δq ⋅
Δq

q
=
∑

i

(Δqi)
2

qi
,

q̇ ⋅m= q̇ ⋅
q̇

q
=
∑

i

q̇2
i

qi
.

(21)�̂= log
q̂

q
.

q̂i=qie
ϕ̂i ,
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be to find the changes, q̇, that arise from given forces and various 
constraints on change.

It is common in classical mechanics to define force, ϕ̂i, in relation 
to coordinates, qi, by the negative gradient of a potential function Φ, 
which for our definition of �̂ leads to

We can use the potential function

 in which the second term expresses the constraint on total probabil-
ity, so that the resulting force includes the force of constraint. The av-
erage force, ϕ̄=q ⋅ �̂=− (q||q̂), is also a relative entropy expression.

15  | EXTREME ACTION AND FREQUENCY  
DYNAMICS

The given forces and the conservation of total probability do not by 
themselves tell us what frequency changes occur. In the study of fre-
quency changes, the simplest variational approach (Lanczos, 1986) 
finds the extremum (maximum or minimum) of a Lagrangian subject to 
a constraint. In our case, we may write

in which we take as given the direct force in each dimension, ϕ̂i.
We measure the total change caused by the direct forces as 

q̇ ⋅m=
∑

q̇imi=
∑

q̇2
i
∕qi. That expression comes from Price’s separation 

of direct and inertial forces in Equation (19). In terms of classical me-
chanics (Lanczos, 1986), the expression q̇ ⋅m is the virtual work of the 
direct forces, in which work is distance times force (ignoring mass).

Geometrically, we can think of the constraint in the second term 
as fixing the total path length moved in frequency space (Amari & 
Nagaoka, 2000), in which 

∑
q̇2
i
∕qi=C2 measures distance by the Fisher 

information metric for infinitesimal displacements, q̇, or, biologically, 
C2 is the variance in fitness. I assume that C2 is chosen so that a solu-
tion exists that satisfies the constraints. The final term constrains total 
probability to remain constant.

The constraints of 
∑

q̇2
i
∕qi=C2 and 

∑
q̇i=0 do not by themselves 

determine which frequency changes actually occur. Many different 
frequency vectors, q̇, satisfy those two constraints.

Given these forces and constraints, what actual path do the dy-
namics follow? In other words, what is the realized vector q̇? We can 
think of the first term in the Lagrangian as the action, and extremize 
the action subject to the given constraints (Lanczos, 1986). That action 
term is q̇ ⋅ �̂, the product of the displacement times the given force, 
which is the virtual work. In this case, maximizing the virtual work in 
the Lagrangian finds the displacement q̇ aligned with the direct and 
constraining forces.

To find the extreme action path, we evaluate ∂∕ ∂q̇i=0, which 
yields 

in which ϕ̂∗
i
=ϕ̂i−ϕ̄ is the excess force relative to the average, and 

ξ= ϕ̄=
∑

qiϕ̂i follows from satisfying the conservation of total prob-
ability and the assumption that the virtual displacements are small. 
The constant of proportionality

satisfies the constraint on total path length, in which σϕ̂ is the standard 
deviation of the direct forces.

Here, we have deduced a fundamental expression for frequency 
dynamics by the principle of extreme action. We can rewrite the ex-
pression for frequency dynamics as

which shows that the forces, mi, may be arrived at inductively by consist-
ency with given changes, q̇i∕qi. This expression also shows that the forces 
described by m are related by affine transformation to a vector of given 
forces, �̂, from which one may deduce the actual frequency changes.

16  | DIRECT FORCES AND CONSTRAINING  
FORCES

The distinction between direct and constraining forces is arbitrary. 
We may choose to describe a force by its constraint on allowable dis-
placements, q̇, or by its inclusion in the direct forces, �̂≡F.

The Lagrangian in Equation (23) defines the action to be extrem-
ized as the work done along the path, which is the total displacement, 
q̇, times the direct component of force, �̂. We can use �̂ rather than 
�̂∗ = �̂−ϕ̄ for force, because we can ignore the constant,  , and 
q̇ ⋅ ϕ̄=0.

The constraining forces in the Lagrangian of Equation (23) are the 
fixed path length, 

∑
q̇2
i
∕qi=C2, and the conservation of total probabil-

ity, 
∑

q̇i=0.
We are free to relabel a component of the direct force as a con-

straining force (Lanczos, 1986). In practice, deriving the altered 
Lagrangian provides an easy way to see how the changed labeling of 
direct and constraining forces enters into the analysis.

Consider the direct forces as defined in Equation (21) as

We can think of this expression as the sum of two component forces, 
log q̂ and –log q. The virtual work term of the direct forces becomes

We may choose to relabel q̇ ⋅ log q̂ as a force of constraint. The re-
maining term −q̇ ⋅ logq becomes the virtual work associated with the 
direct forces. The next section illustrates how this change in labeling 
can be useful.

ϕ̂i=
− ∂Φ

∂qi
= log

q̂i

qi
.

(22)Φ= (q||q̂)−
(∑

qi−1
)
,

(23)=
∑

i

q̇iϕ̂i−
1

2

(
∑

i

q̇2
i

qi
−C2

)
−ξ

(
∑

i

q̇i−0

)
,

(24)q̇i=qiϕ̂
∗
i
,

(25)=
C

σϕ̂
.

(26)mi=
q̇i

qi
=ϕ̂∗

i
,

�̂= log
q̂

q
= log q̂− logq.

(27)q̇ ⋅ �̂= q̇ ⋅ log q̂− q̇ ⋅ logq.
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17  | CONSERVED SYSTEM QUANTITIES 
AS THE PRIMARY FORCES OF CONSTRAINT

In relabeling log q̂ as a constraining force, we may write 

in which log k is understood to be a constant vector with elements k 
when used in a vector context, k is chosen so that 

∑
q̂i=1 obeys the 

conservation of total probability, the term λ is a positive constant, and 
zi > 0 is chosen to make the equality hold. Thus, we can express the 
force associated with q̂i using zi. The constraining force now becomes 
associated with the component 

The advantage of using z is that we may define the force of con-
straint directly in terms of any system quantity that we may associate 
with z. Each zi is, in this analysis, a given value associated with a subset 
i of the population. We can use any quantity for z, including energy or 
momentum or monetary wealth or a quantitative biological trait.

Often, underlying quantities of a system, xi, become transformed by 
various processes before we evaluate the final quantity of the outcome, 
zi. We may, in general, consider zi = T(xi), in which xi is an intrinsic quan-
titative value associated with the subset i, and T(xi) is a transformation 
that defines a scaling relation between the intrinsic xi values and the 
constraining force, zi. The analysis of pattern often reduces to under-
standing the processes that set the scaling relation (Frank, 2014), T.

Because we can define zi = T(xi) in any way, the quantity z̄=q ⋅z can 
represent almost any sort of functional on the system. This expres-
sion for z̄ is also the average value of z. It is often useful to consider 
changes in z̄, with infinitesimal change as 

which we obtain by a simple chain rule expansion of the differential, 
yielding an infinitesimal expression of the Price equation given in 
Equation (2).

If q̇ ⋅z is constrained, then that constraint defines the constraint on 
q̂ in Equation (29). For example, the total system quantity z̄ may be con-
served, which means that ̇̄z=0. If the z quantities do not themselves 
change, then q ⋅ ż=0, and consequently, we have the constraint on the 
given forces q̇ ⋅z=0. We may also consider other ways in which q̇ ⋅z is 
constrained, thereby defining the given forces q̂ that determine dynamics.

18  | MAXIMUM ENTROPY PRODUCTION  
PRINCIPLE

With the split between direct and constraining forces in Equation (27), 
and the expression of the constraining forces in terms of z in 
Equation (29), we can write a new Lagrangian that is equivalent to the 
Lagrangian in Equation (23), using dot product notation

The first term is the total action to be maximized, which is the 
virtual work of the direct forces, q̇ ⋅F=−q̇ ⋅ logq. The other terms de-
scribe the constraints on the path that q̇ may follow. I assume that C2 
and B are chosen such that a solution exists.

The classical definition of entropy is − q · log q. Thus, the path q̇ 
that maximizes q̇ ⋅F=−q̇ ⋅ logq, subject to the constraints on q̇, is, in 
the limit of small changes, the path that maximizes the production of 
entropy subject to the constraints—the maximum entropy production 
principle (see Appendix for references).

The idea is that the most likely path is the one that maximizes the 
production of entropy, which is equivalent to the maximization of the 
virtual work of the direct forces, q̇ ⋅F=−q̇ ⋅ logq, subject to the con-
straints on q̇. The constraints in q̇ include all forces that determine the 
location of log q̂= log k−λz.

The maximum entropy production principle is always true, in the 
sense that one can always split the total direct forces, �̂, into a con-
straining component, log q̂, and a direct component, −log q. The ex-
tent to which maximum entropy production is meaningful depends on 
two questions. First, how meaningful is it to treat log q̂= log k−λz as a 
constraint? Second, how meaningful is it to consider paths of change 
in the context of the Price equation separation of direct and inertial 
forces, a generalization of d’Alembert’s principle?

In order to answer those questions about maximum entropy pro-
duction, the next section analyzes dynamics with respect to z as a 
constraint. The following section discusses the Jaynesian theory of 
maximum entropy in relation to equilibrium thermodynamic expres-
sions for common probability distributions. After those two sections, 
I return to the broader question of how to interpret the maximum en-
tropy production principle in terms of the Price equation.

19  | MAXIMUM ENTROPY PATH SUBJECT 
TO CONSTRAINT

To interpret the meaning of z as a constraint, we return to the 
Lagrangian in Equation (31). That Lagrangian is equivalent to the form 
in Equation (23), thus solving ∂∕ ∂q̇i=0 yields a solution equivalent 
to Equation (24), which we can expand to emphasize alternative 
interpretations 

with deviations from average values z∗
i
= zi− z̄ and 

in which  =−log qi=−
∑

qi log qi is the traditional definition of system 
entropy. Thus, ∗

i
 is the deviation of the entropy in the ith dimension 

from the system entropy. The constant ξ=−λz̄ is absorbed by ex-
pressing ∗

i
 and z∗

i
 as deviations from their average values. The con-

stant  is given by Equation (25), in which σϕ̂ is the standard deviation 
of the forces, ϕ̂∗

i
=∗

i
−λz∗

i
.

The constraint q̇ ⋅z=B implies 

(28)log q̂= log k−λz,

(29)q̇ ⋅ log q̂=−λ(q̇ ⋅z).

(30)̇̄z= q̇ ⋅z+q ⋅ ż,

(31)=−q̇ ⋅ logq−
1

2
(q̇ ⋅m−C2)−ξ(q̇ ⋅1−0)−λ(q̇ ⋅z−B).

q̇i=qiϕ̂
∗
i
=qi (

∗
i
−λz∗

i
),


∗
i
=i− =− log qi+ log qi,

λ=βεz−
B

σ2
z

.
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The term βɛz is the regression coefficient of i, on zi, which trans-
forms the scale for the forces of constraint imposed by z to be on 
a common scale with the direct forces of entropy, −log q. The term 
B∕σ2

z
 describes the required force of constraint on frequency changes 

so that the new frequencies move z̄ by the amount q̇ ⋅z=B. The term 
σ2
z
 is the variance in z.
When the z values change, the changing frame of reference with 

respect to z follows from Equation (30) as q ⋅ ż= ̇̄z−B. When z̄ is a con-
served quantity and the z values remain constant such that q ⋅ ż=0, 
then ̇̄z=B=0. When B = 0, the force of constraint for the conserved 
quantity is expressed simply by λ=βεz.

20  | EQUILIBRIUM THERMODYNAMICS  
AND PROBABILITY

This section analyzes how the system equilibrium arises from the di-
rect force causing maximum increase in entropy and the constraining 
forces imposed by z. That equilibrium can be interpreted as the maxi-
mum entropy probability distribution.

The dynamics are expressed in Equation (24) as q̇i=qiϕ̂
∗
i
. 

Equilibrium requires that the forces be constant in each dimension, 
thus ϕ̂∗

i
=0. We can take that condition as the forces in each dimension 

given by 

which means that the equilibrium condition can be written as 
log qi= log q̂i . We can express q̂i in terms of the system quantities, 
z, that set the forces of constraint. From Equation (28), we write the 
equilibrium condition as log qi= log k−λzi, or 

That probability distribution is the classic Jaynesian thermody-
namic equilibrium (Jaynes, 1957a,b, 2003) that arises by maximizing 
entropy subject to a constraint on z̄. That constraint is usually inter-
preted as a conserved quantity, such that ̇̄z=0, and q̇ ⋅z=q ⋅ ż=0. We 
can use multiple constraints on a set of system values z̄j, and replace 
λzi by Σλjzij summed over j. For simplicity, I focus on a single constraint.

Suppose we want to find a Lagrangian that leads to the Jaynesian 
equilibrium, in which the defined forces q̂ arise from a constraint on 
a conserved system quantity, z̄=q ⋅z=μ. The following Jaynesian 
Lagrangian does the job 

in which  =−
∑

qi log qi, is the classical expression for entropy de-
fined earlier. This Lagrangian is simply the entropy, , subject to two 
constraints. First, the total probability must be one. Second, the sys-
tem quantity z̄=Σqizi is conserved and equal to μ. The terms k̃ and λ 
are the Lagrangian multipliers that adjust to guarantee that the con-
straints are satisfied.

Maximum entropy subject to the constraints requires ∂∕ ∂qi=0, 
which yields the maximum entropy probability distribution 

in which log k= k̃−1, and λ=1∕μ. We can extend this result to unify 
the commonly observed probability distributions within a single 
framework by noting that zi=T(xi) is an arbitrary scaling relation of an 
underlying value, xi (Frank, 2014, 2016).

Two conclusions follow. First, equilibrium probability distributions 
at maximum entropy express the force of constraint on total probabil-
ity and the forces of constraint on total system quantities. The point 
of maximum entropy occurs at the minimum relative entropy,  (q||q̂), 
which is achieved as q → q̂.

Second, pattern follows from the values of z that set the forces 
of constraint and thus the magnitudes of q̂. How the z values arise 
has not been specified. Thus, the study of pattern often reduces to 
the study of how various processes set z. The analysis here clarifies 
how those processes and the associated maximum entropy probability 
distribution relate to the universal Price equation expression for the 
dynamics of populations.

21  | INTERPRETATION OF MAXIMUM 
ENTROPY PATH

The previous sections analyzed forces in terms of Price’s partition of 
direct and inertial forces, an abstract generalization of d’Alembert’s 
principle of mechanics. By analogy with d’Alembert’s principle, the 
Price equation term q̇ ⋅F can be thought of as an abstraction of the 
virtual work associated with the direct and constraining forces.

The direct forces are F. The constraining forces are included in the 
allowable set of displacements, q̇, taken relative to the fixed frame of 
reference. Such displacements relative to a fixed frame of reference 
are sometimes called virtual displacements, thus the name virtual 
work for the term q̇ ⋅F. The Lagrangian expressions provide a method 
for maximizing the virtual work subject to the constraints that limit the 
possible set of displacements.

We may interpret the partition of direct and constraining forces 
in different ways, to match the interpretation of different problems. 
In this article, I split the total direct forces into a direct force that in-
creases entropy, F = − log q, and a set of potential virtual displace-
ments, q̇, that obey the forces of constraint defined by conservation of 
a functional, z̄, of the system quantities, z, where one can think of each 
zi as a function on the subset, i, of the population.

In particular, I defined the total direct forces by �̂= log q̂∕q, and 
then split those forces as 

If we take �̂ as the direct forces, then the frequency changes can 
be obtained from the Lagrangian in Equation (23) that maximizes the 
action q̇ ⋅ �̂, which is equivalent to minimizing the change in relative 
entropy, (q||q̂).

If we take –log q as the direct forces, then the frequency changes 
can be obtained from the Lagrangian in Equation (31) that maximizes 

ϕ̂i= log
q̂i

qi
=0,

qi=ke−λzi .

(32)=+ k̃
(∑

qi−1

)
−λ

(∑
qizi−μ

)
,

qi=ke−λzi ,

q̇ ⋅ �̂=−q̇ ⋅ logq+ q̇ ⋅ log q̂=−q̇ ⋅ logq−λq̇ ⋅z.
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the action −q̇ ⋅ logq, which is equivalent to maximizing the gain in en-
tropy, .

In other words, the realized path maximizes the production of 
entropy when analyzed within the fixed frame of reference, thus the 
maximum entropy production principle. That conclusion holds only 
in the d’Alembert–Price distinction between direct and constraining 
forces, in which we choose to interpret all direct forces except entropy 
production as constraining forces on the possible virtual displace-
ments, q̇. In addition, the changes in frame of reference that typically 
arise from change in location, q̇, or from change in the constraining 
forces, are separated by the Price equation approach into the conse-
quences of the inertial forces.

Maximum entropy production only holds for the partial change 
from the direct forces, when separating all direct forces other than 
entropy into the constraints, and when ignoring changes in the frame 
of reference associated with the inertial forces.

Does it make sense to follow this particular partition of forces into 
components? There is no correct answer to that question. The princi-
ple exists. The interpretations of usefulness and meaning will always 
have a strongly subjective aspect.

I follow Lanczos (1986) in the claim that separating direct, inertial, 
and constraining components is the great unifying perspective in the 
study of forces. In many systems, it makes sense to describe most of 
the applied forces in terms of the constraining forces of conserved 
system quantities. Often, all that remains is the only truly universal 
force, the increase of entropy, which completes the description of the 
total direct forces acting on a system.

In some cases, it may make sense to use a different partition of ap-
plied forces into direct and constraining component forces. When the 
remaining direct component of force differs from entropy alone, then 
it would appear that the system does not follow the maximum entropy 
production principle. However, it is better to say that the maximum 
entropy production principle always holds, but alternative expressions 
may provide a more meaningful perspective for particular problems.

In this interpretation, entropy is simply a geometric description 
of position and change for probability distributions when located in 
logarithmic coordinates. That fundamental geometry explains the uni-
versality of entropy, or information, in widely different disciplines and 
applications.

22  | GEOMETRY AND THE FISHER 
INFORMATION METRIC

We can write the conservation of total probability expression in 
Equation (15) for small changes, q̇, as 

in which  =Σq̇2
i
∕qi is the Fisher information metric, and the subscripts 

on  denote the direct and inertial components of the Price equation.
In various models of natural selection, information, and entropy, 

different measures arise in terms of the Jeffreys divergence,  , the 

Kullback–Leibler divergence, , and the Fisher information metric, . 
Confusion sometimes occurs, because in the limit of small changes, all 
three measures converge to an equivalent form that often appears as 
the Fisher information metric. That limiting equivalence hides the sig-
nificant differences between the measures and the different situations 
to which each measure naturally applies.

The Fisher information metric is used in many applications (Cover 
& Thomas, 1991; Kullback, 1959). For example, Frieden (2004) has 
emphasized that this Fisher information partition subsumes nearly all 
of the key results of theoretical physics. Similarly, the subject of infor-
mation geometry subsumes nearly all of the classical aspects of sta-
tistical inference through a Riemannian geometry based on the Fisher 
information metric (Amari & Nagaoka, 2000).

From the general perspective of the Price equation and d’Alem-
bert’s form for the conservation of total probability in Equation (7), the 
partition into Fisher information components arises as a special case in 
the limit of small changes (Frank, 2015). In that special case of Fisher 
information, in which q̇ ⋅F=F, one does not separate the forces of 
constraint from the other directly applied forces. Instead, all directly 
applied and constraining forces combine into a single quantity that de-
scribes the path, in which that path has a natural geometric expression 
in terms of the Fisher information metric. That geometry is very useful 
in many applications. But it is important to recognize the more general 
perspective of Price and d’Alembert, which allows a deeper conceptual 
understanding of the different roles played by directly applied forces, 
constraining forces, and inertial forces.

One can think of the maximum entropy production principle in 
terms of Fisher information geometry. The universal direct force that 
increases entropy is always present. In addition to that universal direct 
force, various additional constraining forces combine to influence the 
curvature of the space of allowable virtual displacements. The direct 
and constraining forces combine to determine the paths of change 
within the Fisher information geometry (Amari & Nagaoka, 2000).

23  | DIRECT WORK, INFORMATION,  
AND ENTROPY

I summarize in two parts. In this section, I briefly review the Price 
equation formulation of the work of the direct forces. I then show 
how the classic measures of information and entropy follow from sim-
ple geometric assumptions about the most useful scale on which to 
measure changes in populations. The following section focuses on the 
Lagrangian analysis of the dynamical paths of change, including the 
partial maximum entropy production principle, and provides a final 
summary.

The Price equation presents universal principles of total change 
in populations. The strongest principles arise when studying change 
purely in terms of altered probability distributions. In that case, the 
natural selection definition of relative fitness as the ratio of proba-
bilities, 1+ai=wi=q�

i
∕qi, leads to a Price equation expression for the 

change in average relative fitness, describing the conservation of total 
probability in Equation (6), as 

q̇ ⋅F+ q̇ ⋅ I=
∑ q̇2

i

qi
−
∑ q̇2

i

qi
=F−I=0,
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We can write that conservation law for total probability in terms 
of d’Alembert’s partition of direct, inertial, and constraining forces in 
Equation (6) as 

The allowable displacements in probability, Δq, must obey any con-
straints imposed on changes in the system, and thus implicitly reflect 
any underlying forces of constraint. Such displacements may be re-
versed, because all allowable displacements fall within the constraints 
of conserved total probability. Reversible infinitesimal displacements 
that obey the constraining forces, taken in the context of the fixed 
frame of reference in the initial state of the population, are often called 
virtual displacements.

In this abstract Price equation generalization of d’Alembert’s prin-
ciple of mechanics for conserved systems, the first component of 
change arises from the direct forces, a = F, which may be written from 
Equation (10) as 

which is the nondimensional product of a displacement multiplied by 
a force, yielding the Price equation abstraction of the mechanical no-
tion of the work of the direct forces. For infinitesimal displacements, 
Δq→ q̇, consistent with the forces of constraint, the term q̇ ⋅F is often 
called the virtual work.

The work of the direct forces describes change in the context of 
the fixed frame of reference given by the initial population. The total 
change depends on how the frame of reference changes, captured by 
the second term q′ · Δa = Δq · I, as in Equation (11).

Often, it is difficult to interpret the changing frame of reference 
in a simple way. Instead, the strongest universal principles come from 
study of the work of the direct forces—the partial change caused by 
the direct forces with respect to the fixed initial frame of reference.

The work of the direct forces may be partitioned into components 
of directly applied forces, F, and constraining forces expressed by the 
allowable displacements, Δq. One can make that partition in a variety 
of ways according to the interpretation of a particular system. The em-
phasis on forces helps greatly in understanding the causes of change 
(Lanczos, 1986).

Fitnesses, wi=q�
i
∕qi, are ratios of probabilities. Geometrically, it is 

convenient to have identical ratios correspond to identical distances 
between coordinates of probability. We achieve that identity by ex-
pressing fitness in logarithmic coordinates 

When we interpret fitness as a force, the logarithmic coordinates 
change the multiplication of fitness components of force into the addi-
tion of the logarithmic fitness components of force, as in Equation (18).

In the Price equation, we can use any arbitrary coordinates, z, for 
the quantitative property values associated with probabilities. We can 
think of those arbitrary coordinates as a geometric transformation of 

the fundamental coordinates of conserved probability and fitness, 
w ↦ z. Equivalently, we may write a ↦ z, because a = w − 1, and the 
Price equation is shift invariant.

When we transform from the fundamental coordinates of fitness 
to the logarithmic coordinates of fitness, w ↦ m, we obtain many of 
the classic expressions for information and entropy, which ultimately 
express the simple underlying geometry of change described by the 
Price equation. For example, in logarithmic coordinates, the work of 
the direct forces becomes 

which is the Jeffreys divergence measure of entropy or information, 
as in Equation (20). The symmetric Jeffreys divergence is the sum 
of reflected asymmetric Kullback–Leibler divergences, in which the 
Kullback–Leibler divergence is the most commonly used measure of 
relative entropy or relative information.

When the changes, Δqi/qi, are small, the logarithmic measure 
of fitness converges to the linear measure of fitness, m→a, and the 
Jeffreys divergence and the Kullback–Leibler divergence converge to 
the Fisher information metric. The Fisher metric is the fundamental 
measure of distance between probability distributions that forms the 
basis of much of statistical inference and information geometry.

In these Price equation descriptions of change, we have taken the 
fitnesses as given, and equated fitness or the logarithm of fitness with 
a notion of force. That approach is essentially inductive, in which we 
take the probabilities as given locations, wi=q�

i
∕qi, and implicitly in-

duce the force that would be consistent with the change from qi to q
′
i
.

24  | PARTIAL MAXIMUM ENTROPY  
PRODUCTION

The main point of this article is to analyze the traditional deductive 
perspective of dynamics with respect to force. In that traditional per-
spective, we begin with the initial location of the population, q, and 
given forces which we denote F≡ �̂. From those given conditions, we 
then deduce the changes in location and the new probabilities, q′. I 
confined the analysis to the study of small changes, q̇.

To obtain the dynamics, q̇, from the initial location and the given 
forces, I first wrote the Lagrangian expression for each particular case. 
The Lagrangian focuses on a first term, often called the action, which 
is either maximized or minimized (extremized). When minimized, the 
procedure follows the principle of least action, but more generally, the 
procedure is known as the principle of extreme action.

In this article, I maximized the virtual work of the given direct 
forces, q̇ ⋅F= q̇ ⋅ �̂. Intuitively, this simply means that the changes will 
follow the lines of force in relation to the magnitudes of the force in 
each dimension. However, we must consider both the direct and con-
straining force.

The Lagrangian approach provides a natural way to combine di-
rect and constraining forces. In each Lagrangian, the first term gives 
the virtual work of the direct forces to be maximized. The remaining 
terms give the constraints that must be satisfied, usually as some total 

Δā=Δq ⋅a+q� ⋅Δa=0.

Δā= (F+ I)Δq=0.

Δq ⋅F=Δq ⋅a=

(
Δq

q

)
Δq=

∑

i

(
Δqi

)2

qi
,

mi= logwi= log
q�
i

qi
= log q�

i
− log qi.

Δq ⋅F=Δq ⋅m=Δq ⋅Δ logq=F,
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quantity that is conserved when summed over all dimensions of the 
system. The Lagrangian procedure transforms the system constraints 
into the constraining force components in each dimension.

The various results in the text show how different kinds of con-
straints and different ways of separating overall force into direct and 
constraining components determine the change in frequencies.

The key result concerns the partial maximum entropy produc-
tion principle, which I briefly review. I expressed the given forces as 
�̂= log q̂∕q. Thus, the virtual work of the given forces in Equation (27) is 

I assumed that there is some quantity, z, such as energy or biomass or 
any other appropriate measure, that is constrained so that the total direct 
changes in that quantity are q̇ ⋅z=B. We may relabel the part of the given 
forces, log q̂, as a constraining force associated with the fixed value im-
posed on direct changes in z, given by the expression in Equation (29) as 

With this component labeled as a constraining force, the remain-
ing part of the virtual work of the direct forces is −q̇ ⋅ logq, which in the 
limit for small changes is the production of entropy along the path of 
small changes, q̇. This component is the action term maximized along 
the path of change; thus, the path follows the direction that maxi-
mizes the production of entropy. I call this the partial maximum en-
tropy production principle, because the result expresses the change 
in terms of the fixed frame of reference of the initial population state. 
Total change must also evaluate any changes in the frame of reference 
through the inertial forces.

The entropy production principle simply expresses the basic ge-
ometry for the path of change when extrinsic forces are considered as 
constraints on system quantities, and logarithmic coordinates are used 
to locate populations. Because changes in probabilities as fitness or 
force have a natural expression as the ratio of probabilities, wi=q�

i
∕qi, 

and such quantities combine multiplicatively, logarithmic coordinates 
arise naturally from the transformation that yields additive combina-
tions. Thus, entropy production or changes in information arise as the 
inevitable consequence of the geometry of change when evaluated in 
the Price equation partition of direct and inertial forces.

In summary, several different disciplines share the same basic fun-
damental theory of change. From the perspective of the Price equa-
tion, we have seen common expressions for natural selection, aspects 
of physical mechanics and thermodynamics, entropy expressions for 
probability distributions, and common measures of information theory. 
Perhaps many common models of learning by reinforcement (Sutton & 
Barto, 1998; Szepesvri, 2010) and Bayesian updating (Campbell, 2016; 
Harper, 2010; Shalizi, 2009) will also share the same underlying geo-
metric principles.
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APPENDIX 

Literature in Specific Disciplines

NATURAL SELECTION
Price originally formulated his equation as an expression of natural 
selection (Price, 1970, 1972a). In another article, without any direct 
connection to the Price equation, he speculated about a unified the-
ory of change based on an abstract generalization of the principle of 
selection (Price, 1995).
In Price’s vision for a general theory of selection, he suggested the 

separation of frequency and property values in the description of 
population change. He also described changes by an abstract mapping 
scheme between members of two populations. Price never connected 
these abstract ideas about mapping and about separating frequency 
and property directly to his formulation of the Price equation, al-
though one can see hints of this in Price (1972a).
In other work (Price, 1972b), Price clarified one of the great puzzles 

in the history of evolutionary theory. In 1930, Fisher stated his funda-
mental theorem of natural selection as: “The rate of increase in fitness 

of any organism at any time is equal to its genetic variance in fitness at 
that time.”
Fisher emphasized the exactness of the theorem and his belief that 

the theorem was a general and profound statement about natural se-
lection. The puzzle is that Fisher’s theorem holds exactly only under a 
very restricted set of assumptions (Crow & Kimura, 1970). Fisher is 
regarded as perhaps the greatest mathematical biologist ever. So the 
mismatch between Fisher’s strong claim and the seemingly obvious 
failure of the theorem was hard to reconcile.
Price (1972b) solved the puzzle. In the language of the present arti-

cle, Fisher meant that the rate of increase in fitness equals the vari-
ance in fitness when evaluated with respect to the fixed frame of 
reference of the population’s initial state. Selection acts as a direct 
force, with consequences of the direct force evaluated by holding 
constant the context. Any changes to the population that alter the 
fitnesses of individuals are regarded as consequences of inertial forces 
that alter the frame of reference.
Price (1972b) did not use the language of direct and inertial forces, 

but he clearly understood Fisher’s partition of total change into two 
components. Later work clarified a variety of early theories about 
natural selection within the context of the Fisher’s partition (Ewens, 
1989, 1992; Frank & Slatkin, 1992).
In summary, Price left three separate insights about natural selec-

tion: the Price equation, the separation of frequency and property in 
an abstract mapping scheme, and Fisher’s method of partitioning total 
change with respect to the frame of reference. My own work has uni-
fied those different pieces into an extended, more general and ab-
stract interpretation of the Price equation (Frank, 1995, 1997, 
2012a,b).
Another important line of work in evolutionary theory concerns the 

path of change in gene frequencies. Wright (1931, 1932) initiated the 
approach most closely related to analogies with classical mechanics. 
That line of work continues to be developed, including explicit con-
nections to notions of entropy and statistical mechanics (de Vladar & 
Barton, 2011).
The studies initiated by Wright contrast with Fisher’s approach 

(Frank, 2012c). In the language of this article, Fisher emphasized 
instantaneous change at a point and the partition of direct and iner-
tial components of change. Fisher believed that the inertial compo-
nents of change were too unpredictable to allow an explicit theory 
for the full path of change over significant lengths. By contrast, 
Wright and his descendants sought a theory of the paths of change 
over significant distances. This article emphasized the Fisherian 
perspective.

MAXIMUM ENTROPY PRODUCTION
Jaynes’ theory of maximum entropy (Jaynes, 1957a,b, 2003) empha-
sizes that probability distributions can be read as expressions of con-
straining forces (Frank, 2014).
For example, a Gaussian distribution expresses a constraint on the 

average distance of observations from the mean value. If one con-
strains that average distance of fluctuations from the mean, then the 
Gaussian distribution arises by maximizing the entropy subject to that 

http://en.wikipedia.org/w/index.php?title=Fictitious_force&oldid=659661243
http://en.wikipedia.org/w/index.php?title=Fictitious_force&oldid=659661243
https://doi.org/10.1002/ece3.2922
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constraint. Maximizing entropy is roughly equivalent to minimizing in-
formation or maximizing randomness.
Jaynes’ maximum entropy describes an equilibrium condition 

(Jaynes, 1957a,b, 2003). The idea is that entropy increase is a ubiqui-
tous force—a ubiquitous entropic force. Increasing entropy plus con-
straining forces together define the form of the equilibrium 
distribution.
The increase in entropy toward an equilibrium leaves open the 

problem of the dynamical path followed from initial condition to final 
equilibrium state. What characterizes the increments along that path? 
One possibility is that each increment follows the direction that maxi-
mizes the increase in entropy—the path of maximum entropy produc-
tion (MEP).
Some authors have proposed MEP as a fundamental principle simi-

lar to the principle of least action (Dewar, 2005; Dewar, Lineweaver, 
Niven, & Regenauer-Lieb, 2014). By that view, essentially all realized 
paths of motion maximize the production of entropy. Other authors 
have suggested that MEP is only an approximate description of dy-
namics (Dewar et al., 2014). By that view, certain special systems fol-
low MEP exactly, whereas many other systems follow MEP 
approximately or not at all.
The logical status of MEP as a principle and its usefulness in analy-

sis remain open problems. The interpretation of MEP is important, 
because that interpretation reflects our general understanding of di-
verse subjects and the relations between those subjects.
In this article, I showed that MEP is an exact statement about dy-

namics when interpreted in the context of the Price equation and the 
information theory definition of entropy. The Price equation provides 
an abstraction of change that may be interpreted as a partition into 
components that separate direct, inertial, and constraining forces.
This Price equation separation of forces is an abstract generalization 

of d’Alembert’s principle of classical mechanics (Lanczos, 1986). The 
Price equation formulation can be applied to both conservative and non-
conservative systems, extending d’Alembert’s application to conserva-
tive systems. Wang (2007) proposed a different way to connect entropy 
and d’Alembert through a more traditional thermodynamic approach.
Although MEP is a valid principle, I suggested that a purely geomet-

ric interpretation provides a more fundamental and universal 

perspective than does the entropy perspective of MEP. In particular, 
the conservation of total probability imposes strong geometric sym-
metry and constraint on the separation of direct and inertial forces 
(Frank, 2015). Maximum entropy production is a useful but often un-
necessarily complicated way of expressing those fundamental geo-
metric principles.
Returning to Jaynes, his goal was to express an abstract and general 

approach to understanding probability patterns. He sought to tran-
scend the specific physical assumptions of statistical mechanics and 
thermodynamics, thereby achieving a more general theory that ap-
plied to broader range of disciplines.
In several ways, Jaynes did not go far enough. For example, he re-

tained entropy and information as primary quantities. Similarly, infor-
mation geometry, based on metrics such as Fisher information, retains 
a notion of information as primary. In my view, the underlying geom-
etry, conserved quantities, and symmetries provide the true founda-
tion for analysis as, for example, in Frank (2016).

STATISTICAL INFERENCE AND LEARNING ALGORITHMS
This article showed that natural selection connects to universal ex-
pressions of population change and probability through the Price 
equation (Frank, 1995, 2012a; Price, 1970, 1972a). One can think of 
natural selection as an algorithm for accumulating information. Many 
authors have noted formal connections between natural selection, in-
formation theory (Frank, 2009, 2012b); Bayesian updating in statisti-
cal inference (Campbell, 2016; Harper, 2011; Shalizi, 2009); and 
learning algorithms (Campbell, 1974).
Although initial connections have been made between natural se-

lection and those different subjects, unification based on a deeper 
geometric foundation remains an open problem. For example, Jaynes 
maximum entropy approach ultimately aimed to unify probability, in-
formation, statistical inference, and physical theories of statistical me-
chanics and thermodynamics (Jaynes, 2003). Another subject which 
might eventually coalesce is reinforcement learning (Sutton & Barto, 
1998; Szepesvri, 2010) which provides the basis for aspects of neuro-
science, cognitive science, and machine learning.
How do those various subjects relate to general underlying geo-

metric principles for the dynamics of change in populations?


