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Background: Citrin, encoded by SLC25A13, is a component of the
malate-aspartate shuttle, which is the main NADH-transporting
system in the liver. Citrin deficiency causes neonatal intrahepatic
cholestasis (NICCD), which usually resolves within the first year of
life. However, small numbers of adults with citrin deficiency develop
hyperammonemic encephalopathy, adult-onset type II citrullinemia
(CTLN2), which leads to death due to cerebral edema. Liver trans-
plantation is the only definitive therapy for patients with CTLN2. We
previously reported that a lactose (galactose)-restricted and
medium-chain triglyceride (MCT)-supplemented formula is notably
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effective for patients with NICCD. Citrin deficiency may impair the
glycolysis in hepatocytes because of an increase in the cytosolic
NADH/NAD+ ratio, leading to an energy shortage. MCT administra-
tion can provide energy to hepatocytes and was expected to have a
good effect on CTLN2.

Methods: An MCT supplementation therapy under a low-carbohydrate
formula was administered to five patients with CTLN2. Four of the
patients had episodes of hyperammonemic encephalopathy, and one
patient had postprandial hyperammonemia with no symptoms.

Results: One of the patients displaying hyperammonemic encepha-
lopathy completely recovered with all normal laboratory findings.
Others notably improved in terms of clinical and or laboratory
findings with no hyperammonemic symptoms; however, the patients
displayed persistent mild citrullinemia and occasionally had post-
prandial mild hyperammonemia most likely due to an irreversible
change in the liver.

Conclusions: An MCT supplement can provide energy to hepato-
cytes and promote hepatic lipogenesis, leading to a reduction in
the cytosolic NADH/NAD+ ratio. MCT supplementation under a
low-carbohydrate formula could be a promising therapy for CTLN2
and should also be used to prevent CTLN2 to avoid irreversible
liver damage.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Citrin, encoded by SLC25A13, is a mitochondrial inner membrane aspartate-glutamate carrier that
transfers a cytosolic NADH-reducing equivalent into the mitochondria as part of the malate-aspartate
shuttle in the liver [0,1]. Citrin deficiency causes neonatal intrahepatic cholestasis (NICCD: OMIM
603471) and adult-onset type II citrullinemia (CTLN2: OMIM 605814). Nearly all patients with NICCD
resolve the symptoms within the first year of life; however, small numbers of individuals with citrin
deficiency develop hyperammonemic encephalopathy, usually between 20 and 40 years of age [2] and
die within a few years, most often from cerebral edema. Liver transplantation is the only definitive
therapy for patients with CTLN2.

We previously reported that a lactose (galactose)-restricted and medium-chain triglyceride (MCT)-
supplemented formula is notably effective for patients with NICCD [3]. Citrin deficiency may impair
glycolysis in the liver due to an increase in the cytosolic NADH/NAD+ ratio, leading to an energy shortage
of hepatocytes. MCT supplementation can provide energy to hepatocytes. An increase in the cytosolic
NADH would impair galactose metabolism at the UDP-galactose-4-prime-epimerase (EC 5.1.3.2) step,
leading to an accumulation of liver toxic metabolites. Lactose (galactose) restriction can avoid any further
increase in the cytosolic NADH/NAD+ ratio and toxic metabolites.

Considering energy shortage in the liver as the major pathogenic mechanism of citrin deficiency, we
extended an MCT supplement therapy for CTLN2 and, in this study, present its effectiveness in five
patients, including two siblings.

2. Materials and methods

2.1. Medium-chain triglyceride

Macton oil (Kissei pharmaceutical Co., LTD. Matsumoto, Japan), a product of medium-chain
triglycerides (MCT), was a generous gift from Kissei pharmaceutical Co., LTD. Macton oil is composed of
85% MCT and 15% long-chain triglycerides and has a 0.94 g/mL specific gravity.
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2.2. SLC25A13 analysis and immunohistochemical staining

Molecular analysis of SLC25A13 was performed as previously described [4]. Immunohistochemical
staining was conducted using anti-human argininosuccinate synthetase 1 (ASS1) antibody (Abcam PLC.
Cambridge, UK) essentially as described previously [5].

2.3. Patients

2.3.1. Case 1
The patient was a 53-year-old man who developed flapping tremors, paresthesia and lethargy due to

hyperammonemia over the preceding two months. His elder brother died of CTLN2 at 53 years of age. The
patient took mercazole (5 mg/day) to treat hyperthyroidism after age 40. On admission, he had a weight
of 54.0 kg and a height of 1.708 m with a body mass index (BMI) of 18.5 kg/m2. He was exhausted, but he
was alert with no abnormal physical and neurological findings. He presented with postprandial
hyperammonemia (Table 1, Supplementary Fig. 1) and other abnormal laboratory data as follows:
serum alanine aminotransferase (ALT) level of 47 IU/L (normal range (n) 8–42), gamma-glutamyl
transpeptidase (γ-GTP) level of 84 IU/L (n 10–47), pancreatic secretory trypsin inhibitor (PSTI) level of
56.5 ng/mL (n 4.6–20.0), citrulline level of 102.9 μmol/L (n 17.1–42.6) and a Fischer ratio of 2.08 (n 2.43–
4.40) (Table 1). No abnormal data were obtained for the following: serum aspartate aminotransferase
Table 1
Summary of laboratory data of patients with CTLN2.

Patient Case 1 Case 2 Case 3 Case 4 Case 5

Days after therapy 0 120 0 170 0 208 0 160 281 0 95
Body Weight (kg) 54.0 59.6 45.2 53.6 45.0 47.0 53.3 57.1 58.0 52.0 52.0
Formula

Macton (mL/day) 0 45 0 45 0 30 0 45 45 0 45
Protein (g/day) 60.0–90.0a 88.0 65.2 68.9 88.0 106.0 80.0 70.0 84.8 83.0 _ 83.9
Carbohydrate (g/day) 330.0–420.0a 286.0 231.2 315.4 264.0 280.0 259.0 300.0 243.7 250.0 _ 235
Fat (g/day) 55.0–70.0a 73.0 131.7 36.5 88.0 90.0 79.0 40.0 78.3 97.0 _ 50.0
Energy (kcal/day) 2,300–2,500a 2,153 2,371 1,866 2,200 2,354 2,067 1,900 2,019 2,200 _ 1,676

Laboratory data reference ranges
Citrulline (μmol/L) 17.1–42.6 102.9 45.7 131.4 33.3 74.9 60.2 462.0 504.1 178.7 451.4 133.2
Glutamic acid (μmol/L) 12.6–62.5 42.3 48.8 61.0 34.6 92.5 75.6 78.0 75.8 62.6 32.8 43.7
Glutamine (μmol/L) 422.1–703.8 679.4 711.1 360.6 558 387.7 472.9 450.7 428.2 508.6 570.9 551.6
Fischer ratio 2.43–4.40 2.08 2.59 2.08 2.64 1.47 2.53 2.90 2.40 2.86 2.22 2.49
Albumin (g/dL) 3.8–5.3 4.4 4.6 3.4 4.3 4.2 4.5 3.9 4.6 4.4 3.8 4.5
T. Bil (mg/dL) 0.2–1.3 1.3 0.7 1.2 1.0 0.5 0.6 0.5 0.5 0.3 1.4 1.1
AST (IU/L) 13–33 33 23 50 23 20 23 19 24 20 27 34
ALT (IU/L) 8–42 47 27 55 22 17 25 22 23 32 32 25
LDH (IU/L) 119–229 200 189 203 186 191 214 162 165 159 160 193
ALP (IU/L) 115–359 235 178 367 254 343 295 181 170 197 513 576
γ-GTP (IU/L) 10–47 84 58 96 48 36 42 41 50 93 87 75
ChE (IU/L) 185–501 324 346 156 271 211 231 210 211 253 192 188
T. Chol (mg/dL) 130–219 191 211 139 220 209 231 170 189 199 201 223
TG (mg/dL) 30–149 114 226 300 102 56 67 82 56 39
Ammonia (μg/dL)b 40–80 215 53 100 26 104 59 222 173 90 121 23
Urea N (g/dL) 8–20 17 13 20 19 18.2 15.7 12 12 16 22 21
PSTI (ng/mL) 4.6–20.0 56.5 13.2 243.1 41.6 36 41 97 56 – – –

Iron (μg/dL) 54–181 149 – 183 123 – – 113 157 126 140 124
TIBC (μg/dL) 231–385 361 – 194 348 – – 370 384 338 338 364
Hyaluronic acid (μg/L) b50 16.6 – 279 58.4c – – – 84.2 240.3 46.8 84.7
Prognosis fair fair good good good

T. Bil, total bilirubin; AST, aspartate transaminase; ALT, alanine transaminase; LDH, lactate dehydrogenase; ALP, alkali phosphatase;
γ-GTP, γ-glutamyltranspeptidase; ChE, Cholinesterase; T. Chol, total cholesterol; TG, triglycerides; PSTI, pancreatic secretory trypsin
inhibitor; TIBC, and total iron binding capacity.

a Standard nutrition of Japanese male adults.
b Blood was sampled at 2 h after breakfast.
c Blood was sampled at 35 days after therapy.
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(AST), serum lactate dehydrogenase (LDH), serum cholinesterase (ChE), serum alkali phosphatase (ALP),
urea N, creatinine, triglyceride, total cholesterol, coagulation tests, and complete blood cell counts. A fatty
liver was demonstrated by abdominal ultrasonography, and steatosis was observed in liver biopsy
specimens. The patient was a compound heterozygote with p.M285Pfs⁎2 (c.851_854del) and p.R605⁎

(c.1813CNT) mutations in SLC25A13.
The patient was treated with a supplement of 45 mL of Macton oil under a low-carbohydrate formula

(2,371 kcal a day; protein: fat: carbohydrate ratio 11: 50: 39). He improved in his general fatigue within a
week and had no recurrent episode of encephalopathy. The levels of postprandial blood ammonia, plasma
citrulline, Fischer ratio, ALT, γ-GTP and PSTI were steadily improved by the therapy (Supplementary Figs. 1
& 2, Fig. 1, Table 1). After 10 months of therapy, his body weight increased to 60 kg, and the amount of
Macton oil was decreased to 30 mL/day. Then, the levels of plasma citrulline and the Fischer ratio mildly
deteriorated, and these parameters recovered with an increase in Macton oil to 45 mL/day. The patient
had mild citrullinemia, and sometimes had postprandial mild hyperammonemia with no apparent
symptoms. No signs of fatty liver were observed on an abdominal ultrasonography after 41 months of
therapy.
2.3.2. Case 2
A 62-year-old Japanese male suddenly experienced bouts of lost consciousness and abnormal behavior

over the previous four weeks. He had no family history of metabolic disorders. On admission, he was
lethargic and disoriented with flapping tremors. He had a weight of 45.2 kg and a length of 1.636 mwith a
BMI of 17.5 kg/m2. He had postprandial hyperammonemia (Supplementary Fig. 3) and other abnormal
laboratory data as follows: albumin 3.4 g/dL (n 3.8–5.3), AST 50 IU/L (n 13–33), ALT 55 IU/L (n 8–42), ALP
367 IU/L (n 115–359), γ-GTP 96 IU/L, ChE 156 IU/L (n 185–501), triglyceride 300 mg/dL (30–149), PSTI
243.1 ng/mL, serum iron 183 μg/dL (n 54–181), total iron-binding capacity (TIBC) 194 μg/dL (n 231–385),
unsaturated iron-binding capacity (UIBC) 11 μg/dL (n 111–255), ferritin 1124 μg/L (n 15–400), hyaluronic
acid 279 ng/mL (n b50), collagen IV 154 ng/mL (n b150), plasma citrulline 131.4 μmol/L, threonine
237.1 μmol/L (n 66.5–188.9), glutamine 360.6 μmol/L (n 422.1–703.8) and Fischer ratio 2.08 (Table 1). He
displayed 8–9 Hz alpha waves on electroencephalography with no epileptic discharges. Magnetic
resonance imaging of the liver demonstrated hepatic iron deposition. A fatty liver was demonstrated by
abdominal ultrasonography, and steatosis was observed in liver biopsy specimens. He was a compound
heterozygote with p.D493G (c.1478 ANG) and p.S225⁎ (c.674CNA) mutations in SLC25A13.

The patient was treated with a supplement of 45 mL of Macton oil under a low-carbohydrate formula
(2220 kcal a day; protein: fat: carbohydrate ratio was 16: 36: 48). The patient's condition improved, and
Fig. 1. Changes in the levels of plasma citrulline and Fischer ratio in Cases 1, 2, 3 and 5. Open symbols show the changes in the level of
plasma citrulline and closed symbols are changes in the Fischer ratio. The circles, triangles, squares, and diamonds represent Cases 1,
2, 3 and 5, respectively.
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there were no more episodes of encephalopathy. All abnormal biochemical findings, including
postprandial hyperammonemia, were nearly normalized within seven months of treatment (Fig. 1,
Supplementary Figs. 3 & 4, and Table 1). He had no deterioration even after a reduction of Macton oil to
30 mL/day at 10 months of the therapy. No signs of fatty liver were observed using abdominal
ultrasonography after 26 months of therapy.

2.3.3. Case 3
A 53-year-old Japanese man had an episode of hyperammonemic encephalopathy at age 37. He was a

compound heterozygote with S225⁎ (c.674CNA) and c.1311 + 1GNA mutations in the SLC25A13 gene
and was reported as a case of NASH due to CTLN2 [5]. He was treated with sodium benzoate (15 g/day)
under a low-carbohydrate formula (2350 kcal a day; PFC ratio was 18: 34: 48) and had no episodes of
hyperammonemic encephalopathy. At age 53, he weighed 42.0 kg and was 1.60 m tall. His BMI was
16.2 kg/m2. He had no abnormal physical and neurological findings. However, he complained of
fatigability, difficulty with calculations in the evening and recurrent watery diarrhea. Abnormal laboratory
data were as follows: postprandial blood ammonia 104 μg/dL (n 40–80), PSTI 36.0 ng/mL, plasma
citrulline 74.9 μmol/L, glutamic acid 92.5 μmol/L (n 12.6–62.5), glutamine 387.7 μmol/L (n 422.1–703.8)
and Fischer ratio 1.47 (Table 1).

The patient was treated with a supplement of 30 mL of Macton oil under a low-carbohydrate formula.
The fatigability and watery diarrhea disappeared within a month of therapy. He initially improved in the
levels of postprandial blood ammonia, plasma glutamine and Fischer ratio. As shown in Fig. 1 and
Supplementary Fig. 5, he did not display any further improvement from 90 to 280 days of therapy because
of an insufficient intake of Macton oil. He then took it regularly and displayed an improved Fischer ratio.
After 11 months of treatment, his body weight increased to 50 kg. He had no apparent symptoms, but he
had persistent mild citrullinemia.

2.3.4. Case 4
A 38-year-old Japanese man was born as a second child to healthy unrelated parents. Case 5 was his

elder brother. From 25 to 32 years old, he had four episodes of abnormal behaviors (excited, wandering)
and unconsciousness. He displayed hyperammonemia and citrullinemia (326.7, 755.3 and 493.5 μmol/L)
and was diagnosed with CTLN2 at 32 years old. He was a compound heterozygote with p. S225⁎

(c.674CNA) and p.Q549⁎ (c.1645CNT) mutations in SLC25A13. He was treated with arginine hydrochloride
(3 g/day), sodium pyruvate (9 g/day), lactulose (90 mL/day), ursodeoxycholic acid (300 mg/day) and
Fig. 2. Changes in the levels of plasma citrulline, Fischer ratio and serum triglycerides in Case 4. The open circles, closed circles, and
open triangles indicate changes in the level of plasma citrulline, the Fischer ratio and serum triglycerides, respectively.
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psychoactive drugs under a low-carbohydrate diet. Next, he developed hypertriglyceridemia (1239 mg/dL)
and was treated with bezafibrate (400 mg/day). His levels of triglyceride were reduced, but plasma
citrulline levels were not significantly changed (Fig. 2). He had several manic episodes, most likely because
of bipolar disorder continuing for several weeks until age 38. Little data were available from 32 to 38 years
of age.

At age 38, he weighed 53.2 kg and was 1.64 m tall. His BMI was 19.8 kg/m2. He complained of fatigability
but had no abnormal physical and neurological findings. Abnormal laboratory data were as follows:
postprandial blood ammonia 222 μg/dL (n 40–80), plasma citrulline 462.0 μmol/L, glutamic acid 78.0 μmol/L,
and arginine 311.3 μmol/L (n 53.6–133.6). A fatty liverwas demonstrated by abdominal ultrasonography and
steatosis was observed in liver biopsy specimens. Then, he received a supplement of Macton oil (45 mL/day)
under a low-carbohydrate formula (2200 kcal a day; protein: fat: carbohydrate ratio was 15: 40: 45), for
4 months; however, he did not improve in terms of lethargy and plasma citrulline level (Fig. 2, Table 1). An
MCT supplement is expected to provide energy to hepatocytes and stimulate lipogenesis. Bezafibrate is
known to suppress lipogenesis and stimulate lipolysis in the liver. Bezafibrate was suspected to have
counteracted the effect of MCT and was discontinued. In addition, arginine hydrochloride, sodium pyruvate,
and ursodeoxycholic acid were also discontinued. As shown in Fig. 2 and Table 1, the levels of plasma
citrulline, postprandial blood ammonia and ChE started to improve 4 months after cessation of bezafibrate.
He improved in his fatigability and displayed no encephalopathy, but he had mild increases in the levels of
plasma citrulline, γ-GTP and hyaluronic acid and occasionally had postprandial hyperammonemia.
Subsequently, he suffered a manic episode, most likely due to bipolar disorder, and was hospitalized, and
no further information was available.

2.3.5. Case 5
A 41-year-old Japanese man was an elder brother of case 4. He had a history of NICCD, a preference for

protein- and fat-rich food, and compound heterozygous mutations of SLC25A13. He did not have any
serious complaints but received a check-up at 41 years of age. He weighed 52.0 kg and was 161 cm tall.
His body mass index was 20.1 kg/m2. He did not display any abnormal signs and symptoms but had
abnormal results in the following examinations: postprandial blood ammonias 121–355 μg/dL, serum ALP
513 IU/L (n 112–334), γ-GTP 87 IU/L, urea N 22 mg/dL (n 8.0–20.0), citrulline 451.4 μmol/L, arginine
229.6 μmol/L and Fischer ratio 2.22. He was treated with a supplement of Macton oil (45 mL/day) under a
low-carbohydrate formula (1676 kcal a day; protein: fat: carbohydrate ratio was 20: 56: 24) and
improved in the levels of blood ammonia 27 μg/dL, plasma citrulline 133.2 μmol/L, arginine 143.4 μmol/L
and the Fischer ratio 2.49 (Fig. 1, Table 1). He sometimes had postprandial mild hyperammonemia.

2.3.6. Summary of the effects of therapy
An MCT supplement therapy under a low-carbohydrate formula steadily improved clinical and or

laboratory findings in Cases 1, 2, 3 and 5. Case 4 started to improve after cessation of bezafibrate. Blood
ammonia levelsfluctuatedwidely in thepatients (Supplementary Figs. 1 & 3), and fasting blood ammonia level
was not a reliable indicator of treatment effect. The plasma citrulline level appeared to be a definite indicator of
treatment effect, and a steady decrease in plasma citrulline level was observed in all our patients. Case 2 had
normalized plasma citrulline levels and did not present postprandial hyperammonemia. Conversely, plasma
citrulline level decreased in Cases 1, 3, 4 and 5 but was slightly higher than the reference levels. Those patients
sometimes had postprandial hyperammonemiawith no apparent symptoms. The ASS1 immunohistochemical
staining revealed the homogenous ASS1 distribution in the liver of Case 2 was the same as in control liver and
ASS1-negative hepatocytes in the livers from Cases 1, 3 and 4: 10% in Case 1, 30% in Case 3 and 25% in Case 4
(Supplementary Fig. 6). The patients with a lower percentage of ASS1-negative hepatocytes displayed a good
response to the therapy. Improvement of fatty liver in Cases 1 and 2 was confirmed by abdominal
ultrasonography as long-term effects.

3. Discussion

We previously reported that a lactose (galactose)-restricted and MCT-supplemented formula is very
effective in the treatment of NICCD [3]. Based on the hypothesis that energy shortage in the liver is a major
pathogenic mechanism of citrin deficiency, we treated five CTLN2 patients with an MCT supplement under
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a low-carbohydrate formula. One of the patients completely recovered with normal laboratory findings,
and the others notably improved in clinical and or laboratory findings but displayed persistent mild
citrullinemia and occasionally had mild postprandial hyperammonemia with no symptoms.

Citrin deficiency likely results in impairment of glycolysis due to an increasedNADH/NAD+ ratio in cytosol
(Fig. 3a). At a normal circumstance, the liver takes up a relatively fixed amount of fatty acids regardless of
dietary intake and uses as a major energy source. Glucose uptake by hepatocytes is most likely limited to the
postprandial period because of the low affinity of glucose transporter 2 and glucokinase for glucose. Glucose is
not a major energy source for hepatocytes but is used for lipogenesis for generating ATP, acetyl-CoA and
NADPH. Thus, the patients with citrin deficiency most likely have impairments in hepatic lipogenesis and
cannot export and reserve fatty acids in their tissues. Characteristic low BMI in patients with CTLN2 may
reflect these metabolic impairments [1].

MCT is quickly hydrolyzed and is absorbed mainly as medium-chain free fatty acids (MCFA). MCFA are
transported to the liver via the portal vein and are metabolized by beta-oxidation to produce ATP [7]. MCT
administration is known to stimulate de novo hepatic lipogenesis [8,9]. It is important to note that
cytosolic NAD+ is generated in the process of lipogenesis mainly at the malate dehydrogenase step and
partly at the glycerol 3-phosphate dehydrogenase step (Fig. 3b). MCT administration can provide energy
to hepatocytes and promote lipogenesis, leading to a decrease in the cytosolic NADH/NAD+ ratio. Effects of
treatment with MCT in citrin deficiency were also suggested in the experiments using the mouse model by
Saheki et al. [10]. Microvesicular fatty liver in citrin deficiency is a characteristic feature of Reye's
syndrome or hepatic mitochondrial DNA depletion syndrome [11–13], suggesting a low-energy state of
liver. Cases 1 and 2 improved the fatty liver after a long-term treatment, which supports the hypothesis
that the major pathogenic mechanism of citrin deficiency is an energy shortage of liver.

It is interesting to note that the effect of MCT supplement was not initially observed in Case 4 and became
apparent after the influence of bezafibrate likely disappeared. Nakajima et al. [14] demonstrated that
bezafibrate exerts a triglyceride-lowering effect not by peroxisome proliferator-activated receptor (PPAR)
activation but via the suppression of the SREBP-1c-regulated pathway. Bezafibrate may counteract the effect
of MCT by impairment of hepatic lipogenesis and triglyceride secretion. In addition, bezafibrate may induce
uncoupling proteins, which inhibit ATP synthesis from MCT oxidation [15]. Case 4 had been treated with
sodiumpyruvate for nearly five years; however, he did not improve in terms of lethargy and plasma citrulline
level (Fig. 2).Mutoh et al. [16] reported the effectiveness of sodiumpyruvate in a patient in the early stages of
CTLN2. The effect of sodium pyruvate on CTLN2 may depend on the condition of the patients.

Plasma citrulline level decreased butwas slightly higher than the reference level in all patients except Case
2, who sometimes had postprandial mild hyperammonemia. Saheki et al. [17] reported that the amount of
ASS1 protein is reduced in the livers of patients with CTLN2. Yagi et al. [5] reported that the distribution of
ASS1-producing hepatocytes in CTLN2was divided into two types: onewas homogeneous distribution of the
enzyme-producing hepatocytes in the liver from patients with a favorable prognosis, as in the control livers,
and the other presented with the clustered distribution of the enzyme-producing hepatocytes in the liver
from patients with a less favorable prognosis. Our data confirmed their observation and suggested that
rearrangements of hepatocytes occurred in the patients with a less favorable prognosis. Recovery of ASS1
activity can be estimated from the decrease in plasma citrulline level and persistent citrullinemia even after
the treatment suggests that the rearrangement of hepatocytes occurred in the preceding periods. To prevent
irreversible damage of the liver, preclinical and or early treatment is recommended.

Case 2 displayed an elevation in serum ferritin with hemosiderin deposits in the liver. Kimura et al. [12]
reported elevated serum ferritin levels and hemosiderin deposits in liver specimens from approximately
60% of patients with NICCD. An increase in the level of serum ferritin is known in patients with
non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, and chronic hepatitis C. The association of
cytokines and oxidative stress is well known in impaired iron metabolism and also fibrosis in these
conditions [18,19]. Cytokines and/or oxidative stress may be involved in the pathogenesis of CTLN2.

Kikuchi et al. [20] estimated the frequency of patients with citrin deficiency as 1/7100 in Japan and
speculated about the existence of asymptomatic individuals with a risk for CTLN2 development.
Considering the disease frequency and the effectiveness of MCT therapy, citrin deficiency should be
included in the mass screening system in Japan. We need more information about signs or changes at an
early stage of CTLN2 and should start an intervention trial of MCT supplementation for post-NICCD
children.
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Fig. 3. a: Glucose metabolism in citrin deficiency. b: Treatment with medium-chain triglycerides and hepatic lipogenesis. Abbreviations: Asp, aspartate; CiC, citrate carrier; cyt, cytosol; DHAP,
dihydroxyacetone phosphate; Glc, glucose; GP, glycerol 3-phosphate: Mal, malate; mit, mitochondria; MCFA, medium-chain free fatty acid; NAD+, nicotinamide adenine dinucleotide; NADH,
reduced nicotinamide adenine dinucleotide; NADP, nicotinamide adenine dinucleotide phosphate; NADPH, reduced nicotinamide adenine dinucleotide phosphate; OAA, oxaloacetate; PyC,
pyruvate carrier; and Pyr, pyruvate.
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4. Conclusions

MCT supplementation under a low-carbohydrate formula could be a promising therapy for CTLN2 and
should also be used to prevent CTLN2 to avoid irreversible liver damage.

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.ymgmr.2013.12.
002.
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