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Abstract

Time series sensor data classification tasks often suffer from training data scarcity issue

due to the expenses associated with the expert-intervened annotation efforts. For example,

Electrocardiogram (ECG) data classification for cardio-vascular disease (CVD) detection

requires expensive labeling procedures with the help of cardiologists. Current state-of-the-

art algorithms like deep learning models have shown outstanding performance under the

general requirement of availability of large set of training examples. In this paper, we pro-

pose Shapley Attributed Ablation with Augmented Learning: ShapAAL, which demonstrates

that deep learning algorithm with suitably selected subset of the seen examples or ablating

the unimportant ones from the given limited training dataset can ensure consistently better

classification performance under augmented training. In ShapAAL, additive perturbed train-

ing augments the input space to compensate the scarcity in training examples using Resid-

ual Network (ResNet) architecture through perturbation-induced inputs, while Shapley

attribution seeks the subset from the augmented training space for better learnability with

the goal of better general predictive performance, thanks to the “efficiency” and “null player”

axioms of transferable utility games upon which Shapley value game is formulated. In Sha-

pAAL, the subset of training examples that contribute positively to a supervised learning

setup is derived from the notion of coalition games using Shapley values associated with

each of the given inputs’ contribution into the model prediction. ShapAAL is a novel push-

pull deep architecture where the subset selection through Shapley value attribution pushes

the model to lower dimension while augmented training augments the learning capability of

the model over unseen data. We perform ablation study to provide the empirical evidence of

our claim and we show that proposed ShapAAL method consistently outperforms the cur-

rent baselines and state-of-the-art algorithms for time series sensor data classification tasks

from publicly available UCR time series archive that includes different practical important

problems like detection of CVDs from ECG data.
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Introduction

With the advent of Internet of Things (IoT) and ever-increasing adoptions of sensors in the

physical world, analytics problems with practical relevance are growing in numbers. One of

the typical real-world challenges is to solve different classification problems, particularly that

deal with time series sensor data to build sensing intelligence as one of the most useful practical

implementations of artificial intelligent (AI) technique. We like to acknowledge the capability

of the remarkably improved deep learning algorithms powered by the computational strength

of high-powered computing infrastructure including different cloud platforms and Graphics

Processing Unit (GPU)-based servers and work-stations [1, 2]. The ubiquity of smartphones

and smart devices including smart bands, smart watches, smart gears, and the development of

advanced sensors are playing an important role to leverage the substantial improvement in the

sensing technologies to capture the physical and physiological information. High end GPU-

enabled computing, cloud infrastructure, public availability of useful data sources and the

emergence of powerful AI techniques like deep learning algorithms pose us the opportunity of

developing vast number of worthy applications [3–5]. Currently, we are witnessing the learn-

ing revolution paradigm, where providing examples or training instances are often sufficient

for a machine or computer to learn substantially such that it can be comparable to human-

level ability. Sensors capture the physical world information from its ambience and provide

the required inputs to the intelligent system such that it can sense the given physical space

and perform different decision-making processes. Sensors can be considered as the micro-

representation of our physical and physiological spaces.

The fundamental focus of this work is to find solutions of such practical yet diverse real

world problems. Time series data are omnipresent in large set of practical applications, espe-

cially where sensor data are used to build intelligent systems. Sensors like Electrocardiogram

(ECG), accelerometer, Infra-red spectroscopy, smart electric meter, etc. generate time series

outputs, which motivate us such to build reliable time series classification model. For example,

the important problems like cardio-vascular disease conditions like Atrial Fibrillation detec-

tion [6, 7] or Myocardial Infarction (commonly known as heart attack condition) detection

from ECG data are of immense practical importance [8]. However, real-world problems come

with different types of practical challenges. We particularly consider the time series sensor

data classification problem, where the task is to build multi-class classification models by train-

ing given time series sensor data. We observe that large set of real-world time series sensor

datasets ([8]) often suffer from the scarcity in labeled training examples for various reasons

like expensive process of experimental setup or limited availability of the experimental setup

(for e.g., “SonyAIBORobotSurface1” dataset [8] requires a robot to walk on different kinds of

surfaces like cement or carpet) as well as the expenses associate with annotation process

(“ECG200” dataset [8] requires cardiologists to annotate data whether the ECG recording is a

normal sinus rhythm or Myocardial Infarction condition). “SonyAIBORobotSurface1” dataset

contains mere 20 number of training examples, “ECG200” contains 100 number of training

examples. Traditionally, deep neural networks require large set of training datasets for reliable

and generalized learning. For example, CIFAR-10 dataset consists of 50,000 training images,

while classical ImageNet 2012 classification dataset consists 1.28 million training datasets [9,

10]. CIFAR-10 and CIFAR-100 are actually labeled subsets of 80 million image [11]. Such

abundance of training dataset availability is infeasible in case of practical time series sensor sig-

nal analysis problems. In fact, deep learning algorithms rely on the sufficiency of the training

examples with the assumption that the learned embeddings preserve latent structures and the

distribution of the given time series data [12].
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Typically the solution of training data limitation is tackled by augmented learning through

adversarial training [13–15], where the input training space is augmented through perturba-

tion. Adversarial examples, which in simple terms are the perturbed forms of the input train-

ing data, have potential benefit as a data augmentation method to solve the training data

scarcity issue [16, 17]. However, adversarial examples need finer control and it is shown that

adversarial training mostly positively helps when the training data is sufficient and hurts the

accuracy when training data is small in size [18].

On the other hand, we understand that suitable feature space has immense impact on the

model learning. If an apt feature set or in our context, appropriate inputs in terms of training

data are provided to a suitable deep learning model, the learned model can have better predic-

tion capability. In this paper, we consider Shapley value [19, 20] to estimate the importance of

each of the inputs of the model towards the prediction. Shapley values attempt to fairly com-

mensurate a player’s contribution in a coalition game. In fact, Shapley value estimation has

been applied in diverse disciplines [5, 21]. We incorporate Shapley Value attribution to discard

the unnecessary or negatively impacting input data. While augmented learning using adversar-

ial training provides a generic augmentation of the given time series data, the augmented-

learned model when gets trained with the suitable input subset using associated Shapley values

ensures better learnability. In ShapAAL, data augmentation and input ablation jointly provide

the impetus towards learning with better data. ShapAAL can be considered as a push-pull

architecture, where augmented learning pushes the model towards getting trained by learning

newer (adversarial) examples and Shapley value estimated subset selection pulls the model

towards a suitable lower dimension for better learnability and prediction. We introduce the

concept of Learn!Unlearn! Re-learn, where the model is initially learned through aug-

mented training; next, Shapley value attribution forces the model to unlearn few detrimental

features and subsequently, the model re-learns with the selected subset features using aug-

mented learning. With series of empirical study, we demonstrate the efficacy of our proposed

model ShapAAL: Shapley Attributed Augmented Learning and establish the performance

superiority over relevant state-of-the-art algorithms.

Related works

Sensor data-centric classification tasks are mostly likely to undergo the training data scarcity

issue owing to its universally acknowledge problem of high expenses and difficulties associated

with the generation, collection and the cost with labeling by human experts [22]. Classically,

the emphasis was to analyze the time series (given that the senor data is a time series) and to

build strong classifiers to solve time series classification tasks [8]. Nearest neighbor based clas-

sification with distance function as dynamic time warping distance (1NN-DTW) has been tra-

ditionally considered as the classical baseline algorithm for time series classification [23].

COTE or Collective of Transformation-based Ensembles is an ensemble learning algorithm

with collection of 35 classifiers [24]. Random Interval Spectral Ensemble (RISE) algorithm

builds decision trees with set of Fourier, auto-correlation and partial auto-correlation features

and perform ensembling operation [25]. Recently, Time Series Combination of Heterogeneous

and Integrated Embeddings Forest (TS-Chief), an tree-based ensemble learning classifier is

proposed [26]. In fact, Time Series Forest (TSF) is one of the pioneering works that combine

entropy gain with a distance measure to provide evaluation of the split in tree-based ensem-

bling learning [27]. Similarly, Proximity Forest, which is ensembles of highly randomized

proximity trees is another ensemble learning algorithm that has been developed for time series

classification tasks [28]. Recently, CAnonical Time-series CHaracteristics (Catch22), a feature-

engineered time series classifier is proposed that has shown promising results [29]. With deep
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learning models showing outstanding performances in computer vision tasks, time series clas-

sification also employs strong deep learning architecture like Residual Network (ResNet) [30].

In [31], authors have proposed convolution layer-based residual blocks to develop ResNet-

based model, which is considered as a strong baseline for time series classification tasks.

The state-of-the-art techniques as cited above are mostly concerned with the development

of a decent time series classification model without the consideration of training data scarcity.

It is observed in [22] that time series classification tasks need to emphasis on training data

scarcity issue in order to construct a practical analytics system. However, the research direc-

tion towards mitigating the learning impairment problem due to training instance insuffi-

ciency in time series classification under common machine learning or deep learning

framework seems to be an open practical challenge. The typical research attempts are focused

towards sophistication of the architecture and detailed extraction of time series representation.

Under the constraint of inadequate availability of training set, such attempts may not always

be the ideal choice and the diversity of time series applications limit the scalability of such

models. In this paper, we propose a novel method ShapAAL, that contains intrinsic capability

to demonstrate consistent accurate performance and improves upon the state-of-the art mod-

els through the learn, unlearn and re-learn principle of learning with positive impact towards

the predictive capability of the model.

In general, machine learning algorithms need to carefully select the supervised features to

build a robust model [32]. Optimization method plays an important role in various aspects

towards better learned model development under practical constraints [33–39]. For instance,

evolutionary processes with consistent equilibrium for high-quality performance and optimi-

zation that achieves quicker convergence is proposed in [35]. It is well-known that the search

for global optimization in deep learning algorithms often suffer through spurious local optimi-

zation issues. In [36], fusion-based meta-heuristic optimization methods are proposed to solve

global optimization tasks.

Materials and methods

Problem sketch

We focus on time series classification tasks for sensor signal analysis, where typically a time

series is represented as an ordered set of real values as: x = [x1, x2, x3, . . ., xT], x 2 RT
and x is

of length T and x1, x2, x3, . . ., xT are the scalar measurements at time intervals 1, 2, 3, . . ., T
from a given sensor. For example, an ECG signal x contains continuous time stamp measure-

ments, where the first time stamp measurement is denoted as x1, the second time stamp mea-

surement is denoted as x2 and so on.

Consider a set of N examples that constitute the training dataset XTrain ¼ ½xð1Þ; xð2Þ; . . . ; xðNÞ],
where each of x(n), n = 1, 2, &, N is a time series and each of which consists of T number of data

samples, i.e. each training instances can be considered as consisting of T number of time stamp

measurements from the given sensor. The complete training set consists of corresponding

labels: DTrain ¼ ½XTrain;YTrain� ¼ ½fxð1Þ; yð1Þg; fxð2Þ; yð2Þg; . . . ; fxðNÞ; yðNÞg� yðnÞ 2 ½1;C�, 8n are the

labels correspond to one of theC classes. We are particularly concerned to solve the supervised

learning tasks for time series classification problems such that a model is constructed from the

given input variables or training instances along with its associated labels or ground truths

such that model correctly attempts to predict the class that a sensor data belongs to. In super-

vised learning setting, we find a model or function hθ(.), parameterized by θ that describes the

random vector x associated with label or target y with joint distribution pdata(x, y). However,

we tacitly assume that ½fxð1Þ; yð1Þg; fxð2Þ; yð2Þg; . . . ; fxðNÞ; yðNÞg� i:i:d:
�

pdata, which means that the
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model learning is imposing independently and identically distribution (i.i.d.) condition, i.e. the

given training examples are drawn independently and identically from pdata.
In machine learning, the principal aim is to minimize an objective function that penalizes

the model hθ(.) when it makes mistake, which is denoted by loss function as L(hθ(x), y). We

consider the expected risk in Eq 1.

RðhÞ ¼ Eðx;yÞ�pdata ½LðhyðxÞ; yÞ� ð1Þ

However, we do not have complete idea of pdata(x, y), we simply know the training dataset

DTrain ¼ ðxðnÞ; yðnÞÞ. Hence, we focus on empirical risk minimization (ERM), which is defined

in Eq 2.

R̂empðhÞ ¼
1

N

XN

n¼1

Lðhyðx
ðnÞÞ; yðnÞÞÞ ð2Þ

Considering negative log-likelihood as the loss function under maximum likelihood esti-

mation (MLE) principle, which is a special case of ERM, we the MLE cost function as follows:

JðyÞ ¼ E
ðx;yÞ�p̂data

� log pyðyjxÞ

Thus, we need to minimize the cost function J(θ) to find the parameter θ from the empirical

distribution p̂data. The optimization problem is as follows:

y
�
¼ arg min

y

JðyÞ

The practical challenge in time series classification is that N and T are typically much

smaller than (or usually as expected by) the corresponding learning methods that solve clas-

sical computer vision problems [40]. For example, N can be as low as 50 and often less than

200 and T can be less than 300 for time series classification tasks and on the contrary, classi-

cal ImageNet 2012 classification dataset consists of 1.28 million training datasets [9, 10].

However, when N is small (which is profound in time series sensor signal classification

tasks), it is not practical to assume the closeness of p̂data and pdata and consequently, the

learned model tends to get over-fitted to the given training dataset DTrain. Hence, the estima-

tion from J(θ) is poor when the model is directly constructed from the available training

dataset DTrain.

Let Z 2 R be the learning rate and the gradient descent function updates the deep neural

network model parameter θ as follows: θ θ − ηrJ(θ). In training data insufficiency problem,

the estimation from J(θ) is incomplete, which in high probability leads the model parameter θ
gets directed towards incomplete or wrongly learned direction from usual gradient descent

method. Therefore, we can safely assume that learning degradation is a common problem and

approaches that minimize the learning degradation due to training data scarcity needs to be

developed in order to achieve better performance from time series classification tasks. Thus,

our objective is to find a “good” learned model for diverse set of time series classification tasks

(especially where the data is sourced from sensors) in order to minimize the adverse effect of

limited training data availability. In a nutshell, the above problem formulation is a generic one

that motivates us to build robust time series sensor data classification models, which often suf-

fer due to insufficiency in the training instances.

PLOS ONE ShapAAL: Shapley value attributed ablation with augmented learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0277975 November 23, 2022 5 / 28

https://doi.org/10.1371/journal.pone.0277975


Proposed methodology

We propose three stage approach of deep learning model construction, where the first stage

learns through augmented learning with additive perturbation of the input samples. Next, the

unlearning part identifies the subset of features or the training samples that do not have posi-

tive contribution to the model predictive capability through Shapley value computation for

each of the input samples. Finally, a new model is re-learned with the subset of samples or with

the identified important samples of the training set.

Model training for augmented learning. We consider Residual Network or ResNet [30]

architecture with controlled perturbation of input space that compensates the lack of training

data for time series classification tasks. We consider adversarial perturbation as the set of

invariants such that a robust model can be constructed under the practical constraints of train-

ing sample scarcity that attempts to minimize the worst-case classification error due to the

data perturbation by the adversary [15]. The adversary, in turn augments the training space as

an automated (machine generated) labeler, replacing the human labeler. Hence, we not only

gain in the enrichment of the training process, but also avoid the expensive process of collec-

tion and labeling of time series examples. The adversarial perturbation is to force the classifier

to learn hidden representations of unseen neighbor feature in order to estimate the true distri-

bution pdata. Let Jadv(θadv, x, y) be the cost (associated with the adversarial loss Ladv for training

the network (in our case, we primarily consider the neural network as ResNet [30]) to derive

the model parameter θadv. ResNet has shown tremendous success in different classification

tasks. It aims to tackle the learnability issue of deep neural networks by minimizing the explor-

ing and vanishing gradient problems through norm preservation of error gradient [41].

ResNet transforms the traditional representation learning to learn HðxÞ ¼ FðxÞ þ x at each

layer [30] as depicted in Fig 2, where one typical Residual Block (RB) is shown. The main

advantage of HðxÞ is to ensure that the information in x flows throughout the network [41]. In

ResNet, the original mapping is recast into FðxÞ þ x [30] and it is hypothesized that optimiza-

tion of the residual mapping becomes easier [30]. In fact, the identity or shortcut connection

does the desirable effect of norm preservation as error gradient [41] as shown in Fig 1. In Sha-

pAAL, we transform x! x + δ for perturbed identity and it learns through

Fig 1. A residual block (RB) in ResNet ([30]).

https://doi.org/10.1371/journal.pone.0277975.g001
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Hðxþ d Þ ¼ FðxÞ þ xþ d. Therefore, the transformation of x! x + δ into the identity con-

nection augments the learnability through perturbation-induced shortcut connection. The

identity connection becomes perturbation connection as shown in Fig 2.

We design the ShapAAL model with ResNet architecture using restrained learning princi-

ple [42]. It consists of variable number of residual blocks (RB) between 10 and 2 and the resid-

ual block depth (i.e. the number of total RBs in the model) depends on the training data. We

estimate the network depth (measured in term of number of RBs) using restrained learning

principle that analyzes the training dataset distribution to adjust the network depth. We depict

the typical RB of ShapAAL in Fig 3.

We convert the 1D data to 2D through reshape operation such that the features of 2D con-

volutions can be utilized. The batch size is variable, depending upon the number of training

instances. The batch size is calculated as: min ceil number of training instances
10

� �
; 16

� �
. When the

training examples are small in number (�10), batch size of 2 is considered. We consider

fixed learning rate 10−3, which is default in Keras. We z-normalized the training data as:
XTrain � meanðXTrainÞ

standard deviation ðXTrainÞ
as well as the test data as:

Xtest � meanðXTrainÞ

standard deviation ðXTrainÞ
. We first calculate x + δ and

after that z-normalization is performed. Please note that the statistical estimation of z-nor-

malization operation for test data is made from the provided train data as the statistics of test

data is unknown. After the final residual block, Global Average Pooling is used. We use soft-

max function in the output layer for the classification task and cross-entropy as the loss func-

tion. The input data for identity connection is x + δ. Depending upon the estimation of

residual block depth from restrained learning algorithm [42], the number of RBs are con-

structed. Let, the number of RBs be χ, where 10� χ� 2. For different XTrain, the value of χ
might be different owing to the differences of the underlying training distribution and

accordingly, the model with χ number of RBs is constructed. We illustrate ShapAAL architec-

ture in Fig 4.

The expected risk of ShapAAL under augmented learning is defined in Eq 3.

RaugðhÞ ¼ Eðx;yÞ�p̂data ½max
d2D

Lðhyðx þ dÞ; yÞ� ð3Þ

where Δ represents the set of adversarial perturbations in δ to induce mis-classification. The

input is perturbed with noise δ such that the network gets the opportunity to learn training

Fig 2. A residual block (RB) in ShapAAL with perturbed input.

https://doi.org/10.1371/journal.pone.0277975.g002
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Fig 3. Single residual block in ShapAAL architecture.

https://doi.org/10.1371/journal.pone.0277975.g003
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examples outside the given training set while the unperturbed shortcut connection makes the

gradient to avoid being trapped into the spurious local optimum [43]. Hence, we hypothesize

that the network learns well with the identity propagation of a ResNet model through shortcut

connection that guides the algorithm to move easily towards global optimum [43] and the per-

turbed input space forces the model to learn unseen examples through augmented learning

Fig 4. ShapAAL architecture.

https://doi.org/10.1371/journal.pone.0277975.g004
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gain. The perturbation needs to be controlled and introduction of controlled additive pertur-

bation compels the learning to be more generic and it learns examples beyond the given train-

ing data. We perturb the input data by adding small amount of Gaussian noise δ and the

parameters (mean and standard deviation) of the Gaussian noise δ are derived from XTrain, i.e.

δ is sampled from N ðm; s2Þ, where, μ being the mean of XTrain and σ2 being the variance of

XTrain. In order to maintain a reasonably high signal-to-noise ratio between the perturbed data

and original data, a scaling factor α is introduced and δ is sampled from a�N ðm; s2Þ. In fact,

we change the view of a training set to a learner system such that the leaner’s robustness is

examined and eventually we expect a stronger model with higher generalization gain and

lower over-fitting error. We have considered α = 0.020 throughout the experimental process.

The controlled additive perturbation enforces the ResNet model to learn the less confident

solutions to lower the generalization loss. Hence, the learnability of the model improves

when it faces newer types of challenges (as expected in the field when unseen test data are

encountered).

We attempt to generate the augmented learning model to minimize the generalization loss

by introducing perturbation into the learning space. Further, we incorporate restrained learn-

ing for adjusting the depth of the network (more precisely, the number of residual blocks),

which is training data distribution-aware [42]. For a given training data DTrain ¼ ½XTrain;YTrain�,

we estimate the network depth through restrained learning approach of elastic depth estima-

tion [42]. Elastic depth minimizes the negative impact of data perturbation. When the per-

turbed training data results in redundancy, the network depth shrinks and vice-versa. The

restrained learning which dynamically configures the network depth acts as a regularizer to

restrict the learning when the data redundancy due perturbation process is high. Let us denote

the adversarially trained augmented model with adversarial risk Raug(h) minimization as Maug.

Subset selection from input samples for model re-learning. Augmented training has the

advantage of better learning due to perturbation in the learning process, but such learning

may not always do the good for model predictability. Using adversarial training for data aug-

mentation requires to know the worst-case δ that augments the training data “most beneficial”

way with “highest confusion creation” to the training data [44]. However, such search is com-

putationally (extremely) expensive. We propose that an apt process of important feature selec-

tion or sampling the input data ensures the required better learning for the model. Hence, we

identify DTrainsub ¼ ½XTrainsub;YTrainsub� which is a subset of DTrain, i.e. DTrainsub � DTrain such that

the samples with positive impact on the model predictability are chosen.

Our objective is to estimate the importance of a feature or training sample xðnÞ � XTrain such

that the worth of x(n) is significant to consider it as an important and positively contributing

sample. We use Shapley value [19, 20], a fundamental concept in transferable utility coopera-

tive game theory [45] to quantify the attribution of x(n) in the prediction capability of the con-

structed model. Let N be a finite set of training samples (in cooperative game theory context,

we call the training samples as players) or player [46, 47].

1. (Definition I) (Transferable utility game). We define a game that maps v:2N ! R such that

v(;) = 0. We interpret v(ψ) where ψ in 2N, as the estimated value of coalition ψ. The value

function v(ψ) intends to identify the collective payoff a player’s or a set of players’ gain when

they cooperate and the model M is trained with nth sample on all possible subset ψ� 2N.

2. (Definition II) (Marginal contribution). We define the marginal contribution Δv(n, ψ) of

player n with respect to the coalition ψ as: Δv(n, ψ) = v(ψ[n) − v(ψ).

With Λ being denoted as the integer permutations up to N and λ 2 Λ and we represent the

predecessor set of players preceding nth player in λ as: ψn,λ = {m: λ(m)<λ(n)}. With this

PLOS ONE ShapAAL: Shapley value attributed ablation with augmented learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0277975 November 23, 2022 10 / 28

https://doi.org/10.1371/journal.pone.0277975


definition, Shapley value φn of nth player is formulated as the weighted average of the marginal

contribution of it to all other possible subset of players in the game. Accordingly, Shapley

value φv(n) of nth player with the function v is:

�vðnÞ ¼
1

N !

X

l2L
Dvðn;cn;lÞ:

From the permutation logic, we can compute the Shapley value φv(n) of nth training sample

as:

�vðnÞ ¼
1

N !

X

c�f1;2;3::;Ng
jcj!ðN � jcj � 1Þ!Dvðn;cÞ:

The above equation needs to be solved to get the estimation of Shapley value for each of the

training examples in N, but that process is computationally expensive. In this paper, we con-

sider the high-speed approximation of φv(n) using DeepLIFT algorithm [48] with DeepExplai-

ner implementation (https://github.com/slundberg/shap).

From the computed Shapley values φv(n), 8n 2 N for each of the training samples in

DTrain ¼ ½XTrain;YTrain�, we discard the negative valued ones, i.e. the training samples which

contain negative magnitude in their Shapley value are removed and new training set with

Neffective� N number of training examples are formed and the expected risk of ShapAAL is

depicted in Eq 4.

RShapAALðhÞ ¼ Eðx;yÞ�p̂data ½max
d2D

Lðhyðxs þ dÞ; ysÞ� ð4Þ

where, {xs, ys} belong to the Shapley value attributed dataset. A set of axioms namely “effi-

ciency” and “null player” are the prime motivations to claim that the context of Shapley value

for finding out the right subset [46, 47].

1. (Axiom I) (Fairness). The worth of a complete model v(N) in a transferable utility game is a

lossless distribution among the given features: ∑n2N φ(n) = v(N).

2. (Axiom II) (Null player). If a feature n contributes nothing in a transferable utility game v,

its Shapley value is zero. [(8ψ)v(n [ {n}) = v({n})]) ϕ(n) = 0.

Axiom I and Axiom II help us to develop the subset selection algorithm. Let us denote

the newly formed training set with Neffective number of training samples as

DTrain effective � DTrain. The unlearning part gets completed with newly formed training set

DTrain effective. The model previously learned with DTrain with adversarial risk Raug(h) (Eq 3)

minimization as Maug, subsequently, re-learns DTrain effective by minimizing textitRShapAAL(h)

(Eq 4) to construct ShapAAL model MShapAAL
aug through unlearning the negatively impacting

dataset. When training dataset is large, the negative contribution of few data may not have

some impact, but in case of smaller number of training datasets, the negatively contributing

ones can have higher impact on the learning of the model. Classically, the model learning

flow is: training data!model training! classification by the trained model. With data

augmentation training the flow is: training data! augmentation! augmented model

training! classification by the augmented trained model. With Shapley value-vbased fea-

ture attribution the training flow is: Training data! Subset selection from the knowledge of

Shapley values of each of the input data! Shapley-attributed model training! Classifica-

tion by the Shapley-attributed model. We propose the model training algorithm ShapAAL

that takes advantage of augmented training for training space augmentation as well as subset

selection through Shapley value-attribution as defined in Eq 4. The proposed model training
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flow is: training data! augmentation! augmented model training! Subset selection

from the augmented set wit the knowledge of Shapley values! Shapley-attributed aug-

mented model training! classification by the Shapley-attributed augmented model. We

depict the ShapAAL Algorithm 1 below.

1. Construct the model Maug with adversarial risk of augmented learning Raug(h) from Eq 3

through risk minimization from the given training dataset DTrain ¼ ½XTrain;YTrain�, with N
number of training examples according to the ShapAAL architecture in Figs 2–4, where

input is perturbed with noise δ to provide the network with the capability to learn outside

the given training example set.

Learning part

2. With the model Maug as reference, for each of the training instances n 2 N, φ(n) Shapley

values are computed from DeepLIFT algorithm [48].

3. We find those n where φ(n)�0, (Axiom II) which create the set of N0 number of examples,

N0 � N.

4. Discard those N0 number of training samples and rest Neffective training samples create new

training dataset DTrain effective, where, Neffective = N-N0.
Unlearning part

5. ShapAAL model MShapAAL
aug is generated by training with DTrain effective containing {xs, ys}

according to the ShapAAL architecture in Figs 2–4, where Shapley attributed inputs xs are

additively perturbed with noise δ to construct ShapAAL model MShapAAL
aug by minimizing

RShapAAL(h) from Eq 4.

Re-learning part

In summary, we define a transferable utility game for the selecting useful training data,

which are made inputs to the learning algorithm. The attribution of each of the inputs into the

model predictability is estimated through Shapley value computation. The non-contributing

inputs defined according to Axiom II are discarded as the not worthy inputs and the remain-

ing inputs are used for re-learning the model. The subset finding operation is performed over

the perturbed set with the assumption that the perturbed input space provides augmentation

when the training data is insufficient.

Results

We conduct series of empirical studies to investigate the performance efficacy of ShapAAL in

time series sensor data classification tasks particularly when the training data sample size is

small.

Data description

Currently, UCR [8] is one of the most recognized time series classification benchmark archives

[49]. We find number of time series sensor datasets along with three important ECG datasets

which fulfill our criteria of being limited in number of training instances (�200). The datasets

are sourced from sensing devices. These datasets are diverse in different characteristics like

sensor types, number of training examples, length of the data etc. as depicted in Table 1. Each

of the time series datasets in UCR has fixed and exclusive training and testing splits. The test

data is completely hidden. In this work, we have generated the learning model using the train-

ing datasets and the trained model is tested on the provided testing datasets and the ‘test
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accuracy’ (as per the convention in the UCR time series archive benchmark [8, 49]) is consid-

ered as the classification inference performance measure.

Development environment

ShapAAL is implemented in Keras 2.1.2 on Python 3.5.4 on Tensorflow 1.4.0 library. The

hardware environment for training the model consists of 64-bit x86 architecture 16 cores Intel

Xeon CPU E5–2623 v4 with 2.60GHz clock speed with two Nvidia GeForce GTX 1080 GPUs,

which are powered by Pascal architecture and each of the GPUs has 10 GB memory. We have

used DeepExplainer implementation of DeepLIFT algorithm [48]. In DeepExplainer (https://

github.com/slundberg/shap), a distribution of background samples is used instead of a single

reference point in DeepLIFT. In order to minimize the impact of non-reproducibility (https://

glaringlee.github.io/notes/randomness.html) with run-to-run variability due to nondetermin-

ism in neural networks [50, 51], we have considered at least 50 different random seeds for each

of the experimental datasets and the reported empirical results are the highest occurring

(mode) of the obtained test accuracies.

Empirical investigation

We perform number of empirical investigations including ablation study, comparative study

with relevant baselines and state-of-the-art algorithms to illustrate the practical utility of Sha-

pAAL when performing diverse set of real-world sensor time series classification tasks includ-

ing that of critical prediction task of Myocardial Infarction condition detection from ECG

sensor. We show in Figs 5–9 that the Shapley value responses of the training instances in dif-

ferent datasets. It is clearly observed that few of the training instances are in fact negatively

impacting towards the model prediction and it is evident in practice that each training samples

are not essentially contributing positively towards model’s prediction.

Subsequently, in Fig 10, we depict the distribution of subset selection from Shapley attribu-

tion in ShapAAL, where in some cases, more than 30% of training samples are rendered unim-

portant and subsequently discarded in the process of learning.

Next, we conduct ablation study to understand the efficacy of the proposed model. An abla-

tion study in general, investigates the performance of a machine learning system by removing

few components in order to evaluate the impact of those components in the complete system.

Similarly, ShapAAL model construction consists of four components that include the base

Table 1. Experimental dataset description.

Dataset Training size Data length Sensor type Application type

ChinaTown 20 24 IR Sensor Pedestrian counting

Coffee 28 286 Food Spectrometer Detection of two different coffee types for food safety and quality assurance

ECG200 100 96 Electrocardiogram (ECG) Myocardial infarction detection

ECGFiveDays 23 136 Electrocardiogram (ECG) Change detection

FreezerRegularTrain 150 301 Smart energy meter Engery Efficiency in domestic appliances

FreezerSmallTrain 28 301 Smart energy meter Engery Efficiency of freezers

ItalyPowerDemand 67 24 Smart energy meter Power demand identification

MoteStrain 20 84 Humidity sensor Weather feature

PowerCons 180 144 Smart energy meter Household energy consumption pattern identification

SonyAIBO1 20 70 Accelerometer Surface type identification

SonyAIBO2 27 65 Accelerometer Surface type identification

TwoLeadECG 23 82 Electrocardiogram (ECG) Change detection

https://doi.org/10.1371/journal.pone.0277975.t001
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model (ResNet), Shapley value attribution over the base model, data augmented training on

the base model and data augmented training with Shapley attributed feature selection on the

base model. We denote M as the base model that is trained with each of the training data,

MShapley as the model that is trained with the training data after discarding the negatively con-

tributing Shapley valued features, Maug is the model that is adversarially trained over over

entire augmented training data. MShapAAL or MShapley
aug is the adversarially trained with the aug-

mented training data with discarding the negatively contributing Shapley valued ones follow-

ing the deep architecture in Fig 4 as depicted in Figs 11–14. In Table 2, we depict the “test

accuracy” performances of M, Maug, MShapley and MShapAAL
aug over the experimental datasets. The

ablation study unambiguously indicates that our proposed model MShapAAL is the superior

one. In fact, the trend is also clear that both augmented training and Shapley attributed re-

learning have significant positive impact on the learnability of the model, which reflects in the

consistent superlative performance of MShapAAL w.r.t the others. Conceptually, the ShapAAL

model is evolved from the base model M, which learns from RðhÞ ¼ E
ðx;yÞ�pdata

½LðhyðxÞ; yÞ�.

Fig 6. Estimation of input attribution for “FreezerSmallTrain” dataset.

https://doi.org/10.1371/journal.pone.0277975.g006

Fig 5. Estimation of input attribution for “ECGFivedays” dataset.

https://doi.org/10.1371/journal.pone.0277975.g005
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Maug model, derived from M directly helps the base model M to get trained over unseen train-

ing examples due to additive perturbation with benefit of addressing training data scarcity

problem by learning from RaugðhÞ ¼ E
ðx;yÞ�p̂data

½max
d2D

Lðhyðx þ dÞ; yÞ�. On the other hand, model

MShapley gets trained over a subset of the seen training examples according to Shapley-value

attribution that discards the non-important input features. Our proposed model considers the

strengths of both Maug and MShapley to construct an unique deep learning algorithm that ren-

ders data augmentation as well as input feature reduction (i.e. getting advantages from adver-

sarial training and apt feature selection) to allow the ResNet base model M to appropriately

learn over augmented yet selected input set. Hence, we establish with the empirical support

that less number of input features (Refer Fig 10) when properly selected can provide better test

accuracy. Under training data size constraint scenario, the push-pull architecture of ShapAAL

as a coalition game with Shapley attributed push towards lower dimension and concurrently

pulling or augmenting the learning capability of the model over unseen data indeed demon-

strates significantly improved performance.

Fig 8. Estimation of input attribution for “MoteStrain” dataset.

https://doi.org/10.1371/journal.pone.0277975.g008

Fig 7. Estimation of input attribution for “ItalyPowerDemand” dataset.

https://doi.org/10.1371/journal.pone.0277975.g007
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Given that generic time series classification is well-studied [8], we do an exhaustive compar-

ative study with the baseline algorithms like 1NN-DTW-based model [23] as well as state-of-

the-art methods including RISE [25], COTE [24], TS-Chief [26], Time Series Forest (TSF)

[27], Proximity Forest (PF) [28], Catch22 [29], and time series ResNet [31]. In Table 3, the

comparative study of test accuracies of relevant state-of-the-art algorithms are shown and we

observe that ShapAAL consistently outperforms the state-of-the-art algorithms.

Another classical performance merit is the “outperforming” the benchmark. In recent

years, number of time series classification algorithms have been proposed in literature, which

might not have been updated in the UCR archive repository. However, we can consider the

available benchmark or the best results in the UCR repository of the respective datasets as the

Fig 9. Estimation of input attribution for “SonyAIBOSurface1” dataset.

https://doi.org/10.1371/journal.pone.0277975.g009

Fig 10. Selection of subset by ShapAAL algorithm for different datasets.

https://doi.org/10.1371/journal.pone.0277975.g010
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“reported benchmark”. In Fig 15, we depict the differential test accuracy gain of the algorithms

(which has reported results available in public domain) including ShapAAL model w.r.t the

reported best results and it is computed as
test accuracy of the algorithm � reported benchmark test accuracy

reported benchmark test accuracy with the

aim of being the test accuracy result to be positive, indicating that the concerned algorithm has

Fig 11. Constructing the base model M.

https://doi.org/10.1371/journal.pone.0277975.g011

Fig 14. Constructing the proposed model MShapAAL.

https://doi.org/10.1371/journal.pone.0277975.g014

Fig 12. Constructing the Shapley-value ablated model MShapley.

https://doi.org/10.1371/journal.pone.0277975.g012

Fig 13. Constructing the augmented learning model Maug.

https://doi.org/10.1371/journal.pone.0277975.g013
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outperformed the currently reported benchmark result. We observe that proposed ShapAAL

steadily outperforms the reported benchmark results in comparison with the relevant bench-

mark algorithms.

Mean Per-Class Error (MPCE) ([31])is another useful metric to evaluate the classification

performance of the model as: the expected error rate for a single class across each of the test

data. For Y number of test data with class cυ and corresponding error rate errυ, we compute

MPCE as: 1

U

P erru
cu

.

MPCE seems to a robust as an evaluator of model performance for different datasets of the

classes [31]). Below in Table 4, we demonstrate the MPCE results for the ablation study. In

MPCE, our aim is to have a lower value, approaching zero.

Another unique feature of the current work is its response to higher number of test

instances when it gets trained with smaller number of training examples. We can quantify the

learning gain of ShapAAL at the time of testing as:
test accurcayShapAAL � test accurcayBase

test accurcayBase
and also define

training insufficiency factor as:
Number of training examples
Number of testing instances . In Fig 16, we demonstrate the comparative

Table 2. Ablation study through test accuracies of ShapAAL model (MShapAAL) with M, MShapley, Maug.

Algorithm M MShapley Maug MShapAAL

ChinaTown 0.890 0.901 0.9211 0.9722

Coffee 0.976 1.00 0.998 1.00

ECG200 0.83 0.86 0.87 0.92

ECGFiveDays 0.989 1.00 1.00 1.00

FreezerRegularTrain 0.9865 0.9901 0.9933 0.9984

FreezerSmallTrain 0.8640 0.8640 0.8613 0.9309

ItalyPowerDemand 0.8910 0.8901 0.9356 0.9704

MoteStrain 0.8101 0.8233 0.9087 0.9084

PowerCons 0.8576 0.8571 0.9083 0.9633

SonyAIBO1 0.8121 0.8439 0.8907 0.9682

SonyAIBO2 0.9355 0.9451 0.9406 0.9461

TwoLeadECG 0.8860 0.9006 0.9304 0.9994

https://doi.org/10.1371/journal.pone.0277975.t002

Table 3. Comparative study of test accuracies of ShapAAL model with baseline and state-of-the-art algorithms INN-DTW ([23]), COTE ([24]), TS-Chief ([26]),

ResNet ([31]), PF ([28]), RISE ([25]), TSF ([27]), Catch22 ([29]).

Algorithm INN-DTW([23]) COTE([24]) TS-Chief ([26]) ResNet([31]) PF([28]) RISE([25]) TSF([27]) Catch22([29]) ShapAAL

ChinaTown ? ? 0.9618 0.9701 0.94801 0.8885 0.9529 0.9344 0.9722

Coffee 0.821 1.00 0.9904 0.9964 0.9916 0.9845 0.9869 0.9797 1.00

ECG200 0.88 0.88 0.855 0.8836 0.873 0.851 0.86 0.7886 .92

ECGFiveDays 0.7967 1.00 0.9988 0.9510 0.8828 0.97286 0.9519 0.8158 1.00

FreezerRegularTrain ? ? 0.9984 0.9967 0.9423 0.9522 0.9970 0.9981 0.9984

FreezerSmallTrain ? ? 0.9954 0.9494 0.8233 0.8787 0.9614 0.9597 0.9309

ItalyPowerDemand 0.9553 0.9611 0.9624 0.9571 0.9560 0.9445 0.9594 0.8774 0.9704

MoteStrain 0.8658 0.9369 0.9301 0.9031 0.9149 0.8780 0.8554 0.8484 0.9084

PowerCons ? ? 0.9794 0.8861 0.9874 0.9579 0.9931 0.8862 0.9633

SonyAIBO1 0.6955 0.8453 0.8897 0.9603 0.9201 0.8669 0.8637 0.8833 0.9682

SonyAIBO2 0.8594 0.9517 0.9010 0.9688 0.8990 0.9124 0.8743 0.9023 0.9461

TwoLeadECG 0.86 0.993 0.9900 0.9994 0.9817 0.9107 0.8706 0.8539 0.9994

? marked results are not available.

https://doi.org/10.1371/journal.pone.0277975.t003
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study of learning gain of ShapAAL on testing data over base model and the insufficiency in the

training. We observe that the learning gain of ShapAAL is mostly�1, while training insuffi-

ciency factor�1. Hence, we further establish our claim that ShapAAL model is the apt choice

under practical constraint of training data limitation in solving the time series classification

tasks.

The significance of ShapAAL as a time series sensor data classification model is well-estab-

lished both from ablation study (Table 2) and comparative study with current state-of-the-art

algorithms (Table 3, Fig 15). ShapAAL not only improves upon through joint augmented

training and Shapley value based feature attribution, but also it creates new benchmark in time

series sensor signal classification tasks. With the support of the above empirical study, we

Fig 15. Differential test accuracy gain of different algorithms and proposed ShapAAL from the current reported

(best) benchmark results.

https://doi.org/10.1371/journal.pone.0277975.g015

Table 4. Ablation study through MPCE of ShapAAL model (MShapAAL) with M, MShapley, Maug.

Algorithm M MShapley Maug MShapAAL

ChinaTown 0.1115 0.1002 0.0751 0.0281

Coffee 0.0409 0.0 0.011 0.0

ECG200 0.1785 0.1454 0.1417 0.0846

ECGFiveDays 0.0174 0.00 0.0 0.00

FreezerRegularTrain 0.0119 0.0085 0.0079 0.0021

FreezerSmallTrain 0.1587 0.1587 0.1532 0.0879

ItalyPowerDemand 0.1089 0.1082 0.0649 0.0305

MoteStrain 0.1981 0.1772 0.1045 0.1049

PowerCons 0.1459 0.1457 0.1006 0.0457

SonyAIBO1 0.1870 0.1640 0.0995 0.0401

SonyAIBO2 0.0615 0.0604 0.0588 0.0583

TwoLeadECG 0.1239 0.0902 0.0689 0.0012

https://doi.org/10.1371/journal.pone.0277975.t004
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claim that ShapAAL is the apt choice for time series classification tasks under the practical

constraint of training data insufficiency. The proposed model attempts to maximize the worst-

case classification accuracy owing to the presence of data perturbation, which in philosophy,

expands the training space to act as machine generated annotator that creates the possibility of

human annotator replacement. Hence, another substantial gain we incur other than better

learnability with enriched training process is the avoidance of expensive data labeling

processes.

Discussion

It is well-established in literature with empirical evidences in support of neural scaling law,

which hypothesizes that the test error generally decreases as a power law with the number of

training data, i.e. more training data is often beneficial for the learnability of a deep learning

model and motivated by this neural scaling law, significant investments have been made in

data collection [52]. In this work, we have presented our novel ShapAAL algorithm that can

potentially overcome the limitation of practical scenarios of insufficiency of training data

while performing time series classification tasks including practically important application of

cardio-vascular disease detection from ECG recordings. ShapAAL augments the learning

method such that unseen training examples are made part of the model learning process along

with selection of important training instances through Shapley value computation such that

only positively impacting data are included while constructing the computational model. The

conventional Shapley value-based feature subset identification relies upon choosing k highest

ranking ones [46]. However, aprior knowledge of k is practically infeasible. For instance, the

“best” result may be k = 90% or may be k = 100% or k = 60%. Hence, the classical approach is

not the appropriate choice. Our proposed algorithm is intuitively appealing and principled

upon the “Efficiency” and “Null player” Shapley value axioms [46, 47], which is theoretically

sound, tractable and practically feasible and supported with empirical investigation as depicted

Fig 16. Empirical support of consistency in learning gain over test data of ShapAAL (MShapley) over base model

(M) under typical practical constraint of training insufficiency factor�1.

https://doi.org/10.1371/journal.pone.0277975.g016
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in Tables 2 and 3. Firstly, we have proposed and validated the unique idea augmentation and

ablation of the input features to generate a better learned model. Controlled augmentation of

the seen examples to learn better on the unseen examples through introduction of perturbed

or virtual data points helps the model to combat the insufficiency in training examples and

Shapley-attributed input feature selection refines the input space such that the model gets the

opportunity of training more (through augmentation) yet better (Shapley-value based feature

ablation). While the augmentation and feature attribution separately improve the test accuracy

of the model over different tasks, the combined effect is significant, and it is evident from

Tables 2 and 4. The study in Tables 2 and 4 clearly indicates that data augmentation through

adversarial learning and subsequent feature space identification for re-learning with appropri-

ate features provide significant impetus to the learning process to learn that compensates the

limitation in seen examples and learn appropriately. Secondly, we have provided state-of-the-

art comparison of the proposed method and the ShapAAL model with both data augmentation

and input attribution features has demonstrated consistently outstanding classification perfor-

mances over different time series classification tasks, conveniently outperforming the current

benchmark and state-of-the-art algorithms as depicted in Tables 3 and 4 and Fig 15.

From a purely pragmatic standpoint, ShapAAL has demonstrated capability of accurately

performing diverse set of time series sensor signal classification tasks including identification

of time-critical conditions like Myocardial Infarction or heart attack using ECG signal and

consistently outperform the state-of-the-art algorithms. Smartphone-based ECG applications

are indeed one of the important practical utility of IoT and AI technology [4]. It is known that

cardio-vascular diseases are leading cause of human deaths globally [53]. We envisage that the

automated ECG analysis is capable of ensuring on-demand, remote monitoring of heart health

and can issue accurate alerts when the disease condition is detected with notifying the user and

other stakeholders to take relevant clinical actions.

Internet has reached remotest corner of the globe, medical facility is not. We can enable

early warning and on-demand automated cardiac care provisioning by leveraging wide-scale

deployment of Internet of Things applications acts for developing wireless health monitoring

using smartphone and smart ECG sensors like MAX3003 (https://www.maximintegrated.

com/en/products/analog/data-converters/analog-front-end-ics/MAX30003.html). It is well-

known that early detection and timely intervention can lead to significant life-saving outcomes

with substantial reduction of clinical burden. For instance, Myocardial Infarction is to be diag-

nosed and treated in an urgent manner and an appropriate treatment within first hour can

lead to considerable avoidance of deaths and reversal of heart condition. Automated digital

screening of cardio-vascular diseases through Internet infrastructure can potentially lead to

early detection and in-time screening even at home or at a remote place without real-time

access to doctors or cardiologists. Remote screening and monitoring are especially imperative

for cardio-vascular disease management. We understand that ShapAAL performs significantly

better than the state-of-the-art in cardio-vascular disease detection using ECG signals (for e.g.,

“ECG200”, “ECGFiveDays”, “TwoLeadECG” datasets results in Table 3). ShapAAL outper-

forms the current benchmark in Myocardial Infarction detection with test accuracy of 0.92.

ShapAAL as part of the analytic engine for automated detection of Myocardial Infraction con-

dition. The primary objective is to build an early warning and on-demand automated cardiac

care provisioning that does not get hindered by the immediate absence of a specialist or the

user being in a remote place. As a generic setup, the components of the eco-system can be

modularized as applications for user end, medical caregiver end and analytics engine end

(where the ECG classification model is hosted. In presence of powerful local machine, smart-

phone, ECG analysis can be done at edge or locally). Users or the patients install the user end

application in his/her smartphone (or it can be installed in a laptop) to proactively interact for
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receiving the cardiac care from the smart healthcare systems with digital therapeutics as part of

a typical m-health eco-system. The analytics engine does the job of ECG data interpretation to

predict the cardio-vascular disease class. For instance, analytics engine predicts whether the

user suffers from Myocardial Infarction condition and sends alerts to the medical caregivers

for urgent clinical attention and intervention. The model is trained off-line, and the trained

model is deployed on the cloud or at the local workstation as a clinical analytics engine. The

on-field ECG data is given as input to the trained model MShapAAL and the output as one of the

disease classes (considering binary or multi-class classification) is considered as the screening

outcome. We illustrate the system, which can be potentially developed as an early warning

platform for basic CVD screening in Fig 17. Further, we like to mention that clinical screening

scenario of the conventional CVD screening and diagnosis need to be changed from a reactive

mode to proactive mode. In current conventional setup, users will react when the symptoms

flareup. In the most likely scenario, the milder symptoms will be ignored when the clinical

facility is far-off. Even the routine check-up, which is necessary for CVD patients may be

skipped by the remote patients. Another serious consideration is the missing response of sub-

clinical or non-symptomatic condition of CVDs, where the patient might suddenly develop

life-threatening conditions. With the proposed automated CVD screening method that can be

conveniently performed at home, we expect that the CVD screening will be proactive with

Fig 17. Early warning, emergency, and on-demand cardiac care provision through automated clinical analytics

engine with ShapAAL.

https://doi.org/10.1371/journal.pone.0277975.g017
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early warning of sub-clinical or non-symptomatic CVDs. We are hopeful that the paradigm

shift towards automated basic cardio-vascular disease screening can enable us to achieve the

goal of 25% relative reduction in premature mortality due to cardio vascular diseases before

2025 [54].

We like to mention that the ECG-based automated cardio-vascular disease detection as

early warning system is illustrated as an example use case scenario. The proposed method is a

generic one and would be an ideal choice for different analytics tasks involving the require-

ment of time series sensor data classification. Another interesting practical application is in

food safety and quality assurance (“Coffee” dataset) to identify the type of coffee beans through

food spectrographs.

Conclusion

Our aim of this study is to develop solution for solving the important practical problem of train-

ing data scarcity in time series sensor data classification tasks when deploying diverse type of

real-world applications including smart cardio-vascular disease detection using ECG data to

build effective early-warning, on-demand heart health monitoring eco-system. Our proposed

augmented learning with input subset selection approach through Shapley value-based attribu-

tion has demonstrated significantly accurate performance over diverse time series sensor data

analysis tasks. We have proposed a novel learning mechanism that learns with augmented train-

ing to compensate the inadequacy of the training data; unlearns the non-important samples by

identifying their contributions to the model predictability through Shapley value computation

from coalition game setup with transferable utility; and re-learns with those subset samples.

Our novel three-stage time series classification model with learning through augmentation,

unlearning the non-contributing input features with Shapley value attribution and finally,

relearning through augmentation of selected input features has demonstrated classification effi-

cacy not only through ablation study but also through comparative state-of-the-art investiga-

tion. In fact, the intentional introduction of perturbations in the training process of the deep

neural network (ResNet) model compels it to learn generalization with crafted and controlled

perturbations to create important, unseen input space. The main objective for constructing the

learned model when training data is less is to find a way towards minimize the generalization

loss over unseen or test or on-filed data. The unique feature of ShapAAL algorithm is the aug-

mentation for learning the unseen data as well as removing the negatively-contributing seen

examples in the learning process, which in tandem constitutes superior and effective input

space to learn better under training data scarcity problem. Given that Shapley values provide

quantitative understanding of fairly attributing the contribution of the input features, the

unlearning of detrimental input features has theoretical benefits and we have demonstrated that

ablation of such input features has positive impact towards the learnability of the model.

We sincerely hope that the proposed model has the capability to demonstrate practical sig-

nificance in the development cycle of real-world sensor data classification-based applications

including automated prediction of cardio-vascular diseases from physiological marker of heart

health like Electrocardiogram to build remote, on-demand smart cardio-vascular health moni-

toring and early warning system. The proposed method is a generic one for solving time series

classification tasks. We envisage that automated analysis with algorithmic screening for car-

dio-vascular disease identification purpose has the right potential to step towards the long-

cherished quest for the availability of a cardio-vascular health management system to intervene

for the initial disease screening without expert-in loop.

Our future scope of study includes more exploration towards game theoretic understanding

in the construction of a deep learning model with an intuitive rationality perspective of
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model’s dilemma for prediction over unseen data. The general step for Shapley value computa-

tion is using sampling method to estimate the expectation over a distribution of marginals and

interpretable machine learning fits to such type of quantified notion of an input feature’s con-

tribution. We intend to explore the model interpretability and algorithmic transparency as a

future research initiative with model-agnostic interpretability indicating marginal contribu-

tions for individual input features. Another interesting idea is to investigate virtual adversarial

regularization such that we can consider the perspective of model robustness. While a sophisti-

cated model provides outstanding performance on given dataset, the model may be over-sensi-

tive towards a little adversarial attack. Data augmentation is in fact capable of improving the

stability of the model where the model does not have a high confidence at the prediction, but

those augmented examples are close to the given seen examples. From practical utility perspec-

tive, we shall further focus on introducing prescriptive analytics such that the initial treatment

directive can be urgently delivered as a basic critical care, which can be lifesaving as well as

provides the emergency caregivers the information to immediately start the basic yet

immensely important initial basic clinical procedures. For example, after heart attack, each

passing minutes cause more heart tissues to get damaged. When the analytics engine detects

heart attack, immediate commencement of medications like aspirins, thrombolytics before a

cardiologist’s intervention is of immense clinical importance. We intend to bring out a robust

remote cardio-vascular management system with automation in the basic screening methods

that utilizes the Internet backbone to enable healthcare services to the remotest part of the

globe for on-demand screening and basic treatment with both screening and prescriptive

functions.

Supporting information

S1 Data. Data source. Experimental datasets are publicly available at https://figshare.com/

articles/dataset/Data_zip/21532440/1.

(TXT)

S1 Table. Hyperparameters. The hyperparameters used in ShapAAL model construction.

(PDF)

S1 Fig. Study on the training augmentation control. We depict the trend of the test accuracy

data augmentation control parameter α in ChinaTown dataset by varying α from 0.00� α�
0.07 to understand the response of the model under different strengths of perturbations.

(TIF)

S2 Fig. Study on the training augmentation control. We depict the trend of the test accuracy

data augmentation control parameter α in Coffee dataset by varying α from 0.00� α� 0.07 to

understand the response of the model under different strengths of perturbations.

(TIF)

S3 Fig. Study on the training augmentation control. We depict the trend of the test accuracy

data augmentation control parameter α in ECG200 dataset by varying α from 0.00� α� 0.07

to understand the response of the model under different strengths of perturbations.

(TIF)

S4 Fig. Study on the training augmentation control. We depict the trend of the test accuracy

data augmentation control parameter α in ECGFiveDays dataset by varying α from 0.00� α�
0.07 to understand the response of the model under different strengths of perturbations.

(TIF)
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S5 Fig. Study on the training augmentation control. We depict the trend of the test accuracy

data augmentation control parameter α in FreezerRegularTrain dataset by varying α from 0.00

� α� 0.07 to understand the response of the model under different strengths of perturba-

tions.

(TIF)

S6 Fig. Study on the training augmentation control. We depict the trend of the test accuracy

data augmentation control parameter α in FreezerSmallTrain dataset by varying α from 0.00�

α� 0.07 to understand the response of the model under different strengths of perturbations.

(TIF)

S7 Fig. Study on the training augmentation control. We depict the trend of the test accuracy

data augmentation control parameter α in ItalyPowerDemandn dataset by varying α from 0.00

� α� 0.07 to understand the response of the model under different strengths of perturba-

tions.

(TIF)

S8 Fig. Study on the training augmentation control. We depict the trend of the test accuracy

data augmentation control parameter α in MoteStrain dataset by varying α from 0.00� α�
0.07 to understand the response of the model under different strengths of perturbations.

(TIF)

S9 Fig. Study on the training augmentation control. We depict the trend of the test accuracy

data augmentation control parameter α in PowerCons dataset by varying α from 0.00� α�
0.07 to understand the response of the model under different strengths of perturbations.

(TIF)

S10 Fig. Study on the training augmentation control. We depict the trend of the test accu-

racy data augmentation control parameter α in SonyAIBO1 dataset by varying α from 0.00�

α� 0.07 to understand the response of the model under different strengths of perturbations.

(TIF)

S11 Fig. Study on the training augmentation control. We depict the trend of the test accu-

racy data augmentation control parameter α in SonyAIBO2 dataset by varying α from 0.00�

α� 0.07 to understand the response of the model under different strengths of perturbations.

(TIF)

S12 Fig. Study on the training augmentation control. We depict the trend of the test accu-

racy data augmentation control parameter α in TwoLeadECG dataset by varying α from 0.00

� α� 0.07 to understand the response of the model under different strengths of perturba-

tions.

(TIF)

S13 Fig. ShapAAL model plot. We present the complete model description for reproducibil-

ity, where the input is “ECG200” training dataset.

(TIF)
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18. Clarysse J, Hörmann J, Yang F. Why adversarial training can hurt robust accuracy. arXiv preprint

arXiv:220302006. 2022;.

19. Roth AE. The Shapley value: essays in honor of Lloyd S. Shapley. Cambridge University Press; 1988.

20. Shapley LS. Notes on the n-Person Game—II: The Value of an n-Person Game. (1951). Lloyd S Shap-

ley. 1951;.

21. Maleki S, Rahwan T, Ghosh S, Malibari A, Alghazzawi D, Rogers A, et al. The Shapley value for a fair

division of group discounts for coordinating cooling loads. PloS one. 2020; 15(1):e0227049. https://doi.

org/10.1371/journal.pone.0227049 PMID: 31923244

22. Wang Q, Farahat A, Gupta C, Zheng S. Deep time series models for scarce data. Neurocomputing.

2021; 456:504–518. https://doi.org/10.1016/j.neucom.2020.12.132

23. Lines J, Bagnall A. Time series classification with ensembles of elastic distance measures. Data Mining

and Knowledge Discovery. 2015; 29(3):565–592. https://doi.org/10.1007/s10618-014-0361-2

24. Bagnall A, Lines J, Hills J, Bostrom A. Time-series classification with COTE: the collective of transfor-

mation-based ensembles. IEEE Transactions on Knowledge and Data Engineering. 2015; 27(9):2522–

2535. https://doi.org/10.1109/TKDE.2015.2416723

25. Flynn M, Large J, Bagnall T. The contract random interval spectral ensemble (c-RISE): the effect of con-

tracting a classifier on accuracy. In: International Conference on Hybrid Artificial Intelligence Systems.

Springer; 2019. p. 381–392.

26. Shifaz A, Pelletier C, Petitjean F, Webb GI. TS-CHIEF: a scalable and accurate forest algorithm for time

series classification. Data Mining and Knowledge Discovery. 2020; 34(3):742–775. https://doi.org/10.

1007/s10618-020-00679-8

27. Deng H, Runger G, Tuv E, Vladimir M. A time series forest for classification and feature extraction. Infor-

mation Sciences. 2013; 239:142–153. https://doi.org/10.1016/j.ins.2013.02.030

28. Lucas B, Shifaz A, Pelletier C, O’Neill L, Zaidi N, Goethals B, et al. Proximity forest: an effective and

scalable distance-based classifier for time series. Data Mining and Knowledge Discovery. 2019; 33

(3):607–635. https://doi.org/10.1007/s10618-019-00617-3

29. Lubba CH, Sethi SS, Knaute P, Schultz SR, Fulcher BD, Jones NS. catch22: Canonical time-series

characteristics. Data Mining and Knowledge Discovery. 2019; 33(6):1821–1852. https://doi.org/10.

1007/s10618-019-00647-x

30. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE

conference on computer vision and pattern recognition; 2016. p. 770–778.

31. Wang Z, Yan W, Oates T. Time series classification from scratch with deep neural networks: A strong

baseline. In: 2017 International joint conference on neural networks (IJCNN). IEEE; 2017. p. 1578–

1585.

32. Mahajan S, Pandit AK. Hybrid method to supervise feature selection using signal processing and com-

plex algebra techniques. Multimedia Tools and Applications. 2021; p. 1–22.

33. Mahajan S, Abualigah L, Pandit AK, Altalhi M. Hybrid Aquila optimizer with arithmetic optimization algo-

rithm for global optimization tasks. Soft Computing. 2022; 26(10):4863–4881. https://doi.org/10.1007/

s00500-022-06873-8

34. Mahajan S, Pandit AK. Image segmentation and optimization techniques: a short overview. Medicon

Eng Themes. 2022; 2(2):47–49.

35. Mahajan S, Abualigah L, Pandit AK. Hybrid arithmetic optimization algorithm with hunger games search

for global optimization. Multimedia Tools and Applications. 2022; p. 1–24.

36. Mahajan S, Abualigah L, Pandit AK, Nasar A, Rustom M, Alkhazaleh HA, et al. Fusion of modern meta-

heuristic optimization methods using arithmetic optimization algorithm for global optimization tasks. Soft

Computing. 2022; p. 1–15.

37. Lakshmi YV, Singh P, Abouhawwash M, Mahajan S, Pandit AK, Ahmed AB. Improved Chan Algorithm

Based Optimum UWB Sensor Node Localization Using Hybrid Particle Swarm Optimization. IEEE

Access. 2022; 10:32546–32565. https://doi.org/10.1109/ACCESS.2022.3157719

PLOS ONE ShapAAL: Shapley value attributed ablation with augmented learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0277975 November 23, 2022 27 / 28

https://doi.org/10.1371/journal.pone.0254841
http://www.ncbi.nlm.nih.gov/pubmed/34264999
https://doi.org/10.1371/journal.pone.0227049
https://doi.org/10.1371/journal.pone.0227049
http://www.ncbi.nlm.nih.gov/pubmed/31923244
https://doi.org/10.1016/j.neucom.2020.12.132
https://doi.org/10.1007/s10618-014-0361-2
https://doi.org/10.1109/TKDE.2015.2416723
https://doi.org/10.1007/s10618-020-00679-8
https://doi.org/10.1007/s10618-020-00679-8
https://doi.org/10.1016/j.ins.2013.02.030
https://doi.org/10.1007/s10618-019-00617-3
https://doi.org/10.1007/s10618-019-00647-x
https://doi.org/10.1007/s10618-019-00647-x
https://doi.org/10.1007/s00500-022-06873-8
https://doi.org/10.1007/s00500-022-06873-8
https://doi.org/10.1109/ACCESS.2022.3157719
https://doi.org/10.1371/journal.pone.0277975


38. Salgotra R, Abouhawwash M, Singh U, Saha S, Mittal N, Mahajan S, et al. Multi-population and

dynamic-iterative cuckoo search algorithm for linear antenna array synthesis. Applied Soft Computing.

2021; 113:108004. https://doi.org/10.1016/j.asoc.2021.108004

39. Singh H, Abouhawwash M, Mittal N, Salgotra R, Mahajan S, Pandit AK. Performance evaluation of

Non-Uniform circular antenna array using integrated harmony search with Differential Evolution based

Naked Mole Rat algorithm. Expert Systems with Applications. 2022; 189:116146. https://doi.org/10.

1016/j.eswa.2021.116146

40. Bansal MA, Sharma DR, Kathuria DM. A Systematic Review on Data Scarcity Problem in Deep Learn-

ing: Solution and Applications. ACM Computing Surveys (CSUR). 2020;.

41. Zaeemzadeh A, Rahnavard N, Shah M. Norm-preservation: Why residual networks can become

extremely deep? IEEE transactions on pattern analysis and machine intelligence. 2020; 43(11):3980–

3990. https://doi.org/10.1109/TPAMI.2020.2990339

42. Ukil A, Jara AJ, Marin L. Blend-Res 2 net: Blended Representation Space by Transformation of Resid-

ual Mapping with Restrained Learning for Time Series Classification. In: ICASSP 2021-2021 IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2021. p. 3555–

3559.

43. Liu T, Chen M, Zhou M, Du SS, Zhou E, Zhao T. Towards understanding the importance of shortcut

connections in residual networks. Advances in neural information processing systems. 2019; 32.

44. Tsipras D, Santurkar S, Engstrom L, Turner A, Madry A. Robustness may be at odds with accuracy.

arXiv preprint arXiv:180512152. 2018;.

45. Rozemberczki B, Watson L, Bayer P, Yang HT, Kiss O, Nilsson S, et al. The Shapley Value in Machine

Learning. arXiv preprint arXiv:220205594. 2022;.
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