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Abstract: Background: Lactic acidosis is a heterogeneous condition with multiple underlying causes
and associated outcomes. The use of multi-dimensional patient data to subtype lactic acidosis
can personalize patient care. Machine learning consensus clustering may identify lactic acidosis
subgroups with unique clinical profiles and outcomes. Methods: We used the Medical Information
Mart for Intensive Care III database to abstract electronic medical record data from patients admitted
to intensive care units (ICU) in a tertiary care hospital in the United States. We included patients
who developed lactic acidosis (defined as serum lactate ≥ 4 mmol/L) within 48 h of ICU admission.
We performed consensus clustering analysis based on patient characteristics, comorbidities, vital
signs, organ supports, and laboratory data to identify clinically distinct lactic acidosis subgroups. We
calculated standardized mean differences to show key subgroup features. We compared outcomes
among subgroups. Results: We identified 1919 patients with lactic acidosis. The algorithm revealed
three best unique lactic acidosis subgroups based on patient variables. Cluster 1 (n = 554) was
characterized by old age, elective admission to cardiac surgery ICU, vasopressor use, mechanical
ventilation use, and higher pH and serum bicarbonate. Cluster 2 (n = 815) was characterized by
young age, admission to trauma/surgical ICU with higher blood pressure, lower comorbidity burden,
lower severity index, and less vasopressor use. Cluster 3 (n = 550) was characterized by admission to
medical ICU, history of liver disease and coagulopathy, acute kidney injury, lower blood pressure,
higher comorbidity burden, higher severity index, higher serum lactate, and lower pH and serum
bicarbonate. Cluster 3 had the worst outcomes, while cluster 1 had the most favorable outcomes
in terms of persistent lactic acidosis and mortality. Conclusions: Consensus clustering analysis
synthesized the pattern of clinical and laboratory data to reveal clinically distinct lactic acidosis
subgroups with different outcomes.
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1. Introduction

Lactic acidosis is the most common anion gap metabolic acidosis in critically ill
patients [1,2]. It has been associated with adverse outcomes, including increased mortal-
ity [1,3–5]. Lactic acidosis in intensive care units (ICUs) typically occurs in the setting of
tissue hypoperfusion, such as in shock (type A lactic acidosis), or less commonly with
type B lactic acidosis (associated with liver failure, malignancies, or certain drugs such
as biguanides) [6,7]. While it has been consistently shown that lactic acidosis with a
serum lactate value greater than 4 mmol/L is a poor survival prognostic marker for ICU
patients [3,4,8–12], ICU patients with lactic acidosis are an extremely heterogeneous popu-
lation placed in diverse clinical situations and settings, such as sepsis, trauma, or cardiac
surgeries [9–11,13–21]. In addition, the effects of lactic acidosis in these various settings are
diverse [9–11,13–21].

With the advancement of electronic medical records (EMR) and artificial intelligence,
machine learning (ML) algorithms have become more widely utilized in individualized
medicine to assist clinical decision-making [22,23]. Consensus clustering is an unsupervised
ML technique that is utilized to identify similarities and differences among various data
variables, and then assign them into meaningful clusters [24,25]. Recent studies have
demonstrated that ML consensus clustering approach can distinguish meaningful disease
subtypes that forecast unique clinical outcomes [26,27]. Given the heterogeneity of patients
with lactic acidosis on ICU admission [9–11,13–21], ML consensus clustering approach
may help clinicians better identify different phenotypes of critically ill patients with lactic
acidosis in order to apply individualized strategies to improve outcomes.

In this study, we aimed to identify clinically meaningful clusters of critically ill patients
with lactic acidosis on ICU admission using an unsupervised ML clustering approach. We
then assessed these distinct clusters’ individual outcomes.

2. Methods
2.1. Patient Population

We used the Medical Information Mart for Intensive Care III (MIMIC III) database
to identify critically ill adult patients (aged 18 years or older) with lactic acidosis at ICU
admission. MIMIC III database is a publicly available critical care database of patients
from a large, single-center tertiary care hospital from 2001 to 2012 [28]. Lactic acidosis was
defined as the first serum lactate measured within 48 h of ICU admission of ≥4.0 mmol/L.
Patients were excluded if they did not have a serum lactate measurement within 48 h of
ICU admission or if they were admitted in ICU for ≤24 h. We included only the first ICU
admission if patients had multiple ICU admissions. The Mayo Clinic Institutional Review
Board approved this study (IRB number 21-009222) and waived the need for informed
consent due to the use of publicly and de-identified database.

2.2. Data Collection

We abstracted EMR data on patient characteristics, comorbidities, vital signs, organ
supports, and laboratory results to identify clinically distinct lactic acidosis clusters. As
our goal was to cluster lactic acidosis patients based on available data at the time of ICU
admission, we only used data that was present within 48 h of ICU admission for clustering
analysis. We selected the first vital sign or laboratory value within the 48-h time frame
when there were multiple values. We excluded laboratory results with over 10% missing
data. Otherwise, missing data were multiple imputed using the Random Forest method
before inclusion in cluster analysis.
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We defined comorbidities using the Elixhauser Comorbidity Software, which identifies
comorbidities by grouping International Classification of Disease Clinical Modification
codes [29]. We calculated comorbidity burden using Charlson Comorbidity Score. [30] We
calculated Severity index for the acute illness using Simplified Acute Physiology Score
(SAPS) II [31]. We estimated glomerular filtration rate (GFR) using the Chronic Kidney
Disease Epidemiology Collaboration (CKD-EPI) equation [32]. We defined acute kidney
injury (AKI) as per the Kidney Disease Improving Global Outcome (KDIGO) guideline’
serum creatinine and urine output criteria [33]. For serum creatinine criteria, we used the
lowest creatinine seven days prior to ICU admission as the baseline and compared it with
the highest creatinine within 48 h of ICU admission. Patients had AKI if there was an
increase in serum creatinine of ≥0.3 mg/dL or 1.5 times baseline. For urine output criteria,
we split urine output within 48 h after ICU admission into 6-h time periods. Patients had
AKI if the total urine output in any 6-h time interval was below the limit of 3 mL/kg.
Outcomes of interest included persistent lactic acidosis (defined as all subsequent serum
lactate values after initial elevated value within 48 h of its occurrence were ≥4 mmol/L),
hospital mortality, and 90-day mortality after ICU admission.

2.3. Cluster Analysis

We applied an unsupervised ML approach to consensus clustering in order to identify
clinical phenotypes of ICU patients with lactic acidosis [34]. We used a pre-specified
subsampling parameter of 80% with 100 iterations and assigned the number of potential
clusters (k) to range from 2 to 10 in order to avoid producing an excessive number of clusters
that would not be clinically useful. The optimal number of clusters was determined by
examining the consensus matrix (CM) heat map, cumulative distribution function (CDF),
cluster-consensus plots in the within-cluster consensus scores, and the proportion of
ambiguously clustered pairs (PAC) [35,36]. The within-cluster consensus score, ranging
between 0 and 1, is defined as the average consensus value for all pairs of individuals
belonging to the same cluster [36]. A value closer to one indicates better cluster stability [36].
PAC, ranging between 0 and 1, is calculated as the proportion of all sample pairs with
consensus values falling within the predetermined boundaries [35]. A value closer to zero
indicates better cluster stability [35]. We calculated the PAC utilizing two criteria: (1) the
strict criteria consisting of a predetermined boundary of (0, 1), where a pair of individuals
who had consensus value greater than 0 or less than 1 was considered ambiguously
clustered, and (2) the relaxed criteria consisting of a predetermined boundary of (0.1, 0.9),
where a pair of individuals who had consensus value greater than 0.1 or less than 0.9
was considered ambiguously clustered [35]. This study’s detailed consensus clustering
algorithms are provided in the Online Supplementary.

2.4. Statistical Analysis

After we identified the clusters of lactic acidosis patients, we performed analyses to
test the differences among the clusters. First, we compared patient characteristics among
the clusters using the analysis of variance (ANOVA) test for continuous variables and
Chi-squared test for categorical variables. We determined the clusters’ key features using
standardized mean differences with a set cut-off of >0.3. We then compared outcomes
among the identified clusters. We assessed the association of clusters with persistent lactic
acidosis and hospital mortality using logistic regression. We assessed the association of
clusters with 90-day mortality using Cox proportional hazard regression. We selected
cluster 1 as the reference group because it was associated with the most favorable out-
comes. We did not adjust for patient characteristics because these characteristics were
utilized to identify clusters through unsupervised ML. We performed all analyses using
R, version 4.0.3 (RStudio, Inc., Boston, MA, USA; http://www.rstudio.com/ (accessed
on 15 January 2021)), with the packages of ConsensusClusterPlus (version 1.46.0) [36] for
consensus clustering analysis, and the missForest package for missing data imputation [37].

http://www.rstudio.com/
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3. Results

Out of 34,682 ICU admissions, 18,969 had serum lactate measurements within 48 h of
ICU admission. Of these, 1919 had lactic acidosis with serum lactate of ≥4 mmol/L at ICU
admission. The mean age was 62 ± 17, 58% were male, 81% were white. 11%, 24%, 32%,
15%, and 18% of patients were admitted to the cardiac, cardiac surgery, medical, surgical,
and trauma/surgical ICU, respectively. The mean serum lactate was 6.2 ± 2.6 mmol/L.

The CDF plot displays the consensus distributions for each cluster (Figure 1A). The
delta area plot shows the relative change in the area under the CDF curve (Figure 1B).
The largest changes in area occurred between k = 3 and k = 5, at which point the rela-
tive increase in area became noticeably smaller. As shown in the CM heatmap (Figure 2,
Supplementary Materials, Figures S1–S9), the ML algorithm identified cluster 2 and clus-
ter 3 with clear boundaries, indicating good cluster stability over repeated iterations.

The mean cluster consensus score was comparable between a scenario of two or three
clusters (Figure 3A). In addition, favorable low PACs by both strict and relaxed criteria
were demonstrated for three clusters (Figure 3B). Thus, using baseline variables at hospital
admission, the consensus clustering analysis identified three clusters that best represented
the data pattern of our ICU patients with lactic acidosis.
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Figure 3. (A) The bar plot represents the mean consensus score for different numbers of clusters (K ranges from two to ten)
for ICU patients with lactic acidosis; (B) The PAC values using the strict criteria (red line) with the predetermined boundary
of (0, 1), and the PAC values using the relaxed criteria (black line) with the predetermined boundary of (0.1, 0.9) as the
definition for ambiguously clustered pairs.

There were 554 patients in cluster 1, 825 patients in cluster 2, and 550 patients in
cluster 3. Table 1 shows the patient characteristics of the three identified clusters.

The plot of standardized mean difference in Figure 4 demonstrates the key features of
each cluster.

Cluster 1 was characterized by old age, elective admission to cardiac surgery ICU, and
vasopressor and mechanical ventilation use. In terms of laboratory results, cluster 1 patients
had higher pH, partial pressure of oxygen (pO2), serum bicarbonate, and magnesium, but
lower hemoglobin and anion gap. Cluster 2 was characterized by young age, admission
to trauma/surgical ICU with higher blood pressures, lower comorbidity burden, lower
severity index, and less vasopressor use. In terms of laboratory results, cluster 2 patients
had higher hemoglobin, but lower BUN, serum potassium, phosphate, and magnesium.
Cluster 3 was characterized by admission to medical ICU, history of liver disease and
coagulopathy, acute kidney injury, lower blood pressure, higher comorbidity burden, and
higher severity index. In terms of laboratory results, cluster 3 had a higher serum lactate,
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anion gap, BUN, phosphate, prothrombin time (PT), international normalized ratio (INR),
but lower pH, pO2, eGFR, serum bicarbonate, and ionized calcium.

Table 1. Clinical characteristics at ICU admission according to clusters of lactic acidosis.

Characteristics Overall Cluster 1 Cluster 2 Cluster 3 p-Value

(n = 1919) (n = 554) (n = 815) (n = 550)

Age (years) 61.8 ± 17.1 68.9 ± 12.4 54.7 ± 18.4 65.0 ± 15.1 <0.001

Male sex 1118 (58) 295 (53) 498 (61) 325 (59) 0.01

Race

− White 1560 (81) 487 (88) 647 (79) 426 (77)

<0.001
− Black 152 (8) 20 (4) 66 (8) 66 (12)
− Hispanic 79 (4) 14 (2) 46 (6) 19 (4)
− Other 128 (7) 33 (6) 56 (7) 39 (7)

ICU type

− Cardiac ICU 206 (11) 20 (3) 90 (11) 96 (17)

<0.001
− Cardiac surgery ICU 467 (24) 392 (71) 52 (7) 23 (4)
− Medical ICU 605 (32) 28 (5) 255 (31) 322 (59)
− Surgical ICU 295 (15) 76 (14) 148 (18) 71 (13)
− Trauma/surgical ICU 346 (18) 38 (7) 270 (33) 38 (7)

Elixhauser Comorbidities

− Congestive heart failure 456 (24) 185 (33) 118 (14) 153 (28) <0.001
− Valvular disease 352 (18) 263 (47) 41 (5) 48 (9) <0.001
− Pulmonary circulation disorders 133 (7) 49 (9) 36 (4) 48 (9) 0.001
− Peripheral vascular disease 286 (15) 182 (33) 49 (6) 55 (10) <0.001
− Hypertension 884 (46) 345 (62) 286 (35) 253 (46) <0.001
− Paralysis 55 (3) 19 (3) 26 (3) 10 (2) 0.21
− Neurologic disorders 174 (9) 29 (5) 100 (12) 45 (8) <0.001
− Chronic pulmonary disease 266 (14) 87 (16) 108 (13) 71 (13) 0.33
− Uncomplicated diabetes 385 (20) 115 (21) 133 (16) 137 (25) <0.001
− Complicated diabetes 73 (4) 29 (5) 10 (1) 34 (6) <0.001
− Hypothyroidism 134 (7) 58 (10) 33 (4) 43 (8) <0.001
− Liver disease 291 (15) 64 (12) 72 (9) 155 (28) <0.001
− Peptic ulcer 1 (0.05) 0 (0) 1 (0.1) 0 (0) 0.51
− AIDS/HIV 27 (1) 4 (1) 9 (1) 14 (3) 0.02
− Lymphoma 52 (3) 7 (1) 18 (2) 27 (5) <0.001
− Metastatic cancer 136 (7) 17 (3) 39 (5) 80 (15) <0.001
− Solid tumor 128 (7) 34 (6) 53 (7) 41 (7) 0.66
− Rheumatoid arthritis 41 (2) 19 (3) 10 (1) 12 (2) 0.02
− Coagulopathy 500 (26) 138 (25) 123 (15) 239 (43) <0.001
− Obesity 97 (5) 39 (7) 36 (4) 22 (4) 0.04
− Weight loss 68 (4) 14 (3) 20 (2) 34 (6) <0.001
− Fluid and electrolyte disorders 843 (44) 158 (29) 314 (39) 371 (67) <0.001
− Blood loss anemia 36 (2) 11 (2) 10 (1) 15 (3) 0.13
− Deficiency anemia 275 (14) 79 (14) 105 (13) 91 (17) 0.17
− Alcohol abuse 199 (10) 24 (4) 110 (13) 65 (12) <0.001
− Drug abuse 70 (4) 9 (2) 45 (6) 16 (3) <0.001
− Psychosis 71 (4) 10 (2) 40 (5) 21 (4) 0.01
− Depression 104 (5) 25 (5) 53 (7) 26 (5) 0.20

Charlson comorbidity score 4.4 ± 2.7 4.9 ± 2.3 3.0 ± 2.4 5.8 ± 2.7 <0.001
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Table 1. Cont.

Characteristics Overall Cluster 1 Cluster 2 Cluster 3 p-Value

(n = 1919) (n = 554) (n = 815) (n = 550)

Vital signs

− Temperature (F) 97.2 ± 2.2 96.7 ± 1.9 97.7 ± 2.1 97.0 ± 2.4 <0.001
− Heart rate (per minute) 97 ± 21 87 ± 15 100 ± 22 102 ± 23 <0.001
− Systolic blood pressure (mmHg) 117 ± 26 116 ± 21 126 ± 26 105 ± 24 <0.001
− Diastolic blood pressure (mmHg) 62 ± 15 58 ± 11 69 ± 15 56 ± 14 <0.001
− Mean blood pressure (mmHg) 81 ± 21 78 ± 14 89 ± 22 74 ± 21 <0.001
− Respiratory rate (per minute) 17 ± 9 12 ± 7 18 ± 8 22 ± 9 <0.001
− Oxygen saturation (%) 97 ± 5 98 ± 3 97 ± 4 95 ± 6 <0.001
− Glasgow coma score 8 ± 5 5 ± 4 9 ± 5 10 ± 5 <0.001

Vasopressor use 1230 (64) 446 (80) 361 (44) 423 (77) <0.001
Ventilator use 1608 (84) 540 (97) 640 (79) 428 (78) <0.001

Any renal replacement therapies 54 (3) 11 (2) 14 (2) 29 (5) <0.001
− Hemodialysis 35 (2) 7 (1) 9 (1) 19 (3) 0.003
− CRRT 22 (1) 6 (1) 5 (1) 11 (2) 0.06

SAPS II score 61 ± 20 63 ± 14 52 ± 18 73 ± 20 <0.001
Acute kidney injury 1401 (73) 422 (76) 494 (61) 485 (88) <0.001

Laboratory data

− BUN (mg/dL) 27 ± 21 20 ± 11 19 ± 11 46 ± 27 <0.001
− eGFR (mL/min/1.73 m2) 68 ± 31 69 ± 23 80 ± 29 50 ± 32 <0.001
− Sodium (mEq/L) 138 ± 5 137 ± 4 139 ± 5 138 ± 6 <0.001
− Potassium (mEq/L) 4.4 ± 0.9 4.6 ± 0.9 4.0 ± 0.7 4.6 ± 1.0 <0.001
− Chloride (mEq/L) 106 ± 7 108 ± 5 107 ± 6 104 ± 8 <0.001
− Bicarbonate (mEq/L) 20 ± 5 23 ± 4 20 ± 4 16 ± 5 <0.001
− Anion gap (mEq/L) 18 ± 6 14 ± 4 17 ± 4 22 ± 6 <0.001
− Total calcium (mg/dL) 8.2 ± 1.2 8.7 ± 1.2 8.0 ± 1.1 7.9 ± 1.1 <0.001
− Ionized calcium (mmol/L) 1.1 ± 0.2 1.2 ± 0.2 1.1 ± 0.1 1.0 ± 0.1 <0.001
− Phosphate (mg/dL) 4.1 ± 1.8 3.8 ± 1.3 3.5 ± 1.4 5.3 ± 2.1 <0.001
− Magnesium (mg/dL) 1.9 ± 0.5 2.1 ± 0.6 1.7 ± 0.4 2.1 ± 0.5 <0.001
− Lactate (mmol/L) 6.2 ± 2.6 5.7 ± 1.9 5.6 ± 1.7 7.7 ± 3.4 <0.001
− Glucose (mg/dL) 179 ± 89 170 ± 63 185 ± 87 181 ± 111 0.009
− Hemoglobin (g/dL) 10.6 ± 2.3 9.1 ± 1.8 11.9 ± 2.1 10.1 ± 2.1 <0.001
− WBC (109 cells/L) 14.1 ± 8.3 12.4 ± 6.4 14.4 ± 8.1 15.4 ± 10.0 <0.001
− Platelet (109 cells/L) 170 ± 103 146 ± 68 208 ± 103 172 ± 120 <0.001
− pH 7.31 ± 0.12 7.36 ± 0.10 7.32 ± 0.10 7.26 ± 0.13 <0.001
− pCO2 (mmHg) 39 ± 11 41 ± 9 40 ± 11 36 ± 2 <0.001
− pO2 (mmHg) 209 ± 133 309 ± 117 180 ± 118 151 ± 113 <0.001
− PT (second) 18 ± 6 17 ± 4 16 ± 4 22 ± 9 <0.001
− INR 1.8 ± 1.0 1.6 ± 0.5 1.6 ± 0.6 2.5 ± 1.6 <0.001
− PTT (second) 49 ± 30 54 ± 31 40 ± 24 56 ± 34 <0.001

Culture data, n (%)

− Positive blood culture 197 (10) 7 (1) 76 (9) 114 (21) <0.001
− Positive urine culture 284 (15) 32 (6) 138 (17) 114 (21) <0.001
− Positive sputum culture 205 (11) 23 (4) 76 (9) 106 (19) <0.001

Continuous variables were reported as mean ± standard deviation, categorical variables as count (percentage). Abbreviations: AIDS,
acquired immune deficiency syndrome; BUN, blood urea nitrogen; CRRT, continuous renal replacement therapy; eGFR, estimated
glomerular filtration rate; HIV, human immunodeficiency virus; ICU, intensive care unit; INR, international normalized ratio; pH, potential
of hydrogen; pCO2, partial pressure of carbon dioxide; pO2, partial pressure of oxygen; PT, prothrombin time; PTT, partial thromboplastin
time; SAPS II score, simplified acute physiology score II; WBC, white blood cell.
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Figure 4. Standardized differences across the two clusters for each baseline variable for ICU patients with lactic acidosis.
The X-axis represents the standardized differences value, and the Y-axis represents baseline variables. The dashed vertical
lines signify the standardized differences cutoffs of <−0.3 or >0.3. Abbreviations: AIDS, acquired immune deficiency
syndrome; AKI, acute kidney injury; BUN, blood urea nitrogen; CCU, coronary care unit; CHF, chronic heart failure; Cl,
chloride; CRRT, continuous renal replacement therapy; CSRU, cardiac surgery recovery unit; DBP, diastolic blood pressure;
eGFR, estimated glomerular filtration rate; GCS, Glasgow coma scale; Hb, hemoglobin; HR, heart rate; ICU, intensive
care unit; IHD, intermittent hemodialysis; INR, international normalized ratio; K, kalium (potassium); MAP, mean arterial
pressure; Mg, magnesium; MICU, medical intensive care unit; Na, natrium (sodium); pH, potential of hydrogen; pCO2,
partial pressure of carbon dioxide; pO2, partial pressure of oxygen; PT, prothrombin time; PTT, partial thromboplastin time;
PVD, peripheral vascular disease; RR, respiratory rate; RRT, renal replacement therapy; SAPS II Score, Simplified Acute
Physiology Score II; SBD, SPO2, saturation of peripheral oxygen; SBP, systolic blood pressure; SICU, surgical intensive care
unit; WBC, white blood cell.
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Persistent lactic acidosis occurred in 9.2%, 9.8%, and 40% in cluster 1, cluster 2, and
cluster 3, respectively (Table 2 and Figure 4).

Table 2. Outcomes according to clusters of lactic acidosis.

Cluster
Persistent Lactic Acidosis Hospital Mortality 90-Day Mortality

% OR (95% CI) % OR (95% CI) % HR (95% CI)

Cluster 1 9.2% 1 (ref) 14.6% 1 (ref) 19.9% 1 (ref)
Cluster 2 9.8% 1.08 (0.73–1.59) 20.9% 1.54 (1.15–2.06) 25.9% 1.38 (1.10–1.74)
Cluster 3 40.0% 6.59 (4.62–9.39) 58.2% 8.12 (6.08–10.86) 66.6% 5.06 (4.09–6.27)

Cluster 3 (OR 6.59; 95% CI 4.62–9.39), but not cluster 2, was significantly associated
with persistent lactic acidosis when compared to cluster 1 (Figure 5A). Cluster 3 had the
highest hospital- and 90-day mortality, followed by cluster 2, and then cluster 1. Hospital
mortality was 14.6%, 20.9%, and 58.2% in cluster 1, cluster 2, and cluster 3, respectively
(Table 2 and Figure 5B). Cluster 2 (OR 1.54; 95% CI 1.15–2.06) and cluster 3 (OR 8.12; 95%
CI 6.08–10.86) were significantly associated with higher hospital mortality, compared to
cluster 1. Ninety-day mortality was 19.9%, 25.9%, and 66.6% in cluster 1, cluster 2, and
cluster 3, respectively (Table 2 and Figure 6). Cluster 2 (HR 1.38; 95% CI 1.10–1.74) and
cluster 3 (HR 5.06; 95% CI 4.09–6.27) were significantly associated with higher 90-day
mortality when compared to cluster 1 (Figure 6).
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4. Discussion

ML consensus clustering algorithms offer the ability to efficiently analyze and identify
unique clusters of patients with different characteristics in a large amount of data [24,25,38,39].
In this study, we identified three clinically distinct clusters of patients with lactic acidosis
at time of ICU admission utilizing a ML unsupervised consensus clustering approach. The
three clusters demonstrated different characteristics and were associated with unique clini-
cal outcomes, including persistent lactic acidosis, hospital mortality, and 90-day mortality.

Cluster 1, designated as the reference cluster, consisted of patients of an older age
who had underlying valvular heart disease, peripheral vascular disease, and hypertension.
Of the three clusters, cluster 1 patients had the highest rate of elective ICU admission to
cardiac surgery recovery Unit (CSRU) after cardiac surgery. These patients had the highest
rates of vasopressor and mechanical ventilator utilization. While cluster 1 patients had the
highest severity of anemia, they also had the highest level of pH, HCO3, and pO2 among
all of the clusters. While cluster 1 patients had the lowest Glasgow coma scale (GCS) scores
on ICU admission, they were more often admitted electively after cardiac surgery and
required mechanical ventilator. This could be due to sedation. While AKI occurred in
76% of cluster 1 patients, severe AKI requiring renal replacement therapy only composed
2% of these patients. Average blood lactate level in cluster 1 was 5.7 mmol/L, and only
9.2% had persistent lactic acidosis 48 h after ICU admission. This corresponds to the
literature where elevated lactate levels are frequently noted after cardiac surgery, with an
incidence of 10–20% of post cardiac surgical patients [15–19]. The causes of lactic acidosis
following cardiac surgery include both hypoxic (type A) and non-hypoxic causes (type B).
Type A would include inadequate oxygen delivery during cardiopulmonary bypass (CPB),
low cardiac output, severe anemia/hemodilution, and Type B would include exogenous
catecholamines (epinephrine, isoproterenol, and salbutamol) [40,41]. Among these possible
causes, prolonged CPB duration and intraoperative vasopressor requirements have been
shown to be strong independent risk factors for lactic acidosis on ICU admission in patients
undergoing cardiac surgery [17,42–44]. While mildly elevated lactate levels after cardiac
surgery are frequently transient and usually considered benign [41,45], studies have con-
sistently demonstrated that elevated lactate levels > 4 mmol/L are a prognostic marker
for worse outcomes, including mortality after cardiac surgery [13,14,17,41]. Nevertheless,
cluster 1 patients in our study had the lowest incidence of persistent lactic acidosis, and
lowest in-hospital and 90-day mortality risks among the three clusters.
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Patients in cluster 2 were the youngest and had the highest baseline eGFR among
the three clusters. Cluster 2 consisted of surgical patients, especially those admitted to
trauma surgical ICU (TSICU) following trauma. They had the highest blood pressure
values, least severe anemia, and lowest vasopressor requirement among the three clusters.
While cluster 2 patients had the highest hemoglobin among the three clusters, this could
have been due to blood transfusion administered prior to ICU admission for trauma
and surgical patients [46–49]. In addition, cluster 2 had the lowest serum potassium,
magnesium, and phosphate levels. Average lactate levels in the cluster 2 were 5.6 mmol/L,
which is comparable to cluster 1. Lactic acidosis in patients after trauma often occurs
due to the metabolic response from an oxygen supply-demand mismatch in the setting of
hypoxia, hemorrhage, and anaerobic metabolism [46–49]. Lactate level has been shown to
be a prognostic biomarker in trauma, even in patients without hypotension [9,10,47] and
elevated blood lactate levels (>4 mmol/L) among trauma and surgical patients admitted
to the ICU are closely correlated with worse patient outcomes and a reduced chance of
survival [50–60]. Our study demonstrated that 9.8% of patients in cluster 2 developed
persistent lactic acidosis, which is comparable to cluster 1. Compared to cluster 1, patients
in cluster 2 had increased in-hospital and 90-day mortality.

Among all clusters, cluster 3 had the highest degree of lactic acidosis. They also
had the lowest arterial pH, pO2, and HCO3 levels. Moreover, cluster 3 patients had the
highest prevalence of liver disease, coagulopathy, fluid and electrolyte disorders, and
metastatic cancer. More than half of these patients were admitted to the MICU. Cluster
3 patients also had the highest Charlson and SAPs II scores, signifying high comorbidity
burden and severity of acute illness. On ICU admission, they had the lowest blood
pressure but the highest incidence of positive blood culture, acute kidney injury, and
hyperphosphatemia. Thus, lactic acidosis in cluster 3 patients likely occurred in the setting
of tissue hypoperfusion due to shock. Additionally, liver disease and metastatic cancer
may have contributed to a type B lactic acidosis [61–63]. While diabetes was not a main
feature that differentiated the three clusters, it was noted to be more prevalent in cluster 3
than other clusters, and metformin is an uncommon but important cause of type B lactic
acidosis in the ICU [20,21]. In addition, the higher prevalence of liver disease and greater
rate of AKI in this cluster could also lead to a reduction of lactate clearance. Altogether,
cluster 3 patients had the highest incidence of persistent lactic acidosis in 48 h, in-hospital
mortality, and 90-day mortality among the three clusters.

The strengths of our study include innovative findings via an unbiased and easily
reproducible unsupervised ML consensus clustering approach derived from a large sample
population of ICU patients with lactic acidosis. Nevertheless, there are several important
limitations. First, we did not have information on blood transfusion prior to ICU admission,
and thus cluster 2 with its association with the highest hemoglobin could have been affected
by blood transfusions that commonly occur in trauma patients. Furthermore, data on
medications prior to ICU admission (such as metformin or vasopressors) were lacking.
Thus, we could not investigate whether metformin or other known causes of drug-induced
lactic acidosis may have played an important role in the clustering approach of our study.
Future studies are needed to assess whether the incorporation of these variables could
have improved the discriminatory ability of the clusters we identified. Lastly, consensus
clustering was performed on ICU admission and did not include clinical data before or
during ICU stay, which could affect ICU-related outcomes. Nevertheless, we only included
data that were readily available at the time of ICU admission as this would mimic the
phenotype that clinicians would initially be provided with. By this method, we successfully
identified distinct clusters of lactic acidosis on ICU admission that were associated with
unique clinical outcomes, including persistent lactic acidosis, in-hospital mortality, and
90-day mortality.
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5. Conclusions

In conclusion, we present an unsupervised ML consensus clustering analysis of
critically ill patients with lactic acidosis on ICU admission. We discovered three distinct
phenotypes of lactic acidosis on ICU admission with unique characteristics and hospital
outcomes. While our findings provide a better understanding of the associated different
outcomes for distinct subtypes of patients with lactic acidosis on ICU admission, future
studies are needed to further investigate the impact of ML application clustering analysis
to the care of ICU patients with lactic acidosis.
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