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Doxycycline as a potential partner of COVID-19 therapies
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A B S T R A C T

Coronavirus disease 2019 (COVID-19) is a major public health challenge, and the current antiviral arsenal
for treatment is limited, with questionable efficacy. Major efforts are under way for discovery of new
effective agents, but the validation of new potential treatments for COVID-19 may take a long time.
Therefore, the repurposing of existing drugs for new indications is needed. In this article, we argue for the
potential benefits of using doxycycline with either hydroxycholoroquine or other putative agents for
COVID-19 treatment, as doxycycline has antiviral and anti-inflammatory activities by dampening the
cytokine storm and to prevent lung damage.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

The 2019 novel coronavirus infection, dubbed COVID-19, has
created an unprecedented public health crisis and threatened the
lives of millions of people worldwide [1]. The immunopatho-
genesis of severe COVID-19 is partially understood and it is likely
involves both a virus-driven damage and an exuberant host
inflammatory response, both contributing to acute lung injury,
acute respiratory distress syndrome (ARDS), and multiple organ
failure [2]. Since there is no clear evidence of efficacy among
available antivirals for COVID-19 and since the discovery and
clinical testing of novel antiviral agents takes a long time,
repurposing of existing drugs is of paramount importance. Priority
should be given to drugs that combine antiviral and anti-
inflammatory effects. In addition, candidate drugs should have
an acceptable tolerability profile with no major adverse events or
toxic effects.

Hydroxychloroquine with or without azithromycin

Several agents, including hydroxychloroquine have purported in
vitro activity against severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), the virus that causes COVID-19 [3]. The anti-viral
mechanism of hydroxychloroquine has not been entirely elucidated,
but likely occurs through a change in pH at the surface of the cell
membrane that inhibits the fusion and assembly of the virus [3].
Recent uncontrolled clinical data by Gautret et al. demonstrated that
hydroxychloroquine treatment is associated with rapid virologic
clearance, which occurred at day 6 in 70 % of patients on
monotherapy versus in 12.5 % of patients on supportive care; adding
azithromycin slightly enhanced this effect, with virologic clearance
occurring at day 5 in 100 % of patients given the combination [4].
Despite the notable limitationsof that study, including small number
of patients, absence of randomization, selection bias for controls, and
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use of treatment in less-ill patients, this antimicrobial combination
has generated a great deal of interest [4].

However, the hydroxychloroquine and azithromycin combina-
tion has raised major safety concerns, specifically, drug-drug
interactions and cardiotoxicity, including fatal arrhythmia, partic-
ularly among infected elderly patients with underlying cardiopul-
monary chronic illness [5]. The heightened risk of cardiotoxicity
among older patients is of particular concern [6]. Also, patients
with COVID-19 may develop infection-related cardiomyopathy
(frequency is unknown) with direct and indirect cardiovascular
complications, including acute myocardial injury, fulminant
myocarditis (with a mortality rate up to 40 %–70 %), arrhythmias,
and venous thromboembolism [5,7–9].

Antiviral effects of doxycycline

Given the risks of hydroxychloroquine and azithromycin in
combination, we suggest hydroxychloroquine with doxycycline as
a better alternative to azithromycin. Doxycycline and other
tetracycline derivatives such as minocycline exhibit anti-inflam-
matory effects along with in vitro antiviral activity against several
RNA viruses. Use of these agents have been associated with clinical
improvement, even reversal of cytokine storm in some infections
caused by RNA viruses, such as dengue fever [10].

The mechanism of the antiviral effects of tetracycline deriva-
tives may be secondary to transcriptional upregulation of
intracellular zinc finger antiviral protein (ZAP), an encoding gene
in host cells [11,12]. ZAP can also bind to specific target viral mRNAs
and represses the RNAs translation [13,14]. Experimental studies
have used tetracycline to induce the overexpression of host ZAP in
HEK293, rats and monkeys cell lines (Vero cells), which
contributed to inhibition of RNA viruses such as the Dengue,
Ebola, Human Immunodeficiency Virus, Zika, and Influenza A
viruses [11,12,15–18].
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Also, in vitro studies have showed that doxycycline can repress
Dengue virus infection in Vero cells through the inhibition of
dengue serine protease enzymes and of viral entry [17,19].
Doxycycline showed the capacity to inhibit dengue virus replica-
tion in Vero cells culture and likely it interacts with the dengue
virus E protein that is required for virus entry [19]. Similarly,
doxycycline controls Chikungunya virus (CHIKV) infection through
the inhibition of CHIKV cysteine protease of Vero cells and showed
significant reduction of CHIKV blood titer of mice [20].

In addition, tetracycline derivatives such as doxycycline are
highly lipophilic antimicrobials that chelate zinc compounds on
matrix metalloproteinases (MMPs) of mammalian cells [21], and
an in vitro study showed that murine coronaviruses rely on MMPs
for cell fusion and viral replication [22]. Other mechanisms of viral
fusion and replication by coronaviruses utilize host proteases [22],
could be a possible target to doxycycline.

Anti-inflammatory effects of doxycycline

In COVID-19, elevated levels of blood interleukin (IL)-6 have
been more commonly observed in severe COVID-19 illness and
among non-survivors, suggesting that mortality might be due to
virally-driven hyperinflammation and to cytokine storm [23].
Intense proinflammatory state has a central role in the pathogen-
esis of dengue and hemorrhagic fever, leading to cytokine storm
[24]. Importantly, doxycycline reduced pro-inflammatory cyto-
kines, including IL-6 and tumor necrosis factor (TNF)-α, in patients
with dengue hemorrhagic fever, and the mortality rate was 46 %
lower in the doxycycline-treated group (11.2 %) than in the
untreated group (20.9 %) [24]. Moreover, doxycycline was more
effective than tetracycline in the reduction of these pro-
inflammatory cytokines [25].

Similarly, an in vitro study suggested that treatment with
minocycline had dual anti-inflammatory effects and viral replica-
tion in cells infected with Enterovirus 71 infection, as minocycline
reduced the viral cytopathic effect, viral protein expression, viral
titers, levels of IL-6 and IL-8, and relative mRNA expression of TNF-
α. Also, in a murine model, minocycline inhibited IL-6 and
granulocyte colony-stimulating factor in plasma and TNF-α in
the cerebellum [26].

In addition, severe acute respiratory syndrome–related coro-
navirus (SARS-CoV) encompasses a papain-like protease that
significantly triggers an early growth response protein 1 (Egr-1)–
dependent activation of transforming growth factor beta 1 (TGF-
β1), resulting in upregulation of pro-fibrotic responses in vitro and
in vivo in the lungs [27,28]. Recent computational methods study
identified doxycycline among the drugs that could potentially be
used to inhibit SARS-CoV-2 papain-like protease [29].

Severe COVID-19, ARDS, and pathophysiologic and therapeutic
considerations

Respiratory failure from ARDS is the leading cause of mortality
in COVID-19 patients [30]. Various pro-inflammatory cytokines
and chemokines, including IL-6, TNF-α, and profibrotic factors
(TGFB1, CCN2, and PDGFA), are also implicated in tissue damage and
vascular leakage and can stimulate pulmonary fibrosis in SARS-
CoV infection [31]. The pathologic features of COVID-19 closely
resemble those of SARS-CoV infection, which causes massive lung
tissue remodeling through the urokinase, coagulation, and wound-
healing pathways and through extracellular matrix proteins,
including MMPs [31]. MMPs are involved in lung remodeling
and destruction of the extracellular matrix, leading to damage of
the endothelial basal lamina and increased vascular permeability
[32,33]. Importantly, mechanical ventilation, which has a primary
role in ARDS management, is associated with further lung injury
through activation of MMPs, leading to ventilation-induced lung
injury [34].

As mentioned earlier, doxycycline is a strong and broad-spectrum
inhibitor of MMPs (a family of more than 24 zinc-dependent
proteases). Furthermore, experimental studies have showed that
treatment with doxycycline conferred a protective role in lung injury
[35,36]. A prophylactic use of doxycycline in mice infected with
virulent influenza H3N2 virus attenuates the occurrence of acute
lung injury [37]. The tetracycline class of antimicrobials overall has
proven a clinically useful tool in MMP inhibition through their ability
to chelate the catalytic Zn2+ ion, which is essential for MMP activity,
independently of their antimicrobial properties [34]. Among the
tetracycline derivatives, doxycycline is the most potent MMP
inhibitor, even at a subantimicrobial dose (25 mg) [34]. As lung
immune injury/ARDSisprominentinpatientswithsevere COVID-19,
inhibiting MMPs may help repair the damaged lung tissue and
enhance recovery [38].

Future study design considerations

In light of these potential benefits, we propose the use of
doxycycline (preferably) or minocycline as a partner agent with
hydroxychloroquine or with other promising antiviral COVID-19
therapies such as remdesivir, particularly in elderly patients with
multiple health conditions, especially cardiac comorbidities.
Doxycycline is usually prescribed as a part of empiric treatment
for atypical bacterial pneumonia or community-acquired pneu-
monia based on the recent evidence-based clinical practice
guidelines [39]. Therefore, it may be useful to conduct a large
retrospective cohort study assessing disease severity, co-infec-
tions, mortality rate, length of hospitalization, and the need for
invasive ventilation among COVID-19–infected patients who
received a doxycycline-based or other tetracycline-based empiric
antimicrobial regimen.

In addition, placebo-controlled randomized clinical trials
divided into two arms (treatment arm, antiviral (i.e. remdesivir)
plus doxycycline versus the control arm, antiviral plus placebo)
and should enroll COVID-19 patients regardless of the severity of
illness at presentation. Primary end points, in addition to mortality
rate, should include clinical improvement (defervescence), pro-
gression to respiratory failure, need for mechanical ventilation
(duration and extubation), virologic clearance, and length of stay at
the hospital.

Conclusion

Because patients with COVID-19 are in need of both antiviral
and anti-inflammatory treatment as well as protection against
lung damage, studies of proposed combination therapy is
warranted. As doxycycline is inexpensive and widely available,
has a safe tolerability profile, and is an attractive option for the
treatment of COVID-19 as well as potentially alleviating the lung
sequelae and also providing coverage against atypical bacterial
pneumonia such as Mycoplasma pneumoniae and Legionella
pneumophilia.
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