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Tinnitus is an interaction of the environment, cognition, and plasticity. The connection
between the individual with tinnitus and their world seldom receives attention in neu-
rophysiological research. As well as changes in cell excitability, an individual’s culture and
beliefs, and work and social environs may all influence how tinnitus is perceived. In this
review, an ecological framework for current neurophysiological evidence is considered.
The model defines tinnitus as the perception of an auditory object in the absence of an
acoustic event. It is hypothesized that following deafferentation: adaptive feature extraction,
schema, and semantic object formation processes lead to tinnitus in a manner predicted
by Adaptation Level Theory (1, 2). Evidence from physiological studies is compared to the
tenants of the proposed ecological model. The consideration of diverse events within an
ecological context may unite seemingly disparate neurophysiological models.

Keywords: tinnitus, model, ecology, adaptation, psychoacoustics, attention

INTRODUCTION
Psychoacousticians and neurophysiologists have, as a rule,
approached tinnitus by applying reductionist principles, meaning
that the fundamental constituents of tinnitus have been studied in
isolation from the overall experience. Traditionally psychoacoustic
studies have attempted to control for cognitive effects rather than
incorporating them as a requirement for real-world perception
(3). Neurophysiological investigations of tinnitus have tended to
look at specific loci (4, 5) or the cellular basis (6) of tinnitus gen-
eration. Although the complexity of tinnitus has been recognized
in neurophysiological models for many years (7) it is now that
tools have emerged to enable this intricacy to be examined (8). It
has been suggested that, in order to solve tinnitus, principles of
systems physiology [a combination of theory, experimental, and
computational models (9)] should be applied (10).

Psychoacoustic models of tinnitus have largely been concerned
with the elements comprising patient reports of tinnitus sounds
(e.g., pitch, loudness) (11–13). There is a need in psychoacoustics
to bridge gaps between perception, cognition, and contextual
effects (3). The reductionist approaches used in the past may have
been necessary for foundation knowledge, but probably under-
estimate the real-world influences impinging on tinnitus percep-
tion. The ecological approach to audition views listening as the
experience of auditory events, or objects, not sounds (14, 15).
An ecological approach to tinnitus requires that underpinning
neurophysiological mechanisms and psychoacoustic outcomes be
placed in an environmental context where both the individual’s
perception of self and the interplay with the acoustic and social
environment are considered. This ecological view challenges us to
consider tinnitus as the perception of an auditory object in the
absence of an acoustic event. How and where is tinnitus processed
as an auditory object when it lacks the features of “true” objects?

How does this view take into account the existing fundamental
knowledge of tinnitus and physiology? This review attempts to
answer these questions by broaching reductionist neurophysiol-
ogy, and psychoacoustics, with an ecological framework. Ecology
in the tinnitus context is defined here as the interactions between
an individual and the environment that creates, changes, and
continues tinnitus perception.

ECOLOGICAL MODEL
Ecological psychology has many ontologies, it is not the purpose
of this review to debate the philosophical basis of this approach to
perception (16). The intent is instead to propose a different win-
dow through which to view tinnitus. The premise of the model is
that we are not passive receivers of sensory information, instead we
seek to explain and inform as we move through our environment
(17). If we are walking along a road and an ambulance arrives
behind us with lights flashing and siren blaring what do we hear?
Most people would say “an ambulance” or “a siren” it is unlikely
that anyone would say, “two tones 960 and 770 Hz, repeated every
1.3 s” (18). It is normal for us to reference sound to objects or
events. In addition, the context of that event will strongly influ-
ence our interaction. If the reason we are walking along the street
is to search for a child who has not returned home from a bicycle
ride the sound of the ambulance will evoke very different reactions
than when you are walking to a public open-day by the local emer-
gency services. True sounds have an identifiable physical, object,
or source; tinnitus does not. It is a common observation that tin-
nitus sufferers will seek out the source of their tinnitus sound,
only realizing that it is internal through the failure to discover its
source in the environment. In tinnitus, the reality of perception
is challenged by the absence of an identifiable external source or
event (19). Intrinsic factors, environment and interactions will all
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alter what an individual perceives. The model of tinnitus discussed
here consists of three overlapping themes: (1) the individual, (2)
environment, and (3) social context.

INDIVIDUAL
The individual and their interface with the environment are at
the core of this ecological model (Figure 1). Adaptation Level
theory (ALT) has been recently hypothesized to explain the rela-
tionship between, personality, memory, attention, and tinnitus
audibility (2). ALT is a longstanding psychoacoustic theory of
perceptual relativity, commonly used to explain and quantify the
differences in signal and background in context of experiences (1).
Although Helson’s model was developed from laboratory based
psychophysics it can be considered ecological in its recognition of
the effect of environment and emotion on perception. Tinnitus
has been considered in the context of non-auditory modulators
before (7, 20); the ALT model of tinnitus differs with an emphasis
on neural and psychological adaptation shaping, not only reaction
to, but also the perception and magnitude of tinnitus (2).

In this review, adaptation is defined broadly, as “adjustment”
(1, 21). An adaptation level or “normal level” exists for all sen-
sory dimensions including perception of frequency and intensity
of stimuli (1). The ALT model of tinnitus posits that tinnitus is
never static but varies moment to moment with potentially subtle
changes in cochlear outflow, emotion, context, and attention. The
AL for tinnitus has been previously been proposed as an index of
tinnitus audibility (2) but could equally used to explain variations
in contributing elements to audibility such as pitch and loudness.
Here, an overarching AL of “Magnitude” is considered. If tinnitus
magnitude is lower than the AL it is perceived as quiet, higher it is

intense. According to the ALT model of tinnitus, the magnitude of
tinnitus is determined through the interplay of three external and
internal components: (1) the tinnitus signal, (2) background or
contextual stimuli, and (3) residuals and social factors (Figure 1).
Helson (1) expressed this relationship mathematically:

A = X
p
BqRr .

With respect to tinnitus, the formulae may be interpreted in
the following manner: A, the adaptation level of tinnitus (tin-
nitus magnitude); X , represents the intensity of tinnitus signal;
B, intensity of background neural activity (sensory input); and R,
intensity of “residual” components (memory, arousal, and person-
ality). Intensity of tinnitus signal and background sensory input is
likely to be a function of frequency. The weighting coefficients p, q,
and r determine the relative contributions of components to adap-
tation level and are considered to reflect attention and Auditory
Scene Analysis [ASA (22, 23)]. Although expressed as an equation
that, parenthetically, could be solved for tinnitus (2) the equation is
used simply here to illustrate the interplay between sound, tinnitus
signal, individual psychology, and attention.

FOCUS VERSUS BACKGROUND
Critical to our understanding of tinnitus is how it is separated
from the milieu of other ongoing neural activity, both driven and
spontaneous. Hearing must play an important role in this process.

HEARING
The last 30 years has seen a move away from the view that tinni-
tus occurs at the cochlea as an increase in spontaneous activity
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FIGURE 1 |The ecological model of tinnitus. This model consists of a
psychophysical core described by adaptation level theory in which
tinnitus and background sound perception are under influence of
individual psychology factors classified in ALT as “residuals.” These
factors are influenced by the environment and social context. The
adaptation level is the weighted product of: X , the intensity of tinnitus

signal, B, intensity of background neural activity, and R, intensity of
residual components (e.g., memory, arousal, and personality). The
weighting coefficients p, q, and r determine the relative contributions of
components to adaptation level and are considered to reflect attention
and auditory scene analysis. Helson (1) expressed this relationship
mathematically: A = X

p
Bq R r .
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in the eighth cranial nerve (24, 25). Most models now promote
changes at the cochlea as a primer for higher order plastic changes
(24). Tinnitus onset often begins with hearing loss and difficul-
ties hearing are amongst the most common complaints of tinnitus
sufferers (26, 27). Hearing loss and hearing related problems fre-
quently appear as risk factors for more severe tinnitus (28) and
the correction of hearing loss through amplification is also an
important tinnitus treatment method (29). Both conductive and
sensorineural hearing loss are associated with tinnitus, but chronic
tinnitus is most often related to sensorineural hearing loss (28,
30). The mechanisms underpinning sensorineural hearing loss are
reviewed elsewhere in detail (31, 32). The psychoacoustical conse-
quences of sensorineural hearing loss include: reduced audibility
of soft sounds, recruitment, broader frequency tuning, and tinni-
tus. In some cases, inner hair cell and/or primary afferent damage
leaves areas of the cochlear unresponsive to sound [dead regions
(33)]. Peripheral hearing damage results in perceptual errors, lead-
ing to embarrassment, and social withdrawal (34), as well as central
plastic changes such as tonotopic map reorganization (35). Hence
hearing loss may both directly affect tinnitus, as an event leading
to tinnitus generation, and indirectly through hearing loss related
anxiety (36). Hearing loss effects can also be incorrectly projected
to tinnitus (37) and become an audible marker for an individuals’
hearing related distress.

The audiogram and changes in auditory threshold are poor
indicators of the effect of hearing loss on the individual and when
afferent outflow from the cochlea may be altered (38, 39). Tinnitus
can occur without measurable hearing loss according to the audio-
gram (40), but this may be due to the failings of the audiogram
to fully detect cochlear and afferent lesions (38, 39). Although
the audiogram is only a gross measure of deafferentation, it does
have a relationship to the perceived location of tinnitus (41, 42)
and tinnitus pitch (43, 44). Tinnitus tends to localize toward the
ear with greater hearing loss (42). Tinnitus pitch matches tend
to be higher pitched for high frequency hearing loss and lower
for hearing loss that extends into lower frequencies (45). Tinnitus
likeness matching processes have suggested that tinnitus can be
reasonably well replicated as a spectrum that mirrors the audio-
gram (43). Thus cochlear deafferentation has been hypothesized
to lead to perception of sounds as if generated from the deaffer-
ented areas. It has been postulated that mechanisms within the
ascending pathways attempt to maintain a mean level of activity
for homeostasis (46). With a reduction in cochlear-neural activity,
gain is applied creating tinnitus as a by-product (47). Gain mecha-
nisms would also be expected to result in a reduced dynamic range
to external sounds (47, 48). In humans, loudness growth curves
(perceived loudness as a function of intensity) show steeper func-
tions for persons with tinnitus than hearing loss-matched controls
(49) consistent with non-linear gain (48). Evidence for neural gain
adaptation in individuals with tinnitus is also seen in the Auditory
Brainstem Response (ABR). The earliest components of the ABR
are reduced in amplitude, but later components increase to nor-
mal amplitude, suggesting that loss of sensitivity at the periphery
is recovered by later brainstem centers (50). Following noise expo-
sure in animals, there is a decrease in spontaneous activity in the
auditory nerve but an increase at the Dorsal Cochlear Nucleus
(DCN) associated with tinnitus (51).

While there is evidence that changes in gain accompany tinni-
tus, it has been argued that other processes are required for tinnitus
generation (48). Loudness intolerance may be due to increased
gain, and tinnitus a downstream consequence of neural compen-
sation for that gain (48); or loudness intolerance may result from
broad hyperexcitability while tinnitus presence is dependent on
patterns of remaining spontaneous activity (47). Consequently
tinnitus may be dependent on some afferent input (47). The onset
of tinnitus and its continuation may draw upon different mecha-
nisms. Chronic tinnitus may not just be a continuation of an acute
phase, but may occur through plastic processes following on from
the initial pattern creation. Chronic pain, as an example, follows
a time dependent process that requires a consolidation phase of
hours to weeks (52). The elimination of putative tinnitus gener-
ation sites but continuation of tinnitus, such as can occur with
cochlear nerve sectioning (53) and removal of the DCN (54), sug-
gests that after ignition tinnitus may consolidate within other cen-
ters and networks. Investigating cochlear NMDA-receptor block-
ade in an acoustic trauma rat tinnitus model Guitton et al. (55)
identified a period of 4 days in which intervention was effective,
after which it was ineffective, suggesting a shift in the mechanism of
tinnitus or possibly consolidation in memory. Robertson et al. (56)
observed that hyperactivity at the Inferior Colliculus in a guinea-
pig tinnitus model was dependent on cochlear input for up to
8 weeks following cochlear trauma; but after 8 weeks, elimination
of cochlear-neural activity with cochlear-cooling, kainic acid, or
cobalt no longer reduced hyperactivity suggesting consolidation
within the Inferior Colliculus.

A homeostatic response to deafferentation (43, 44) possibly
forms the frequency signature of tinnitus and accompanying sen-
sitivity to sound, but additional processes are likely to be required
in order to decipher tinnitus as an object.

TINNITUS AS AN AUDITORY OBJECT
Traditionally, we have applied a “musical listening” view to tinni-
tus, describing tinnitus in terms of frequency and intensity (14,
15) but tinnitus has a complex sound quality that people often
describe relative to auditory objects and events (e.g., “crickets,”
“cicadas,” and “screaming”) with a spatial location (e.g., left side
and in-the-head) (26, 57). Consistent with this observation, several
authors have hypothesized that object formation (58) or processes
contributing to object formation may play a role in tinnitus per-
ception (59). An auditory object is a thing or event that creates a
sound. Auditory objects are important components of ASA (22,
23). In neurophysiology, ASA are those events that encode sound
so that they can be separated and recognized from other ongoing
auditory activity (22, 23, 58). Two common thoughts experienced
by a person upon hearing tinnitus for the first time are “what”
is it and “where” is it coming from. Both “what” and “where”
sound characteristics are fundamental to ASA, and require the
formation of complex semantic and spatial representations in the
auditory cortex from simpler spectrotemporal patterns formed in
the auditory periphery (23, 60).

Features thought to play a key role in the “what” auditory
grouping include: spectral, temporal, and spatial separation, har-
monicity, onsets and offsets, coherent amplitude and frequency
variations, and bandwidth and phase (61–63). Tinnitus may be
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coded through many neurophysiological mechanisms that are
common with object formation (64). It would seem that parsing
out and processing tinnitus from the ensemble activity forming
sound would require pattern and target identification by the same
cortical and sub-cortical processes employed in ASA (65). Com-
pensatory mechanisms are normally employed by the auditory
system to adjust contrast to detect small changes within continu-
ous signals (66). Such compensation may be necessary following
the reduction in contrast between external signals and internal
noise accompanying hearing loss. To do this auditory neurons in
the cortex modify gain moment to moment (67) to code for quiet
sounds within an intensity-varying stimulus, and allow response
to the sudden appearance of quiet sounds (68). Extracellular
recordings in the ferret auditory cortex in response to dynamic
random chords (puretones with three different levels of contrast)
have shown that the gain of neurons increases for low contrast
signals (66). Formation of tinnitus may be achieved by intracorti-
cal networks or cortico-thalamic feedback downstream from gain
mechanisms in other brainstem centers (66, 69–72).

The localization, or “where,” of auditory events is, arguably,
the most important process in ecological psychoacoustics. The
perceived location of tinnitus has seldom been considered in the
evaluation or treatment of tinnitus, despite the common obser-
vation that upon hearing tinnitus for the first time patients often
explore their environment to find the source of the sound. The
annoying “tinnitus cricket” is discovered not to be an insect only
through the individual moving in their environment; as the object
does not move closer or further away with head or body move-
ment.Vanneste et al. (73) proposed a tinnitus localization network,
on the basis of resting state EEG, consisting of the auditory cor-
tex, angular gyrus, parahippocampal area, and superior premotor
cortex. Activity from the premotor cortex appears to differenti-
ate laterality of percept (73). Localization is impaired in persons
with tinnitus suggesting either tinnitus results from disruption of
neural mechanisms responsible for localization, or the presence of
tinnitus makes localization more difficult. In a sound localization
test with a seven-speaker array, error scores were higher in persons
with tinnitus than controls, and errors in participants with tinnitus
on the same side as the speaker were higher than for participants’
with contralateral or bilateral tinnitus (74).

It is reasonable to expect that the perception of tinnitus involves
some if not all processes normally applied to identify auditory
objects in our environment. But we also know that tinnitus does
not follow all rules associated with sound, particularly absence
of normal habituation in many sufferers (75) and its unusual
magnitude (76). Of particular importance to these tinnitus char-
acteristics may be processes that extract tinnitus as a salient
object.

TINNITUS AS A SALIENT OBJECT
In our daily lives, we are exposed to constant sensory stimu-
lation that requires prioritization and filtering. Intelligible and
useful sound information need to be extracted from a background
of other competing sounds; unimportant, constant, and famil-
iar stimuli are suppressed once detected (77, 78). Why is it that
tinnitus persists when we normally adapt to continuous sensory
stimulation? Events that are important to the individual but not

clearly understood remain or become salient (79). Stimuli out of
context, or unusual, normally engage attention; tinnitus is unusual
as a perception because of its “unreality” (19).

An important role of the auditory system in ASA is to inte-
grate knowledge of sensory changes representing the environment
with cognitive processes such as memory and attention (22, 23).
The saliency and semantics of tinnitus relative to expected audi-
tory activity appears to result in a pop-out effect in which the
tinnitus signal is audible, sometimes even when the background
sounds are relatively high (80). The auditory thalamus and cortex
work together through feed-forward and feedback mechanisms
to process ecologically significant aspects of sound influenced by
context and arousal (70, 72). The frequencies comprising tinni-
tus maybe more or less dependent on abnormal gain in response
to the deafferented auditory periphery, but tinnitus may only be
perceived if a Limbic-Auditory gating mechanism fails to cancel
aberrant neural noise (81). Rauscheker et al. (81) suggest that tin-
nitus perception occurs with a failure of the nucleus accumbens
and ventral medial prefrontal cortex to cancel tinnitus generated
in lower structures. The role of these structures has prelimi-
nary support from fMRI measures of hyperactivity in the nucleus
accumbens response to sounds matched to tinnitus (82).

The distinction between signal and masker in normal audi-
tion is not solely based on intensity frequency and spatial overlap
of sound, but also predictability (83). According to Winkler (83),
the auditory system can achieve formation of objects by searching
for regulatories (repetitions). This predictive regularity requires
encoding, memory, and learning (83). The saliency of auditory
events can be determined as a deviation from regularities across
dimensions of the sound envelop, harmonicity, spectrum band-
width, and modulation (84); “salience detection” appears to be a
form of bottom-up auditory attention driven by the novel proper-
ties of the sound (84). A salient signal related to tinnitus may have
been identified in the Ensemble Spontaneous Activity (ESA) from
the cochlea. The ESA is the spectrum of “neural noise” recorded at
the cochlear round window, or directly from the eighth nerve. The
emergence of a peak at 200 Hz in the ESA is seen in tinnitus patients
(85) and animals following cochlear lesions that reduce the most
predominant spontaneous activity (4). Activity that is repetitive in
the auditory periphery, such as the ESA, may be processed as a reg-
ularity that conflicts with internal representations of spontaneous
activity.

Predictive coding processes have been hypothesized in both the
formation of musical hallucinations (86) and tinnitus (87). Errors
in the brains interpretation of auditory activity may simply occur
as the result of a difference between expected and actual auditory
input following hearing loss (88). Kumar et al. (86) hypothesized
that the various hierarchical levels of auditory processing try to
predict the representation of auditory objects at lower levels; errors
in prediction are then fed forward to update representation (86).
Phantom auditory perceptions, including tinnitus and auditory
hallucinations, can seen to be the result of hierarchical prediction
errors or impressions leading to changes in post-synaptic gain (86).
Once processed as an object, the absence of an appropriate context
may result in a reallocation of attention resources to focus on its
perception (87). The aberrant activity may then feed-forward into
non-sensory cognitive processes that are strongly associated with
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tinnitus distress (89). Demand on object processing and atten-
tion to tinnitus appears to contribute to a depletion of resources
available for other cognitive tasks, potentially explaining impair-
ments in concentration and memory on behavioral tasks amongst
persons with tinnitus (90–94). Consideration of the similarities
and differences between“hearing voices”and hearing tinnitus may
advance our knowledge of both conditions.

MAGNITUDE
One of the most puzzling aspects of tinnitus has been the apparent
paradox between matched tinnitus loudness and severity. Inten-
sity matches of sound to tinnitus usually bare little relation to
tinnitus severity or effect on quality of life (76). Although tinnitus
loudness appears to share some similar processing with loudness
perception, such as the involving the contralateral auditory cortex
(95), catastrophic tinnitus can be matched to a low-level exter-
nal sound (76). Two common explanations for the loudness and
severity mismatch have been that: loudness matching methods
are erroneous and/or that loudness is independent of severity (96,
97). Although psychoacousticians have attempted to improve pitch
match methodology to include or compensate for factors such as
recruitment (98) the disparities still exist (99, 100). This may be
because loudness ratings and matches to sound are two different
constructs and have different reference points. Tinnitus magni-
tude is the self-perceived audibility of tinnitus, it is not a simple
equivalent of intensity but an amalgam of experience and contrast
with the context at the time of judgment, and can be considered
to be a combination of loudness, severity, and awareness (101).
ALT explains magnitude is based on frames of reference or con-
text with top-down influence from psychosocial contributors. In
loudness judgments, for example, tinnitus appears greater with
less auditory activity (102) and less demand on cognition (103).
It is loudness, not intensity, which is normally encoded in the
cortex (104, 105). The apparent discrepancy between loudness
matching and ratings of “loudness” disappears as a paradox when
ALT is applied. Tinnitus matching introduces an external sound
as a reference point, while tinnitus loudness ratings are normally
undertaken relative to silence, or most recent experienced sound.
Aruldasan (106) found a dichotomy of adaptation to perceived
and matched loudness after 20 min of silence, broad-band noise
at threshold, 10 dB Sensation Level (SL), and 20 dB SL. Measure-
ments were undertaken in silence but immediately following the
adapting levels of sound. In the case of the short exposure used
(20 min) change in tinnitus loudness ratings were negligible; how-
ever, as sound was raised above threshold to 10 and then 20 dB
SL the loudness match increased. According to ALT, the matching
sound would appear quieter after adaptation to sound and would
have to be raised to match the intensity of tinnitus. Aruldasan’s
(106) preliminary results would suggest that, at least in the short
term, sound adapts to a greater extent than tinnitus loudness. In
order for tinnitus loudness matches to sound to be reduced (with
a treatment) tinnitus would have to reduce to a greater extent than
any sound adaptation. This may explain treatment-related reduc-
tions in tinnitus loudness ratings or masking levels but negligible
changes in tinnitus loudness matches to sound with time (107,
108). It is not necessarily the psychoacoustical methods that are at
fault, but rather their interpretation.

Attention and context of perception also appear to be impor-
tant factors to manipulate for long-term adaptation to tinnitus. A
central component to loudness adaptation has been suggested con-
taining a central feedback loop with gain dependent on peripheral
input (109). Tinnitus has been correlated with primary audi-
tory cortex activity; proposed to be due to an “over attention”
to audition (110). The magnitude perception component of the
ALT model of tinnitus would be consistent with neurophysiolog-
ical mechanisms in which gain is provided to low-level inputs,
and under some top-down control (111). It is possible that a
top-down control overlays the gain adaptation to deafferentation,
functioning to apply additional gain to salient signals.

RESIDUALS
In the preceding sections, I have presented arguments as to why
tinnitus [X, in the (1) ALT model – A = X pBqRr] should be consid-
ered an auditory object to be extracted from background activity
(B). It has also been posited that attention and top-down process-
ing (exponents p, q, and r) contribute to the relative salience of
tinnitus to background activity. There are other components to
the ALT model; the residuals (R). In ALT, residuals are the cogni-
tive, semantic, and psychosocial contributors to magnitude; these
include memories of sound, past experience, arousal level, and per-
sonality. Residuals may play a very important role in determining
tinnitus magnitude.

A role for fear and emotion in tinnitus perception and reaction
has been a recurring theme in tinnitus models over the last 25 years
(7). Recently, Carpenter-Thompson et al. (112) demonstrated that
persons with tinnitus and hearing loss had faster response times
to affective sounds than those without tinnitus. The detection and
maintenance of tinnitus in the sensory and cognitive domains are
believed to interact with individual differences in both motiva-
tion and personality to determine response magnitude. There is
a considerable body of literature focused on personality in tin-
nitus (113, 114). As well as playing a role in determining affect,
personality may directly influence an individual’s signal detection
criterion, and response to sound (106, 113). Welch and Dawes
(113) found low social closeness, low self-control, high alienation,
and high stress reaction were predictors of tinnitus in a birth
cohort assessed at 32 years of age (113). Aruldasan (106) found
that the same factors were predictive of sound exposure reducing
tinnitus annoyance in a sample of tinnitus sufferers.

Tinnitus is also influenced by individual differences such as
health, hearing, coping, and acceptance. Health may influence tin-
nitus generation directly [e.g., hearing loss, head injury, and ear
disease (115)] or its severity through effects on well-being [anxiety
and depression; (116, 117)] physical health [e.g., cardiovascular
disease (118), arthritis (115), and disability (117)]. Coping and
acceptance abilities are also important contributors to how tinni-
tus affects the individual (119–122). A coping strategy that avoids
listening to the tinnitus, and catastrophic thoughts, while seeking
social support may result in less disability (120, 121).

Memories and past experience may prime tinnitus affect. Zen-
ner (20) hypothesized that tinnitus induces fear because it can-
not be understood in context of an already existing long-term
memory; it lacks an established stimulus response pattern. Partic-
ipants with negative feelings following recall of past frightening
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experiences report an increase in loudness ratings of tones (123).
Similar effects may be seen in tinnitus associated with Post-
traumatic Stress Disorder. Sounds may trigger tinnitus and/or
stress when those sounds have negative associations (124). While
some residual factors are innate to the individual (personality and
memories) other residuals, such as arousal will be shaped very
much by the individual’s interaction with the environment.

ENVIRONMENT
Our environment consists of situations (social venues and home)
and activities (work and exercise) that result in different states of
arousal (stress, joy, and anxiety) and background sounds that vary
over the time of day. Day-to-day, minute-to-minute our sound-
scape changes. With different auditory events come meaning,
emotional associations and response. Our environment influences
tinnitus audibility, affect, and persistence. Our acoustic world or
“soundscape” (125) can influence comfort (126), cognitive perfor-
mance (127), and potentially health (128); all effects that poten-
tially impact on tinnitus. If tinnitus is seen as being behaviorally
important (129) or perceived out of context (19), it will take on
greater importance relative to other sounds. The sound levels in
different environments (busy office, quiet bedroom, and party)
can increase or decrease audibility of tinnitus in a manner pre-
dicted by ALT. If there is a reduction in background sound levels
or an increased focus on tinnitus there will be a greater weighting
to the intensity of tinnitus. Thus the time of day may influence
tinnitus magnitude through a time-line of quiet and noisy situa-
tions (e.g., waking in quiet bedroom, noisy public transport, quiet
office, noisy factory, and quiet home) and accompanying changes
in stress levels and emotions.

Certain sounds and activities may impact on emotion and well-
being with downstream consequences for tinnitus; attending a
concert may induce pleasure and reduce the impact of tinnitus,
while relaxation at home may be disturbed by the same music
being played loud by the neighbor’s stereo. Tinnitus sufferers may
withdraw from social activities for fear of communication prob-
lems (37) or concerns that the environments noise or stress may
increase their tinnitus. A loss of control over the environment,
such as the uncontrollable experience of objects not in the envi-
ronment (tinnitus), may lead to learned helplessness and poor
coping behaviors (130). Such maladaptive coping is unlikely to
allow adaptation to tinnitus (121).

The failure to adapt to tinnitus may also result from a dispar-
ity in representation across the senses. Sensory input, other than
just auditory, may contribute to tinnitus audibility. Our senses
usually work together to enable us to interpret our complex envi-
ronment and confirm the need for action (131). Normally, once
an object is formed the need for a response is determined, if no
response is needed that signal may be attenuated. Evidence sug-
gests that cross-sensory interactions play a role in human tinnitus
(132) and in animal models of tinnitus (133). Multisensory pro-
cessing in tinnitus perception may be just as important as they are
in our exploration of the real world. Hearing can be thought of
as an alerting sense, one that can detect objects or events around
corners, vision is confirmatory, and tactile perception is interac-
tionary, requiring action within arms reach. Tinnitus alerts us to
an object or event, but we cannot confirm its presence with vision

and we cannot touch or manipulate it (or for that matter smell or
taste it). The presence of an auditory object with no visual or tac-
tile equivalent in the peripersonal space is highly unusual. Burton
et al. (134) observed negative correlations in functional connectiv-
ity between visual and auditory cortices in persons with tinnitus,
possibly because vision is irrelevant to the tinnitus percept. There
is some preliminary evidence that sensory-motor incongruence
in healthy volunteers can induce pain (135). It is a possibility
that auditory–visual incongruence may result, if not in tinnitus
generation, in tinnitus disturbance and persistence.

Focusing on the external environment and exploring real audi-
tory objects reduces attention to tinnitus (136). It is a common
clinical observation that tinnitus patients will say the tinnitus is
less of a problem when they are busy. Involvement in non-tinnitus
focused activities such as work or exercise, may change how and
if we react to the tinnitus percept. In situations, where attention
and higher executive function are directed to non-tinnitus activi-
ties (e.g., work) processing of tinnitus may take a lower priority to
that when in a low-demand situation (e.g., relaxing at home at the
end of the hard day). Cognitive resources are needed to maintain
distinction between target and distractor (137); attentional load
on non-auditory activities is less likely to see emergence of tin-
nitus perceptions (103). Conversely, low cognitive load and quiet
environment, such as when attempting to sleep, can cause great
frustration (27).

SOCIAL FACTORS
Broader influences than the individual and their immediate envi-
ronment can be defined as social factors. Tinnitus is an intrinsic
experience but it could be strongly influenced by expected behav-
ior and social learning (138). Relationships and support (e.g.,
family empathy and social isolation) have not been paid a great
deal of attention in tinnitus research, but may play a greater role in
tinnitus than has been previously considered (139). Some of the
response patterns to tinnitus may even be an imitation of another
person’s reaction to tinnitus (138). Tinnitus disability is greater
when spouses ignore, or become irritated and frustrated with their
partners seeking of support (120). The advice that health profes-
sionals provide may facilitate coping or prime the system for a
negative reaction to tinnitus (120). Societal norms for behavior,
culture, and religion may all contribute to tinnitus, as might severe
environments such as war and trauma (124, 128). The association
between negative thoughts, fear, and tinnitus might be the con-
sequence of classical conditioning (7) or intrinsic learning (20);
leading to a sensitization of the CNS and potential lowering of
detection threshold (20).

CONNECTING THE DOTS: ECOLOGY, NETWORKS, AND
ADAPTATION
Neurophysiology and psychoacoustics provide reciprocal evidence
for a complicated multistage change in the auditory system that
gives rise to the tinnitus experience. Various homeostatic and
adaptation mechanisms appear to accumulate following deaf-
ferentation (24). Normal adaptation grows stronger, and becomes
more complex along the auditory pathway from the auditory
nerve to cortex. Adaptation facilitates a wide range of sounds to
be audible or useful while enabling novel sounds to be detected
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and processed (66). Because adaptation is a constant feature of
auditory processing it is likely to play some role in tinnitus induc-
tion, consolidation and maintenance. It is the posit of the eco-
logical model described that tinnitus arises through adaptation
applied to extract auditory objects from the ensemble of neural
activity.

In ecological terms adaptation enables error correction while
exploring our environment (1) so tinnitus could be seen as a failure
of error correction. The adaptation mechanisms resulting in tin-
nitus’ unusual annoyance, magnitude, and persistence are likely
manifold but could consist of overlapping bottom-up and top-
down processes including: homeostatic and contrast gain control
(40, 47) bottom-up attention (84) failures against prediction (83,
87) failed noise cancelation (81) and top-down attention modu-
lated gain (87). Deafferentation may result in patterned activity,
different from the norm, which can be deciphered as a sound (tin-
nitus). Gating processes at the thalamus proposed to normally
control neural noise, may fail due to influence from the limbic sys-
tem, allowing further processing (81). If tinnitus is mismatched
with predictions in memory, attention should be drawn to the
tinnitus (87). This attention is likely to mediate the awareness of
tinnitus in that an overly attentive system adapts to extract the tin-
nitus signal, possibly via a top-down gain mechanism (87, 111).
This process may allow extraction of a low-level signal imbedded
within neural noise (4).

Semantic processing and an individual’s psychology (response
to stress, anxiety, depression, and their personality) will likely con-
tribute to the maintenance or failure to adapt to tinnitus. Object
recognition and confirmation would normally require integration
of activity from several brain regions, such as those involved in
perception, prediction, memory, and emotion. Network models
offer a means to relate neural processes subserving the ALT resid-
uals, and the interplay of sensory perception, the individual, and
the environment. Imaging studies using differing methodology
identify increased connectivity of the auditory cortex, parahip-
pocampus, amygdala, and prefrontal cortex (140–142) consistent
with the view that tinnitus is best viewed as a neural network (89).
But the imaging evidence is not unequivocal (143).

HYPOTHESES AND TESTING OF MODEL
The primary hypothesis is that tinnitus is the result of complex
relationships best examined by considering research within an
ecological framework. To test this general hypothesis we need
to be cognoscente of how individual neurophysiological compo-
nents comprising tinnitus combine to form a whole. I suggest two
general approaches to research:

1. Longitudinal study of individuals; following individuals in
depth over time using a wide range of assessment methods.

2. Build on existing reductionist foundations by adding greater
ecological validity, and the study of individual differences
within group studies.

The first approach attempts to consider tinnitus as a whole, cir-
cumventing the heterogeneous nature of tinnitus, by moving from
single measures across groups of sufferers, to multiple measures
(objective and behavioral) in single subjects. Such an approach

requires a paradigm shift amongst researchers, but also funding
agencies and journal editors.

The second approach would attempt to incorporate ecological
validity into experiments, while limiting confounding variables.
To fully capture the human experience of tinnitus we should use
a broad array of assessments, both behavioral and objective. We
require more realistic avatars of the tinnitus experience. Psychoa-
coustic methods should be improved in accuracy and be able to
capture individual variability. Recent “tinnitus spectra” methods
of tinnitus assessment are a move in this direction (43, 44). Virtual
reality offers a potential means to further advance psychoacoustic
assessment and render more realistic avatars for tinnitus (144).
Virtual environments for fMRI (145) may also assist in captur-
ing more realistic representations of neurophysiological events
underpinning tinnitus. Animal models of tinnitus need to, and are,
becoming more representative of tinnitus in humans, but could,
by way of example, make use of aged animals (146).

The second approach could expand our foundation knowledge
through consideration of interactions between ALT components.
It is hypothesized that:“Individual differences in personality, emo-
tion, and memories will influence: the perceived magnitude of
tinnitus, and the effect of sound and the environment on tinnitus.”

Tinnitus will be able to be modeled using Helson’s mathemat-

ical expression of ALT (1)
(

A = X
p
BqRr

)
by probing individual

differences in personality, emotion, and memory while controlling
other model components.

Despite criticisms of current methodology existing findings can
be integrated within an ecological framework. Many pieces of the
tinnitus puzzle seem to be present; an ecological approach may
assist in solving the puzzle.

SUMMARY
It has been proposed here that the unusual magnitude and persis-
tence of tinnitus can be modeled by ALT as adaptive interactions
between residual factors, context, and processes extracting “what”
and “where” patterns from the environment. The hypothesized
neurophysiological basis of the model is that:

• Following peripheral injury central gain increases to compensate
for deafferentation (47). The amount of gain is under top-down
control.

• Multiple schema-based pattern recognition mechanisms shape
tinnitus as an auditory object. Complex networks (89) linked to
our individual psychology and semantic processing interacting
with the environment apply top-down gain mechanisms such as
contrast control to extract salient signals from neural noise (66).

• The tinnitus object is incongruent with predicted patterns (87)
due its intrinsic novelty and top-down adaptive attention control
tinnitus fails to be canceled (81).

• Interaction with our environment shapes tinnitus processing
through variations in background activity, stress, and emotion.
ALT explains many of the complex influences of individual
psychology and environment on perceptual relativity.

CONCLUSION
An ecological model that includes ALT appears to be a use-
ful framework to understand the complex relationships between
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putative tinnitus mechanisms. Advocacy for an ecological
approach to tinnitus should not be misinterpreted as an attempt to
discredit or relegate the importance of fundamental neurophysiol-
ogy; rather it provides a different perspective. Most of the evidence
provided in this review to support an ecological approach is indi-
rect and based on reductionist research approaches. The model
and its assumptions can, and are, being empirically evaluated. In
conclusion, I suggest tinnitus should be defined as the perception
of an auditory object in the absence of an acoustic event.
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