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Abstract

Activity-dependent modifications of synaptic efficacies are a cellular substrate of learning
and memory. Current theories propose that the long-term maintenance of synaptic effica-
cies and memory is accomplished via a positive-feedback loop at the level of production of
a protein species or a protein state. Here we propose a qualitatively different theoretical
framework based on negative-feedback at the level of protein elimination. This theory is
motivated by recent experimental findings regarding the binding of PKM{ and KIBRA,
two synaptic proteins involved in maintenance of memory, and on how this binding affects
the proteins’ degradation. We demonstrate this theoretical framework with two different
models, a simple abstract model to explore generic features of such a process, and an exper-
imentally motivated phenomenological model. The results of these models are qualitatively
consistent with existing data, and generate novel predictions that could be experimentally
tested to further validate or reject the negative-feedback theory.

1 Introduction

We all have memories that date back to our youth; we remember the house we lived
in at age four; we remember a favorite or least favorite schoolteacher. These memories
are believed to be encoded primarily via long-lasting synaptic plasticity that persistently
modifies specific neuronal circuits in our brain (Martin et al., 2000; Whitlock et al., 2006;
Yang et al., 2016; Langille and Brown, 2018), and at the molecular level this is achieved by
altering the numbers or conformational states of certain proteins in these synapses (Bear
and Malenka, 1994; Nicoll, 2017). However, this putative cellular basis of memory relies on
proteins that typically have lifetimes orders of magnitude shorter than the memory. Here
exactly lies a fundamental problem of long-term memory and synaptic plasticity: How can
memories be stored for a human lifetime on the basis of proteins that are continuously
degrading (Crick, 1984; Lisman, 1985). Moreover, since synaptic plasticity is a synaptic
rather than a whole cell event, what affects the lifetimes of individual synaptic efficacies
and hence memory is likely not the lifetime of a protein in the cell, but the time that a
protein typically dwells in a synapse. This variable, the synaptic lifetime, may well be
significantly shorter than the protein lifetime due to diffusion and trafficking of proteins.
To account for how such an inherent instability of memory can be overcome, differ-
ent theories have been proposed (Lisman, 1985; Lisman and Zhabotinsky, 2001; Bhalla
and Iyengar, 1999; Aslam and Shouval, 2012; Jalil et al., 2015). Most theoretical mod-
els assume a common mathematical structure based on a positive-feedback mechanism
that can generate bi- or multi-stability. The biophysical instantiation of the feedback
varies from model to model. This feedback could be based on on single species feed-
back loops such as autophosphorylation (Lisman, 1985; Lisman and Zhabotinsky, 2001),
or more complex multi-molecule post-translational feedback loops (Bhalla and Iyengar,
1999), or, alternatively, on positive feedback loops operating at the level of the regu-
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lation of translation (Aslam et al., 2009; Jalil et al., 2015; Richter and Klann, 20009;
Ogasawara and Kawato, 2010). Note that despite the different biophysical substrates
of these theories, their mathematical structure is similar.

One prominent candidate for a molecule that is necessary for the maintenance of late-
phase long-term synaptic plasticity (L-LTP) and long-term memory is the constitutively
active form of atypical protein kinase C, PKM( (Sacktor et al., 1993; Ling et al., 2002;
Pastalkova et al., 2006). The levels of PK M ( persistently increase after L-LTP and mem-
ory formation (Hsieh et al., 2021), and blocking its activity reverses established mem-
ory (Pastalkova et al., 2006). How this persistent increase is maintained despite pro-
tein turnover is achieved is still unclear. Previous models (Ogasawara and Kawato, 2010;
Jalil et al., 2015) have postulated that this might occur due to a feedback loop based on
enhanced translation in synaptic spines. The results of these models seem consistent with
experiments; however their fundamental assumption has not been proven experimentally
and the mechanism for such increased translation have not been elucidated.

Recent results have shown that maintenance of plasticity and memory depends on the
binding between PK M( to another synaptic molecule, KIdney BRAin protein (KIBRA)
(Tsokas et al., 2024). During L-LTP the synaptic concentration of PKM( bound to
KIBRA increases selectively in activated pathways (Tsokas et al., 2024). Agents that
specifically interfere with the binding of PKM({ and KIBRA can reverse established L-
LTP and long-term memory as late as a month after memory formation (Tsokas et al.,
2024). In contrast, these inhibitors do not affect baseline synaptic transmission and do
not affect the binding of other kinases such as other atypical protein kinase C molecules
and Ca?* /calmodulin-dependent protein kinase, I (CaMKII) to KIBRA (Tsokas et al.,
2024). In addition, previous results show that the binding of PKM({ to KIBRA shields
PKM(¢ from proteasomal degradation (Vogt-Eisele et al., 2014). Together, these results
suggest that the increase of PK M({ magnitude in synapses during long-term plasticity
and memory arises from a decrease in protein turnover and possibly decreased diffusion
rather than from an increase in synthesis. There are currently no mathematical theories of
memory maintenance based on the conditional decrease of protein elimination.

Motivated by these results we propose a novel theory based on negative feedback of
protein elimination. In the context of this general theoretical framework, the concept of
elimination incorporates several molecular processes, including classical protein degrada-
tion, but also changes of the conformational state of a protein from an active to an inactive
state, as well as the diffusion or trafficking of proteins out of the synaptic compartment.
We explore here two specific instantiations of the negative-feedback theory, a simple single
species model to explore the principles of maintenance by negative feedback and a more
complex phenomenological model motivated by the binding of PK M ¢ and KIBRA (Vogt-
Eisele et al., 2014; Tsokas et al., 2024). Using these models we will outline the general
properties of the negative-feedback theory, examine under what general conditions it can
produce stability, and propose experimentally testable predictions.
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2 Results

This paper aims to explain how maintenance can be achieved by negative feedback of
protein elimination, and this is the main focus of the results section. Before turning
to the analysis of the negative-feedback theory we will begin by examining a simplified
synaptic state model (section 2.1 ), and explain how positive-feedback theories operate in
this framework (section 2.2 ). This section is not novel work but a simple generic description
of most previous models that try to explain maintenance of synaptic efficacies. We provide
this section in order to contrast these theories with the negative-feedback framework. Using
the same simple 1D dynamical structure we will develop a simple instantiation of the
negative-feedback theory (section 2.3). We will show that this model can result in bi-
stability and even generate a continuous attractor. We also outline some generic testable
predictions of the theory. Finally in section 2.4 we describe a phenomenological model to
account for the negative-feedback of degradation arising from interactions between PK M (
and KIBRA, as observed experimentally (Vogt-Eisele et al., 2014; Tsokas et al., 2024).
This phenomenological model is no longer a 1D model, as it is described by 4 coupled
dynamical equations, but it generates a similar qualitative behavior as the simpler 1D
model of negative-feedback. However, it suggests a possible mechanistic basis for the
origin of the negative feedback, and it allows us to simulate the effect of inhibiting the
binding of PKM({ and KIBRA, which has been shown experimentally to reverse L-LTP
and long-term memory (Tsokas et al., 2024).

2.1 The general mathematical structure of long-term synaptic plasticity
in 1D

Synaptic plasticity is a complex high-dimensional process, but here for simplicity we assume
a simple 1D model. In some cases the dimensionality of such high-dimensional dynami-
cal systems can be rigorously reduced (Aslam and Shouval, 2012; Agarwal et al., 2012;
Gabbiani and Cox, 2017); here we simply assume this can be done. In this 1D system
the variable P represents the species of interest. This species could be a concentration of
a protein, the concentration of a specific state of a protein, for example phosphorylated
protein, or it can even represent a complex of bound proteins. In terms of this 1D system
a dynamical equation that governs the concentration of this species (P) has the form:

% = Source (P) — Sink (P) . (1)

Where the source (production) term includes everything that brings P into the com-
partment, including diffusion, trafficking, protein synthesis, and post-translational mod-
ifications such as phosphorylation, which produce this form of the protein within this
compartment, or the binding reaction of different proteins to a compound. The sink term
includes every mechanism that eliminates P from the compartment, including diffusion,
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protein turnover, and processes such as dephosphorylation or unbinding. If dimensionality
reduction techniques are used, the variable P could also be some transformed variable rep-
resenting a combination of some other elementary variables. Note that both the sink and
source terms depend on P, itself, as both of the positive-feedback and the negative-feedback
theories require different forms of this dependence on P.

Maintenance theories are typically based on equations that have several stable fixed
points, and these stable fixed points represent stable states of synaptic efficacy that persist
despite ongoing protein degradation and diffusion. In order to have several fixed points
the sink and source terms must cross several times (Fig. 1A), and for this to happen at
least one of these two terms must be nonlinear. Most current theories, which depend on
positive feedback in the source term, assume that the interesting non-linear part resides
in the source term, and that the sink term is linear. The non-linearity of the source term
is assumed to arise from processes such as autophosphorylation or the proteins control
of its own translation rate within the compartment. In the negative-feedback framework,
the interesting, non-liner term is in the sink term, and will be due to negative-feedback
of one or more of the processes involved in the actual elimination of proteins from the
compartment, which includes protein degradation, diffusion, and trafficking.

A sink and source terms B Dynamics of induction - UP C Dynamics of induction - DOWN
30
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20 Up
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Figure 1: Bi-stability with positive feedback in the source term. A. Sink term (dashed red line)
and source term (blue line). These lines cross at three points, two of these are stable fixed-points
(x) and one is unstable (o). B. Dynamics of L-LTP induction, triggered by a large pulse of a current
of P starting at time T=10 [AU]. Here, the system successfully shift from the DOWN to the UP
state (dynamics include noise). C. With a smaller input pulse there is only a transient change and
the system returns to the DOWN state.

2.2 Positive-feedback theories of maintenance

In positive-feedback theories, the source term is more complex and is the mechanistic
origin of synaptic stability, while the sink term is usually assumed to be linear of the form:
Sink (P) = AP, where A is the rate constant. More complex, yet monotonic sink terms
typically do not alter the qualitative behavior of the system. When the source term has a
nonlinear shape, for example, like the source term in figure ??7A, then the sink and source
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terms cross several times. When the source and sink terms cross, the left hand side of
equation 1 is zero, and hence dP/dt = 0, which is the definition of a fixed point. In the
example shown in figure 1 they cross 3 times, two of these crossings denoted by UP and
DOWN are stable fixed points, which correspond to synaptic efficacy in its basal state
(DOWN) and after L-LTP (UP). The intermediate state is not stable which means that if
the synapse is in that state, small fluctuations will drive the system away from that state
towards either the DOWN or UP states.

In Figure 1B we show the simulated induction of LTP in such a system, using a short
duration of an additional input current of P. If this current is sufficient L-LTP is induced
and maintained (Fig. 1B). If the current is too small there is a transient increase in P
but there is no maintenance ( Fig. 1C). These simulations include a noise term to show
that the stable fixed-points are indeed preserved when noise is added (Fig. 1). Noise
here was added phenomenologically, and not using a rigorous approach (Gillespie, 2002),
as it is non-trivial to add noise correctly to a model with phenomenological rather than
elementary kinetics (Agarwal et al., 2012). This approach to adding noise, which is used
to understand the qualitative rather than quantitative effects of noise, is used throughout
this paper. Note, that it is essential that the non-linearity of the source term be steep
enough, or ultrasensitive to obtain bistability. If the source term is not ultrasensitive then
the system has only a single fixed point.

The origin of the non-linearity (Fig. 1A) in such systems can arise from various types of
molecular interactions, for example auto-phosphorylation (Lisman, 1985), or the up regula-
tion of the translation of new protein in a protein dependent manner (Aslam and Shouval,
2012; Jalil et al., 2015). These different molecular and cellular mechanisms are mathemat-
ically similar as they are all based on positive feedback. The mathematical formulation
of these different biophysical processes should be described by additional variables, and
therefore the complete theory is faithfully characterized by a higher dimensional system.
However, within the crucial dimension described by equation 1 the implication of the posi-
tive feedback is a steep non-linearity. As shown, positive feedback theories can be bistable,
however whether such systems indeed manifest bi-stability depends on the other variables
in the original higher dimensional system, and on the systems parameters.

For one simple example of a positive feedback theory, proposed by Lisman in 1985
(Lisman, 1985), it is possible to reduce the higher dimensional system to a 1D system, and
exactly solve for the fixed-points of the system. This was done approximately in Lisman’s
1985 original paper, and we subsequently derived a precise reduction to a 1D equation
(Agarwal et al., 2012). This is one example that demonstrates how it is analytically possible
to reduce a higher dimensional system to a 1D system, in which the non-linear interactions
can generate bi-stability. More complex and realistic models have been developed using the
autophosphorylation of CaMKII and the details of the CaMKII holoenzyme (Lisman and
Zhabotinsky, 2001; Miller et al., 2005). Although such models are much more complex,
their steady states can sometimes be calculated analytically (Gabbiani and Cox, 2017),
and their qualitative behavior may be captured by the 1D model. Another source of a
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positive feedback loop can arise from the regulation of translation within synaptic spines,
previous models have modeled the regulation of the synthesis of CaMKII via the protein
CPEBI1 (Aslam et al., 2009; Aslam and Shouval, 2012) or the regulation of the synthesis
of PKM( (Jalil et al., 2015). Although the biological mechanism is totally different, these
different models share a similar mathematical structure.

Positive feedback models can also generate multi-stability as we have previously shown
(Jalil et al., 2015) if the source term has a more complex shape due to multiple feedback
mechanisms. Such multi-stability has been both modeled and synthetically constructed in
whole mammalian cells at the level of transcription (Zhu et al., 2022).

2.3 Stability due to negative feedback of protein turnover: abstract
model.

The negative-feedback theory requires a non-linear sink term and for simplicity one might
assume a constant source term. Here we explore a very simple instantiation of this theory
in which we will assume a single protein P with a variable sink term and a single synaptic
compartment. We will explore below a more complex model (section 2.4), but first we will
present a very simple model to illustrate the concept.

Assume for now that there is a single protein that can undergo a steep transition
between two states. In one of these states the degradation rate (\;) is fast; in the other
state the degradation rate (A,) is slower (A; > Az). The variables P; nd P, denote the
concentration of protein in states 1 and 2, respectively, and the total protein concentration
is P = P + P,. We define a state function f(P,©p) that determines the fraction of
protein in state 2, and assume that it depends on the total concentration of the protein
P, and a set of parameters Op. According to these definitions, P, = f (P,0p) - P, and
Py =(1— f(P,0p)) - P. Under these assumptions the dynamical equation would take the
form:

%:Ip—@l(l—f)Hzf)-P- (2)

Where Ip is the source term, which for simplicity assume is constant, except during the
induction phase, in which it is transiently increased. We have omitted the arguments of
the state function f, for simplicity. The function f should be itself modeled as a dynamical
process as well, but let us assume we can ignore these dynamics (maybe they are much
faster) and that they could be replaced by a function that accounts for their steady-state
behavior. For such a 1D system, fixed-points are formed when the source term crosses the
sink term. In Figure 2A-C we present these two curves for several different choices of f.
We use a sigmoidal state function of the form f(z,3,0) = 1/ (1 + exp(—p(x — 0))) with
two parameters, a slope denoted as § and half max denoted as 6. In the limit 8 — oo the
sigmoid becomes a step function.
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Figure 2: Bistability with negative feedback in the sink term. A. Bistability in the case
of a state function (f) being a step-function (8 — oo, § = 5). Top - A constant source (blue line)
term, and two different sink terms with different values of A (dashed orange and green lines). The
resulting effective sink term (from eq. 2) given a step state function f (red line). The shape of
the state function used is shown in the inset. The effective sink term crosses the source term at 3
points. Stable fixed-points are marked with x; unstable fixed-points with o. Botton - simulations
of the induction of L-LTP with an additional noise term. Solid line - large initial stimulus, Dashed
line - sub-threshold initial stimulus. B. Bistability with f a steep sigmoid function (5 =2, 6 = 5).
Top- The resulting effective sink (eq. 2) term given a steep sigmoidal state function f. The shape
function used is shown in the inset. Bottom - as in A, for the steep sigmoid. C. Mono-stability
is obtained when f is not steep enough (5 = 0.5, 8 = 5). Top - shows source and effective sink
terms, as in A and B. There is only one intersection between the source and sink terms. Bottom-
simulations always converge to the same fixed point; the system is mono-stable.
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The first two examples, in which the state-function is a step-function (Fig. 2A) and
a steep sigmoid (Fig. 2B) exhibit bi-stability. When the state function is not sufficiently
steep (Fig. 2C), the system has only a single stable fixed-point. The lower portion of
subplots in Figure 2 show simulations in which we emulate the induction of L-LTP with
a transient increase in protein synthesis (Ip). When the system is bistable L-LTP can
be induced (Fig. 2A,B - bottom), when it is monostable only a transient increase in
P is obtained (Fig 2C-bottom). These simulations include a noise term, responsible for
the fluctuations observed in the dynamics. With the given magnitude, these fluctuations,
do not destabilize the fixed-points; demonstrating that they are indeed stable. In this
bistable system there are two stable fixed points denoted as the DOWN and UP state.
We denote the total protein levels in the DOWN and UP states as PP, PU respectively.
The magnitude of the two states of the protein in the DOWN and UP fixed points are
denoted as: PP, PP, PV, PY, respectively. The total protein concentration is each state is
PP = PP + PP and PV = PV + P{.

In the limiting case when f is a step function (8 — oo), there is a simple relationship
between the levels of the total protein in the UP and DOWN states and the degradation
rates, of the form:

PY /PP = X\ /). (3)

This relationship is also approximately true for a large range of f—function parameters
that are steep enough to maintain bi-stability, and can therefore be seen as a prediction
of the model. Subsequently we will test if this prediction generalizes to more complex
realizations of the theory.

A B Dynamics
20.0
107 — ptotal w\"‘"
Pl
l —" ™A
15.0 8
0
s
6
3 )
w00 <
° o 4
50 /\ / 2
N
_____ 01
A
00 50 100 150 200 0 S 10 15 2 5 30
P[AU] T[AU]

Figure 3: Bistability with negative feedback with a small change in P, between DOWN
and UP states. A. Sink and Source terms when the transition function (f) saturates below 1
(inset), specifically finqae = 0.85. The ratio of A;/A2 = 100. There are two stable fixed points (x)
and one unstable fixed point (o). B. Dynamics of the saturating model. Induction from 10 — 11 in
the arbitrary time units. The level of P, increases significantly, but P; stays relatively stable.
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A necessary condition for obtaining bi-stability in this model is that the total amount of
Py in the UP state (P) must be lower than in the DOWN state (P{). This is a necessary
condition because in the negative feedback model the production of protein is constant, so
all that controls the level of proteins in the two states is the turnover. In the examples
given above, the range of the state function (f) is from 0 to 1. With this assumption, in
the DOWN state almost all the protein is in the P; form, and in the DOWN state almost
all protein is in the P, form.

This almost all-or-non scenario is not essential for bi-stability. Consider a different f
function that saturates at a value fi,q < 1 for example: f(z,3,0) = fimaz/ (1 + exp(—5(z — 0))).
We will now assume that in the DOWN state the value of f ~ 0 and in the UP state it is
f & fmaz; an assumption that is approximately correct for a sharp f function. In such a
case the protein level in the DOWN state is still approximately PlD = Ip/A1, and P2D ~ 0.
In the UP state the concentrations are approximately:

U _ Ip(l — fmax)
o A1+ (>\2 - Al)fma:r (4)
P2U Ipfmaac (5)

- )\1 + (AQ - Al)fmaa:

In order to obtain stability in such conditions it is also useful to have much lower degra-
dation of the P» protein, that is Ao << A;. Using this condition we find that:

P1UN1 )‘2_ fmar

Ly 22 _dmer 6
PlD )\1 1_fmax ()

This implies that if indeed Ay << A1, the total amount of P, in the UP state could be
quite close to its amount in the DOWN state, though still necessarily lower. An example
of this can be seen in Figure 3. Here the ratio A\; /A2 = 100, and fynez = 0.85. According to
the theoretical approximation above (eq: 6) this yields a ratio of 0.943. In the simulations
< PV >/ < PP >=0.947 (Fig. 3), when averaged over the periods in each different states
state.

The form of state function (f) determines if the system mono- or bi-stable. One could
imagine other functional forms of f for which the system might be multi-stable. In the
extereme case this system can also become a continuous attractor over a limited range and
for a very specific state function. A form of the state function that can generate such a
continuous attractor can simply be found by setting equation 2 to zero, and solving for f.
This produces the equation:

MP—1Ip
(M —Xo) P
This equation is valid for P such that f > 0; otherwise it is set to zero.

With this choice of the state-function all levels of P in the range I,/ A1 < P < I,/ )y are

stable; this is the range of continuous stability. In Figure 4A we show the source and sink

f= (7)

10
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Figure 4: A continuous attractor resulting from well-tuned negative feedback. A. The source and
sink terms, labeled as in previous figures. The sink and source terms have a substantial overlap
by construction, as determined by using the state-function in equation 7 (see inset). B. Simulating
the continuous attractor model. Initially the model settles at the lowest possible persistent state
where P = Ip/A1. A set of three consecutive induction stimuli cause jumps to new persistent
levels of P. The last stimulus causes a large jump which decays back to the maximal allowed
persistent level of Ip/Ao. The light blue shaded area represents the range of continuous stability.
C. Stochastic simulations of the system. The deterministic simulation (black) exhibits persistent
activation. Three different stochastic simulations (orange, red, green) show significant fluctuations
within the ”stable” region. In simulations the parameters are: Ip = 3, A1 = 2, Ay = 0.25, all in
arbitrary units [AU]. The added noise in C has mean 0 and a standard deviation of 0.25 in [AU].

terms given this form of the state-function, and in the inset the form of f is displayed. In
Figure 4B we show the results of several different consecutive induction episodes triggered
by a transient increase in Ip. As above. Every transient causes a change in the steady
state of the system, as loong P stays within the allowed range. This continuous attractor
is an integrator as it keeps a stable record of the integral of the inputs into the source term.
With no noise as in Figure 4B, these steady states are stable. However, if noise is added
to these simulations (Fig. 4C) there are fluctuations of the state within the allowed range.
The magnitude of the fluctuations, as well as the velocity of the drift, increase with the
noise level. Such fluctuations within the stable range are an inherent property of continuous
attractors. Note that the time axis here is labeled with arbitrary units (JAU]), which means
that we do not know the time scale of the drift along the continuous attractor. With such
a simple and abstract model there is no way to set real time units. With more complex
models in which actual molecular reactions such as synthesis, diffusion, degradation and
binding take place, it would be possible to set physical time units, but only once these
biophysical parameters are estimated.

In the model of maintenance based on negative feedback of the sink term, the non-
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linearity responsible for bi-stability is in the sink term, rather than in the source term. A
necessary condition for obtaining stability is the steep (ultrasensitive) state function. Here
we assume it exists, but do not explain its mechanistic origin. In section 2.4 we propose
a more detailed model motivated by experimental evidence regarding interactions between
specific molecules. That model will no longer be a 1D model, though it still belongs to
the negative-feedback theoretical framework. Many of the major qualitative features of
the abstract model, including the dependence on the different degradation rates and the
critical importance of the ultrasensitive process, are maintained.

2.4 A phenomenological model based on PKM({ and KIBRA binding.

Recent results have shown that L-LTP and long-term memory depend of the binding be-
tween two synaptic proteins, PKM({ and KIBRA (Tsokas et al., 2024). After L-LTP the
concentration of the bound proteins increases selectively in synapses. Molecules that se-
lectively inhibit the binding of these proteins can reverse L-LTP without affecting basal
synaptic transmission. These selective inhibitors can also inhibit memories up to a month
after they were established. It is also known that the binding on PK M ( to KIBRA shields
PKM(¢ from proteasomal degradation (Vogt-Eisele et al., 2014; Tsokas et al., 2024).

Recently we have also shown using an expression system composed of HEK293 cells that
the co expression of PKM( and KIBRA results in apparent droplets in which there is a a
high density of both proteins(Tsokas et al., 2024). If each of them is expressed alone, such
droplets do not appear. If either of two inhibitors that prevent the binding of PK M and
KIBRA (¢-stat or K-ZAP) are applied these droplets do not appear, indicating that binding
between these proteins is necessary for the formation of these droplets. Additionally,
if these cells are photo-bleached there is a partial recovery of fluorescence within a few
minutes (results no shown). Crucially, we have reanalyzed these results, as shown in the
supplementary Figure, and found that the steady state concentration of both PK M ( and
KIBRA increases when they are co-expressed and able to bind. If their binding is prevented
using (-stat or K-ZAP(Tsokas et al., 2024), their steady state levels decrease. These results
further indicate that the binding of PKM({ and KIBRA, which results in the formation
of droplets, inhibits the elimination of these proteins from the cell. On the basis of these
observations we developed a more detailed phenomenological negative-feedback model to
account for maintenance.

The phenomenological model (Fig. 5) includes 4 distinct species. These are PKM( ,
K- which stands for KIBRA, X which denotes dimers of PK M bound to K, and Y, which
represents aggregates, clusters, or droplets of X hetero-dimers. The exact identity of Y is
not determined here, and therefore this model is phenomenological. The species Y could
represent large complexes of bound X via KIBRA-KiBRA interactions, or even droplets or
aggregates of X. However, we must clarify that a 3 species model without a species such as
Y, and in which elementary kinetics determine the formation of X would not be bi-stable,
and therefore would not account for maintenance. All kinetics are standard mass-action
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Figure 5: Set-up of phenomenological model. Left - a schematic diagram of the model.
Arrows on the top represent the source term due to protein synthesis of both PK M and
KIBRA. Dashed lines with arrows at the bottom represent protein elimination, which is
slower for the clusters or aggregates (Y). Right - detailed description of all the reaction
equations, representing the reaction diagram on the left.
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elementary kinetics (as described in appendix A equations 8- 11), except for the formation
of the species Y, which depends on a non-linear Hill-function F' (Fig. 5, see equation 12 in
appendix A for formal definition). This steep function implements (but does not explain)
the ultrasensitive reaction necessary for the a negative-feedback model. The simple binding
of PKM( to K uses mass-action kinetics, which are not ultrasensitive. Formation of Y
could require cooperativity, or possibly a phase transition from a diffuse phase to a liquid-
liquid separated phase. While the experimental data provides some support for such a
process, currently there is insufficient evidence for modeling it explicitly. However, for the
purposes of this paper it is not essential to understand the origin of this non-linearity.
A critical component of this model is that the degradation of Y is much slower than of
the other species. It is this assumption that puts this model into the negative-feedback
framework, and is necessary for bi-stability. The reactions arising from this setup are
depicted in Figure 5, where ' = F(X,Y) is the non-linear ultrasensitive function; an
example of which is given in the appendix.

In Figure 6A we show results of simulations in which L-LTP is induced via a transient
increase in the source term of PKM({ and KIBRA. These simulations demonstrate that
this phenomenological negative-feedback model is indeed bi-stable, and that an input pulse
of PKM( and KIBRA is sufficient to shift it from the DOWN state to the UP state. This
input pulse is equivalent to a transient increase in protein synthesis of key synaptic proteins
which we know is essential for the induction of L-LTP in genera 1(Klann and Sweatt, 2008).
The allosteric inhibitors ¢ — stat or K-ZAP that act by inhibiting the binding of PKM(
to KIBRA reverses L-LTP and long-term memory (Tsokas et al., 2024). We simulated
the application of {-stat or K-ZAP by transiently reducing the binding coefficient between
PKMC(¢ and KIBRA. We show in Figure 6A that this is sufficient for shifting the system
from the UP state back to the DOWN state. If the input pulse is smaller (Fig. 6B) L-LTP
is not induced, hence there is a threshold for the induction of L-LTP in the model. We
also show (Fig. 6B) that the application of (-stat or K-ZAP at the basal level causes only
a minor and transient change in protein levels, this is also consistent with experimental
results (Tsokas et al., 2024).

The ability to obtain bi-stability in this model critically depends on the ultrasensitive
function F. In the simulation of Figure 6 we use a Hill-function with a coefficient n = 4
(defined in equation 12). For the same set of parameters we find that we cannot establish
bi-stability for n < 2.5. This result is based on simulations, but since we have not fully
analyzed the system it is possible that one could obtain bi-stability for smaller values of
n for other parameters sets. However, independent of the exact quantitative details, the
qualitative properties of the system are reminiscent to those of the simple model, and
similarly it critically depends on an ultrasensitive reaction. A full understanding of such
a system would also require identifying and understanding the mechanistic origin of this
necessary ultrasensitivity.

Previously we have shown analytically for the simple model with a concentration de-
pendent degradation rate (equation 3), that the ratio of protein concentrations in the UP
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Figure 6: Dynamics of phenomenological negative-feedback model. A. Dynamics of L-LTP in-
duction and reversal. Top - all species, Bottom - total PKM({ and KIBRA. Initially the model
converges to a sustained basal level sate (DOWN-state). An induction stimulus (green bar) causes
a large and sustained increase in Y, and as a consequence also in total PKM({ and KIBRA (UP-
state).cShown experimentally in Tsokas et al., (2024). Simulated (-stat or K-ZAP (blue bar) causes
a reversal to the basal level. B. A weaker induction stimulus causes only a transient increase of
PKM(¢ and X, but no increase in Y. This sub-threshold stimulus fails to induce L-LTP. Similarly
application of ( — stat at baseline causes only a minor transient change. These are deterministic
simulations with zero noise added.
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Figure 7: Inverse degradation as function of protein levels in the phenomenological model. A.
Dynamics of L-LTP induction and reversal with added noise. Top- Total PKM({ ; Bottom -
degradation of total-PK M . B. Inverse degradation rate of PKM( vs. steady state levels of
total PKM( in UP and DOWN states for different parameters. Each color represents different
parameter sets, different data points with same color are from the same parameters but for the UP
and DOWN states. All different parameter sets shown have the same synthesis rate. The error bars
are standard deviations due to noise added to the system. The solid black line is what would be
expected from a model that depends purely on positive feedback, and the Y intercept of this line
is 1/\

and DOWN states are inversely proportional to the ratio of their turnover rates. In some
sense this must be true in general, since it is clearly the balance between production and
degradation that sets steady-state levels, and since in this model the production level is
constant, then the only possible source of change determining steady state levels is the
effective degradation rate. Nevertheless it is instructive to computationally measure this
for the simulations of the model as a benchmark that can be compared to experiments to
test if they indeed fall into the negative-feedback framework. To do this we calculated the
a degradation rate coefficient of PKM( in the UP and DOWN states, The degradation
rate coefficient was calculated by measuring the total turnover of PK M ( from each one of
the species that include molecules of PK M and divided this by the total concentration of
PKM(¢ in each of those states (see appendix A). In the abstract model of section ?7 this
calculation would produce a the value of A\; in the DOWN state and Ay in the UP state.
In Figure 7TA we show the total level of PK M while we shift the system from the
DOWN to UP state and back again (top). We also show the total degradation level
PK M(¢ in those during the same period (bottom). While the level of total PK M ( increases
from the DOWN to UP states, the degradation rate is similar in both, only transiently
increasing during the induction phase. We added noise to these simulations to better
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emulate physiological conditions, this noise adds fluctuations to the simulations shown in
Figure 6A, but does not affect bi-stability for this level of noise and for the parameters
used here. We repeated these simulations for various parameter sets in which bi-stability is
exhibited. In Figure 7B we plot the inverse of the degradation rate as a function of the total
protein for the PK M ( species for these different parameters. As can be seen, the expected
linear relationship holds. We show the inverse degradation rather than the degradation
rate itself because it results in simpler linear-curves. For all parameter sets presented in
this figure the same synthesis rates were used. Using different synthesis rates would result
in a different linear curve for each synthesis rate, with a different slope for each synthesis
rate. Because we are showing inverse degradation, higher synthesis rates produce smaller
slopes and lower synthesis rate produce larger slopes (results not shown). In contrast to
this linear relationship exhibited in the negative-feedback model, in a positive feedback
model the inverse degradation coefficient is independent of state of the system. In the case
of the simple positive feedback of section 7?7 the inverse degradation rate is simply 1/\ as
represented by the solid black line of Figure 7B. Note that all data points in Figure 7B are
from a model with different parameters, but the same production rates for both PKM(
and KIBRA. With a different production rates the behavior would be qualitatively similar,
but the slope would be different.

The relationship between synaptic efficacy and degradation could be measured ex-
perimentally in order to test which of the different theories is consistent with the data.
Specifically, the negative feedback model would predict that after a synapse undergoes
L-LTP, the degradation rate of key proteins such as PK M or KIBRA would decrease. In
a positive-feedback model it would not change. However, these different mechanisms are
not necessarily mutually exclusive, and it is possible that both mechanisms are used in the
same synapses, i.e., that stronger synapses might exhibit both less degradation and more
synthesis. FExperimental data could indicate if maintenance is accomplished via a pure
positive-feedback or negative-feedback model, or via a hybrid model. If a hybrid model is
used, the maintenance system might exhibit multi-stability; enhancing the dynamic range
of a synapse.

3 Discussion

In this paper we propose a new class of models to account for the stability of synaptic
efficacies. We show that models based on negative feedback of protein elimination could
generate synaptic stability, and that these result in predictions that can be tested experi-
mentally. This class of models are based on two key assumptions. First, in a potentiated
state key synaptic proteins are eliminated at a slower rate than in the un-potentiated state.
Second, there is a steep hypersensitive transition separating the un-potentiated and poten-
tiated states. Such models account for experimental observations, and generate predictions
that can be experimentally tested.
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The premise that stable synaptic efficacies underlie stable memories and learning has
been called the synaptic trace theory (Mongillo et al., 2017). However, recent long-term
recording of synapses in vivo using two-photon microscopy has found a large scale turnover
of synaptic spines and large changes in their size over a period of several weeks in the CA1l
subregion in the hippocampus (Attardo et al., 2015). Experiments that show synaptic
volatility seem contradict the assumption of the synaptic trace theory. In contrast, spines
seem to be much more stable in adult sensory and motor cortex (Grutzendler et al., 2002;
Zuo et al., 2005). Despite the recent advances in recording techniques we do not yet know
if the stable synapses observed are indeed those crucial for the maintenance of memory.

The relative apparent instability of synaptic efficacies is mirrored by instability of neu-
ronal representations in some brain systems and conditions (Ziv et al., 2013) but not others
(Refaeli et al., 2023; Pérez-Ortega et al., 2021). A drift in neuronal representations might
be a consequence of synaptic instability. Models have shown that in some systems a drift
of the input representation can be compensated for upstream, and slowed down by external
feedback (Rule et al., 2020) or by internal mechanisms (Pérez-Ortega et al., 2021). Such
mechanisms require constant re-exposure to the same environment, and this does not ap-
ply to memory of old events that one is not re-exposed to. Currently it is unclear how old
memories can be retained if there is no stable synaptic core. Many synapses might still
drift, if their drift is in a subspace orthogonal to the memory, but currently it seems likely
an episodic memory cannot be maintained without a stable synaptic core (Clopath et al.,
2017).

Another possible objection is that a process of system-level consolidation occurs after
the induction of long-term memory. In system consolidation the location of memory storage
is shifted from the hippocampal region to cortical regions (Wang and Morris, 2010; Squire et
al., 2015). However, in these cortical regions memory is also stored via synaptic plasticity,
which means system level consolidation does not change the nature of the problem, but only
its physical location. Despite system level consolidation, it has been shown that engrams
in CA1l and neocortex are highly stable for long period of time, consistent with memory
storage (Refaeli et al., 2023; Lee et al., 2023). More directly, we have specifically shown
that the reversal of L-LTP in the hippocampus can disrupt memory storage up to at least
one month after the induction of memory (Tsokas et al., 2024). Showing that at least some
memories are stored in the hippocampus for at least a month (Tsokas et al., 2024), much
longer than typical dwell times of key synaptic proteins.

One must note that models of positive feedback are the prevalent models not only for
memory maintenance, but more prominently for models of cell fate (Kobayashi et al., 2003;
Zhu et al., 2022). In those systems the feedback loop is typically implemented at the
level of transcription. In these theories transcribed proteins either directly or indirectly
modulate their own transcription. Models implemented at the level of transcription are
whole cell models. Therefore, they are inappropriate for maintenance of synaptic plasticity
that must be synapse specific in order to be able to maintain specific memories, generate
selective receptive fields, and for specific learning in general. Although, a transcription
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based feedback loop is inappropriate as the primary mechanism for maintenance of synaptic
plasticity, changes in transcription may also occur during maintenance (Squire et al., 2015).

In order to serve as a basis for memory formation, and for learning in general, synaptic
plasticity must exhibit a high degree of synaptic specificity. Synaptic specificity means
that while some synapses are potentiated, neighboring synapses remain un-potentiated.
Such synaptic specificity has been observed experimentally during the induction of LTP
(Harvey and Svoboda, 2007) and L-LTP (Govindarajan et al., 2011). Positive-feedback
models of maintenance are based on mechanisms that are in principle local such as post-
translational modifications, or local translation of proteins. However, until recently the
degree of synapse specificity arising from such supposedly local mechanisms has not been
analyzed theoretically. To address this question we recently developed a reaction diffusion
model of maintenance based on positive feedback (Huertas et al., 2022). The model includes
a dendrite with many synaptic spines and with molecular switches based on positive-
feedback. We studied this model using both analytical and numerical methods, and we
have shown that in order to obtain synaptic specificity it is necessary that the switches
reside in synaptic spines. However, although necessary this might not be sufficient, as we
have also shown that even if the bi-stable switches reside in spines it is very difficult to
obtain synaptic specificity at the level observed experimentally. This lack of specificity
occurs because proteins generated in active spines can spill over to neighboring inactive
spines and turn on the switches in those spines. If a sufficient number of such synapses
are in the potentiated state this spillover will cause all their neighbors within the dendritic
branch to potentiate as well, resulting in a loss synaptic specificity. Our results showed that
the one way to obtain a realistic level of synaptic selectivity is if in addition to the positive
feedback-loop another mechanism during the induction of L-LTP restricts the diffusion of
the critical protein out of the potentiated spine. Structural changes that occur in L-LTP
(Fukazawa et al., 2003) suggest that such changes in diffusion are possible, but we have
shown that such a change needs to be quantitively quite large in order to establish realistic
levels of synaptic specificity. It is reasonable to expect that a negative-feedback model will
not suffer from the same limits to synaptic specificity. This is because in such a model
potentiated synapses do not persistently generate additional proteins, which might then
spill over. However, we have not yet analyzed this theoretically.

The theoretical framework proposed here is based on two key assumption, the lo-
cal control of protein elimination, and a mechanism that allows a sharp transition be-
tween the two states; the fast and slow protein elimination states. The key question
of what these mechanisms are has not been solved here. However, the observation that
maintenance depends on the binding of PKM({ and KIBRA suggests elements of these
mechanisms. First, it has already been shown that the binding of KIBRA to PKM(
slows the proteasomal degradation of PKM({ . This result points in the right direc-
tion but might not be sufficient because diffusion rather than protein turnover might be
the limiting factor. However, results in an expression system (Supplementary Figure)
show that bound PKM(¢ and KIBRA segregate into droplets (Supplementary Figure A).
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The existence of these droplets depends on the binding as it does not exist if each pro-
tein is expressed independently, and is eliminated by inhibitors of this binding. These
droplets resemble liquid-liquid phase separation within synaptic spine (Liu et al., 2021;
Chen et al., 2020). If these droplets are photo-bleached, their fluorescence recovers (results
not shown), indicating they are indeed in a liquid-like state. Such larger droplets are likely
to diffuse at a much more slowly than independent proteins, especially in the crowded
synaptic compartment, further contributing to a slower elimination rate. The formation
of these droplets might depend on a highly non-linear cooperative process such as the one
proposed in section 2.4. Such processes might depend on interactions between hetero-
dimers through KIBRA-KIBRA interactions. Another way of looking at this is that there
is a possible phase transition within potentiated synapses from a diffuse state in which
these droplets do not form, to a phase separated state. If there is indeed a concentration
dependent phase transition, during the formation of long-term potentiated synapses, this
could be the mechanism for the required ultrasensitive component. Although our results
suggest a phase separation, we have not yet demonstrated a phase transition, either in the
expression system or in live synaptic spines.
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APPENDIX

A Equations of Phenomenological model

The complete set of equations have the form:

dPKM

TC = ki PKMC- K + k1 X — Apraze - PKMC + Ipgeare (8)
dK
o = TRPEMC K+ kX = A K+ Te(L+ i n(t) (9)
dx
= kX R PEMCK = pP(X,Y.par) + kyY = Ax X (10)
dYy
ol —k_vY + pF(X,Y,par) — \vY (11)

where:
X2 (X-Y)"

F(X,Y,par) = ¢ + e (12)

K%y +X? Ky + (X -Y)™
in which par represents the parameters: ci,c, Kxx,Kxy,n. The non-linear saturating
equation defining F' is not derived from elementary kinetics, and should be seen as a
purely phenomenological term, in that it enables the system of equations to produce the
required phenomenology. We have not, and are not attempting here to account for how
the biochemistry or physics of this system might generate this term.

In the simulations presented here these parameters are: Ax = 0.1, A\y = 0.00001, A\ =
0.075, A\pram¢ = 0.15, k1 = 0.25,k_1 = 0.1,k_y = 0.0, n = 4, ¢; = 0.05,c2 = 0.25,
Kxx = 2.5, Kxy = 4. The currents Ipg ¢ and Ik include a steady state components, and
a transient component for the induction of L-LTP. Here we assume that only Ipg /¢ has a
transient component. The steady state components used here are: Ipg e = 0.35, [x = 0.2.
The transient component for inducing L-LTP was 1.0 for a duration of 200 arbitrary units
of time. The application of (-stat or K-ZAP is emulated by significantly reducing ki
transiently. Here we set k1 = 0.025 for limited time window; a tenth of its basal value. Noise
is added phenomenologically using Langevin-like noise. The term 1 generates uncorrelated
Gaussian noise, with mean zero and variance 1, and npg ¢, nx and noise parameters for
PKM(¢ and K, respectively. There is a large range of parameter that has qualitatively
the same behavior. The code for running these simulation, is written in Julia and will be
uploaded on ModelDB after the paper is accepted for publication.

To calculate the degradation coefficient of PK M, we first calculated the total degra-
dation of PKM(¢ at each time step (dt), and for this model it is: dt(Apgare - PKM(+ Ax -
X + Ay -Y). These are the degradation levels used in as shown in Figure 7A (bottom). To
obtain the degradation rate coefficient we divided the total degradation of PK M ( at each
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time point by the total concentration of PKM( (Fig. 7A, top) at the same time point,
and averaged separately over the time points in the DOWN and UP states, while omitting
the transients. The y axis values of Figure 7B are 1 over this degradation rate coefficient,
and the error bars are standard deviation of the inverse coefficient over those time points.
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Supplementary Figure 1: KIBRA-PK M antagonists decrease decrease KIBRA-PK M interac-
tions and lower total KIBRA and PKM( levels. (A-D) Left, schematics of Venus-fusion constructs
used in BiFC experiments. Right, representative images of HEK293T cells 1 day after transfec-
tion. Left column, BiFC; middle columns, immunocytochemistry for FLAG-tagged KIBRA and
HA-tagged PKM( ; right column, merged images with nuclear stain DAPI, in which for clarity
the BiFC signal is blue. (A) BiFC produced by co-transfection of N-terminal-Venus FLAG-tagged
KIBRA and C-terminal-Venus HA-tagged PK M ( shows accumulation of intracellular droplets of
KIBRA-PKM{( complexes. (B (-stat (10 nM) decreases BIFC, and total levels of KIBRA and
PKM(¢ . (C) Co-transfection of the N-terminal-Venus FLAG-tagged KIBRA and the C-terminal-
Venus tagged with HA but without PK M shows minimal BiFC. Transfection of KIBRA alone
shows fewer puncta and less immunofluorescence than KIBRA together with PKM(¢ . (D) Co-
transfection of C-terminal-Venus HA-tagged PK M ( and N-terminal-Venus tagged with FLAG but
without KIBRA shows minimal BiFC. Transfection of PK M alone shows diffuse cytosolic distri-
bution and no detectable puncta without KIBRA. Scale bar, 5 pnm. Right, mean + SEM shows
¢-stat (E) and K-ZAP (F) decrease BiFC, total KIBRA, and total PKM({ immunofluorescence
intensities (E: t3 = 3.39, P = 0.04, d = 1.69; t2 = 10.09, P = 0.010, d = 5.82; t2 = 12.69, P =
0.006, d = 7.33; F: t3 = 4.00, P = 0.03, d = 2.00; t3 = 6.24, P = 0.008, d = 3.12; t3 = 6.08, P
= 0.009, d = 3.04, respectively). * denotes P | 0.05. Experiments described in Tsokas et al., 2024.
interactions and lower total KIBRA and PKM( levels. (A-D) Left, schematics of Venus-fusion
constructs used in BiFC experiments. Right, representative images of HEK293T cells 1 day after
transfection. Left column, BiFC; middle columns, immunocytochemistry for FLAG-tagged KIBRA
and HA-tagged PK M ( ; right column, merged images with nuclear stain DAPI, in which for clarity
the BiFC signal is blue. (A) BiFC produced by co-transfection of N-terminal-Venus FLAG-tagged
KIBRA and C-terminal-Venus HA-tagged PK M ( shows accumulation of intracellular droplets of
KIBRA-PKM( complexes. (B)¢-stat (10 nM) decreases BIFC, and total levels of KIBRA and
PKM(¢ . (C) Co-transfection of the N-terminal-Venus FLAG-tagged KIBRA and the C-terminal-
Venus tagged with HA but without PKM({ shows minimal BiFC. Transfection of KIBRA alone
shows fewer puncta and less immunofluorescence than KIBRA together with PKM(¢ . (D) Co-
transfection of C-terminal-Venus HA-tagged PK M and N-terminal-Venus tagged with FLAG but
without KIBRA shows minimal BiFC. Transfection of PKM( alone shows diffuse cytosolic distri-
bution and no detectable puncta without KIBRA. Scale bar, 5 um. Right, mean + SEM shows
¢-stat (E) and K-ZAP (F) decrease BiFC, total KIBRA, and total PKM({ immunofluorescence
intensities (E: t3 = 3.39, P = 0.04, d = 1.69; t2 = 10.09, P = 0.010, d = 5.82; t2 = 12.69, P =
0.006, d = 7.33; F: t3 = 4.00, P = 0.03, d = 2.00; t3 = 6.24, P = 0.008, d = 3.12; t3 = 6.08, P =
0.009, d = 3.04, respectively). * denotes P < 0.05. Experiments described in Tsokas et al., 2024.
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