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A B S T R A C T   

Reliable identification of high-value products such as whisky is vital due to rising issues of brand substitution and 
quality control in the industry. We have developed a novel framework that can perform whisky analysis directly 
from raw spectral data with no human intervention by integrating machine learning models with a portable 
Raman device. We demonstrate that machine learning models can achieve over 99% accuracy in brand or 
product identification across twenty-eight commercial samples. To demonstrate the flexibility of this approach, 
we utilized the same algorithms to quantify ethanol concentrations, as well as measuring methanol levels in 
spiked whisky samples. To demonstrate the potential use of these algorithms in a real-world environment we 
tested our algorithms on spectral measurements performed through the original whisky bottle. Through the 
bottle measurements are facilitated by a beam geometry hitherto not applied to whisky brand identification in 
conjunction with machine learning. Removing the need for decanting greatly enhances the practicality and 
commercial potential of this technique, enabling its use in detecting counterfeit or adulterated spirits and other 
high-value liquids. The techniques established in this paper aim to function as a rapid and non-destructive initial 
screening mechanism for detecting falsified and tampered spirits, complementing more comprehensive and 
stringent analytical methods.   

1. Introduction 

Recognizing a brand is important for the global growth of the whisky 
market as consumers are showing an increasing demand for exclusive, 
high quality products. As demand increases, concerns arise about 
counterfeit and adulterated products being sold, which violate laws 
related to alcohol labeling and fraud (Chaudhry et al., 2009; Green and 
Smith, 2002). Misrepresentation of lower quality commercial whiskies 
as premium products can harm a producer’s reputation and financial 
performance. In 2018, a third of commercial Scotch whiskies tested were 
found to be fraudulent (The British Broadcasting Corporation, 2018; The 
Times, 2018; The Guardian, 2018). More broadly, the European Union 

loses €3 billion annually in sales due to fake wine, beer, and spirits 
(Fraud Advisory Panel, 2022). Counterfeit spirits made with industrial 
alcohols or poor distillation may have high levels of methanol, causing 
serious illness. In 2019, toxic ‘moonshine’ killed 154 people in India 
(CNN, 2019), while in March 2020, Iranian media reported that nearly 
300 people died, and over 1000 became ill from drinking 
methanol-laced bootlegged spirits (Tech Times, 2020). 

A range of analytical techniques, such as mass spectrometry, nuclear 
magnetic resonance spectroscopy, gas chromatography, or liquid chro-
matography are used in laboratories to guarantee the quality, safety, and 
authenticity of spirits (Power et al., 2020). These techniques typically 
necessitate whisky sample preparation, which can be costly and 
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time-consuming. Importantly, these methods also require the sample to 
be removed for analysis, restricting their use in online monitoring and 
requiring end-products to be opened for analysis. This limits their 
widespread application. Portable sensors and methods for analyzing 
suspicious products at the point of sale or distribution are essential for 
widespread fraud prevention (Oliveira et al., 2018; Limm et al., 2018; 
Soon and Manning, 2019). In this paper, a new compact Raman tech-
nique which employs machine learning is presented to fulfill this bur-
geoning need. 

Raman spectroscopy is a non-destructive analytical technique that 
uses laser light to interrogate sample and measure the inelastically 
scattered light from the constituent molecules. As a result, this technique 
yields a form of optical fingerprint with Raman features that correlate 
with the molecular species present in the sample. This has broad 
applicability and can offer both quantitative and qualitative analysis of 
whisky samples (Flack, 2022; Nordon et al., 2005). Raman has been 
demonstrated to be a very versatile technique, with applications 
including pharmaceutical analysis, explosives detection and biological 
sensing among many others (Vankeirsbilck et al., 2002; Moore and 
Scharff, 2009; Izake, 2010). Raman spectroscopy has previously been 
demonstrated on decanted samples in the determination total sugar 
content, pH levels, grape varieties, geographic origin, and aging dura-
tion (Dos Santos et al., 2018; Mandrile et al., 2016). This technique is not 
only capable of classifying whisky brands (Fleming et al., 2020; Ashok 
et al., 2011), but it also has the potential to estimate the concentrations 
of methanol (indicative of toxicity) and ethanol (a measure of quality) in 
alcoholic beverages (Ashok et al., 2013). Portable Raman spectroscopy 
allows for in-field analysis of whisky samples, which can be useful for 
monitoring the authenticity and quality of the product during produc-
tion and distribution (Ellis et al., 2017, 2019; Kiefer and Cromwell, 
2017). Importantly, techniques that can measure the Raman spectra of 
the contents of a bottle without opening it are also being developed 
(Fleming et al., 2020; Shillito et al., 2022). 

The large amount of information from Raman spectroscopy may be 
efficiently handled by the use of machine learning models in the data 
analysis to extract valuable and subtle insights which can then be 
leveraged to make predictions. Standard statistical methods may find it 
challenging to fit subtle trends in complex, information rich data (Bzdok 
et al., 2018). Statistical methods applying Raman spectroscopy have 
been already published (Lednev and Sikirzhytski, 2012; Wang et al., 
2020), suggesting the possibility to discriminate and analyze whiskies. 
However, a systematic comparison of different machine learning 
methods has not been performed for the application of Raman analysis 
to the brand identification of a variety of whiskies. 

Furthermore, recent advancements in machine learning models have 
provided exciting new avenues for spectral data analysis in materials 
science (Lussier et al., 2020). Machine learning algorithms can analyze 
features and correlations within spectra, leading to various applications 
in Raman spectral analysis. Previous studies have employed various 
machine learning algorithms such as support vector machines (SVM), 
k-nearest neighbors (KNN), and random forest (RF) (Jimenez-Carvelo 
et al., 2017; Khan et al., 2017). These algorithms have demonstrated 
high prediction accuracy, but they have limitations such as poor model 
flexibility and generalization to new datasets, which can limit their 
applications in more challenging scenarios (Kotsiantis, 2007; Kotsiantis 
et al., 2006; Singh et al., 2016). In particular, previous studies using 
these methods have required manual preprocessing to enhance the 
performance of machine learning in spectral data analysis. This is a time 
consuming step which must be performed for each and every application 
(Singh et al., 2021). Furthermore, the improper usage of preprocessing 
methods may lead to errors and loss of information, thereby negatively 
affecting the accuracy of the results and making the analysis process 
more complex (Liland et al., 2010). Overcoming this barrier is a key 
aspect of the present work. 

Deep learning is a subset of machine learning that is designed to 
handle large amounts of complex data, and can be employed to 

automatically extract complex features and relationships between fea-
tures and tasks. Previously it has been demonstrated that deep learning 
can outperform conventional machine learning methods in a range of 
challenging problems (Sarker, 2021), however this is typically at the 
cost of higher computational resource and data requirements compared 
to conventional machine learning (Janiesch et al., 2021). 

Convolutional neural networks (CNN) are a variant of deep learning 
models, and have been successfully applied in Raman spectroscopy for 
the component identification of complex mixture materials (Fan et al., 
2019; Pan et al., 2021). Deep learning networks offer an advantage as 
they do not require manual tuning and can be trained as end-to-end 
networks that handle both feature extraction and classification or 
regression. This reduces the need for separate preprocessing or feature 
engineering steps, as the network can automatically convert the features 
into a more advanced representation (LeCun et al., 2015). As a result, 
deep learning networks can accommodate variations in samples that 
were previously unknown. Conventional machine learning methods, on 
the other hand, that require a more rigid protocol, may be unable to 
handle unseen data and result in inaccurate measurements (Taye, 2023). 
Therefore, in situations where the samples are not well-characterized or 
have a high degree of variability, more flexible analysis methods, such as 
deep learning, may be preferred. However, it should be noted that 
skilled preprocessing of the input data can still greatly assist the success 
of such models depending on the subject matter and dataset (Chollet, 
2017). 

In this paper, we focus on methods that obviate the need for spectral 
preprocessing, such as smoothing, baseline correction, normalization, 
and spectral windowing. It can be difficult to reproduce the same results 
if these subjective processing steps are not well documented. In addition, 
bias may be introduced into the data unknowingly. Here we used prin-
cipal component analysis (PCA) rather than the extensive data pro-
cessing for our analysis of the spectral data. The aim is to conserve 
analytical resources and eliminate subjective steps from the procedure. 
This choice was made because PCA is an unsupervised method that can 
be relatively robust and less resource-intensive compared to manual 
preprocessing. 

In this study, we investigated whisky brand identification and 
determination of both the ethanol and methanol concentrations of 
whisky samples. This study offers a rapid (real-time), non-invasive 
technique for whisky brand identification. The approach leverages 
portable Raman spectroscopy, including the use of a novel through 
bottle geometry, and machine learning algorithms to achieve high ac-
curacy without the need for manual spectral preprocessing. Deep 
learning results were compared to conventional techniques. The ma-
chine learning methods used in this study are summarized inFig. S1. We 
achieved over 99% accuracy in identifying the brands of whisky sam-
ples, and the measurement of ethanol and methanol levels were within 
2.47% vol/vol (v/v) and 0.05% v/v of the actual value, respectively. 
Finally, we utilized machine learning techniques to analyze the Raman 
spectra of the sample within an unopened glass bottle without removing 
the contents. Raman spectra are collected through the bottle using beam 
shaping to suppress the bottle contribution. It is noteworthy that this has 
previously not been applied in the context of whisky brand identification 
using machine learning. The accuracy of predicting the brand remained 
over 99% even when the method was applied to datasets obtained 
through the bottle. 

2. Material and methods 

2.1. Sample preparation 

A total of 28 commercially obtained whisky samples, and a reference 
sample of 40% ethanol in distilled water were used for classification and 
ethanol quantification, as summarized in Table S1. The whiskies were 
chosen to represent a variety of distilleries, flavours, cask types, and 
ages. The ethanol content ranges from 40% to 63% vol. To assess how 
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well the trained ethanol regression models could generalize, additional 
test samples of twenty whiskies and three gins were used. Two pure 
whiskies (Talisker and Cragganmore) and a sample of 40% ethanol/ 
water were spiked with HPLC grade methanol. Methanol concentrations 
ranging from 0 to 3% in 0.3% increments were used to generate the 
training set for methanol quantification. Additional test samples with 0, 
0.3, 1, and 2% methanol concentrations were prepared using Caol Ila 
and Cynelish via the same protocol and used to evaluate the general-
ization performance of the trained methanol regression models. 

2.2. Raman analysis 

2.2.1. Through-vial 
Initial studies were performed on 2 mL samples of whiskies which 

were pipetted from bottles and placed into 4 mL Wheaton sample vials 
for interrogation. The vial is made from clear type 1 A borosilicate glass 
with a diameter of 15 mm, a height of 46 mm, and a thickness of 1 mm. 
All through-vial Raman spectra were collected using a compact Wasatch 
Photonics WP 785 Raman spectrometer (WP-785-R-SR-LMMFC-IC) 
using an integrated 785 nm laser and 25 μm slit giving a resolution of 7 
cm− 1. The laser was coupled into a Raman probe, and the emission 
collected by the probe was transferred to the spectrometer. The probe 
was focused directly into a clear glass vial containing the whisky. All 
spectra were collected in the spectral range 270 − 2000 cm− 1 with a 
laser power of 450 mW, an integration time of 500 ms and an average of 
5 scans. Each whisky sample had forty replicates collected, except for 
the methanol test samples which had twenty replicates collected. 
Continuous irradiation for 15 min resulted in a 3% reduction in the in-
tensity of spectra, as can be seen inFig. S3. During the measurement 
process, each sample was irradiated for about 1 min. This short exposure 
time had a negligible effect on photo-bleaching, as it only resulted in a 
0.2% reduction in intensity. The supplementary material section S1 and 
Fig. S2 provide details on the experimental configuration and spectral 
characteristics of the Raman spectra from 28 whisky samples. 

2.2.2. Through-bottle 
Through the bottle Raman measurements were performed using a 

free-space system, consisting of a Spectra-Physics 3900s Ti:Sapphire 
tunable laser for excitation and an Andor Shamrock SR303i spectrom-
eter for spectra collection. The experimental setup in this section was 
based on that previously demonstrated (Fleming et al., 2020; Shillito 
et al., 2022), and utilized an axicon-based focus-matched inverse 
spatially-offset Raman configuration. Two configurations were set up to 
allow switching between the axicon configuration and a conventional 
back-scattering (Gaussian beam profile) configuration through the use 
of flip mirrors. The system was aligned such that the two paths were 
collinear with the focal point optimized for maximum Raman signal 
collection as shown in Fig. S4. All spectra were collected in the spectral 
range 140 − 2700 cm− 1 with a laser power at the sample of 96 mW for 
the Gaussian beam and 105 mW for the Bessel, and an integration time 
of 5 s. Each whisky sample (see Table S2 for details) had 30 replicates 
collected. As for the through-vial analysis, a measurement was per-
formed every second for 60 min to observe if the signal from the Whisky 
reduced over time due to photobleaching. Results here demonstrated 
that the signal remained within ±2% of the initial peak value. The 
variation in intensity is notably larger when measuring through the 
bottle compared to the vial. This could be due to the inherent challenges 
of measuring through an uncontrolled medium like a commercial bottle, 
as opposed to a more controlled environment like a vial. 

To thoroughly examine the performance of the machine learning 
methods, spectra were collected with this system both in the original 
(thick glass) bottles, as well as decanting the samples into thin-walled 4 
mL vials similar to those used in the through-vial measurements. 

2.3. Data processing 

Deep learning networks were established using Python 3.9.15, sci-kit 
learn 1.1.3 and TensorFlow 2.11.0 on a computer equipped with an 
NVIDIA GeForce RTX 4090 GPU and an Intel Core i912900KS CPU. 
Conventional classification machine learning methods were performed 
using Python 3.11.3 and sci-kit learn 1.2.2 on a computer equipped with 
an NVIDIA GeForce GTX 1650 Ti mobile GPU and an AMD Ryzen 7 
4800HS mobile CPU. PCR, PLSR, and ridge regression were processed 
using MATLAB R2021b software (MathWorks, Natick, USA) on a com-
puter equipped with an NVIDIA GeForce GTX 1650 Ti mobile GPU and 
an AMD Ryzen 7 4800HS mobile CPU. 

2.3.1. Deep learning models 
Three different configurations of the deep learning model, including 

CNN, fully connected networks (FCN), and a hybrid parallel model 
(HPM), which is a combination of CNN and FCN, were applied to predict 
brand identification, ethanol concentration, and methanol concentra-
tion using the same analysis model. The spectral data were split into 
training (60%), validation (20%), and test (20%) sets for brand identi-
fication and ethanol quantification. The spectral data of Talisker, 
Cragganmore, and 40% ethanol/water spiked with methanol were 
divided into training (80%) and validation (20%) sets, while the spectra 
of Caol Ila and Clynelish spiked with methanol were used exclusively as 
a test set for methanol quantification as summarized in Table S3. The 
raw spectral data was either directly used as the input for deep learning 
models or the spectral data underwent PCA, and six PCA features were 
selected based on preliminary results summarized in Fig. S5. The per-
formance of the ANN model, which is closely related to deep learning 
models, reached a maximum at six PCA features. In this case the artifi-
cial neural network (ANN) model has only a few layers and is hence not 
considered to be deep learning. As a result, six PCA features were 
determined to be the optimum value to use for deep learning. These 
selected features served as the input for the classification and regression 
process. The prediction accuracy was employed to evaluate the brand 
identification performance of different methods. The root mean square 
error (RMSE) and determination coefficient (R2) were used to evaluate 
the quality of quantification analysis. RMSE and R2 of the training, 
validation, and test sets are abbreviated as RMSET and RT

2, RMSEV and 
RV

2, and RMSEP and RP
2, respectively. For ethanol prediction, the RMSE 

and R2 values of completely new and unseen samples (e.g. different 
brands) were denoted as RMSEu and Ru

2, respectively. The values of 
parameters for deep learning models are described in Table S4. 

2.3.2. Conventional classification machine learning 
The spectral data was divided into training (70%) and test (30%) sets 

for conventional classification machine learning. In this study, the un-
processed spectral data was either directly used as input for conven-
tional machine learning models, or subjected to PCA which was used to 
reduce the dimensionality of the data and also provided an initial 
evaluation of data predictability (Shlens, 2014). 

The raw spectral data was either directly used as the input for con-
ventional machine learning models or the spectral data underwent PCA, 
and from one to nine PCA features were used as input for classification. 
PCA is an unsupervised learning method, which means that it does not 
require data that has been assigned a class or category to train the 
model. The lack of supervision allows the method to be applied to any 
dataset, as opposed to requiring a new method to be optimized each time 
(Shlens, 2014). In order to dramatically reduce the search space and 
minimise the associated computational time for each technique, a robust 
PCA model was constructed. This enables the retention of the most 
useful information in the data while efficiently discarding the excess. 
The parameter values for conventional classification machine learning 
are described in Table S5. 
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2.3.3. Conventional regression machine learning for methanol 
quantification 

Three regression methods were evaluated: principal component 
regression (PCR), partial least squares regression (PLSR), and ridge 
regression. Table S3 describes how the experimental set was divided. As 
a training set, spectral data from Talisker, Cragganmore, and 40% 
ethanol/water spiked with methanol were used, and cross-validation 
was performed using venetian blinds with five crossvalidation groups. 
The spectra of Caol Ila and Cynelish spiked with methanol were used as a 
test set. The values of RMSE and R2 were used to evaluate the quality of 
quantification analysis. 

3. Results 

3.1. Deep learning 

In this section, we evaluate the performance of different deep 
learning approaches in identifying brands and quantifying ethanol/ 
methanol. The deep learning models that were used in this study are 
described in Fig. S6 and the supplementary material section S2. 

3.1.1. Brand identification 
We compared three different deep learning methods: CNN, FCN, and 

HPM. PCA was also combined with each of these methods (resulting in 
PCA + CNN/FCN/HPM). We trained each method with different 
numbers of epochs (100/200/500/1000/2000). The accuracy results 
depending on epochs are summarized in Fig. 1 and Table S6. Increasing 
the number of epochs used for training generally had a positive impact 
on accuracy, with many models achieving higher accuracy when the 
number of epochs was increased from 200 to 2000 (Fig. 1a). All models 
converged to a high accuracy on the training set before oscillating 
depending on the data in the set. 

All models with more than 500 epochs demonstrated greater than 
93% test accuracy, except for FCN without PCA (see blue dots in Fig. 1b). 
It is important to clarify that the accuracies mentioned here refer to the 
test set, not the training set. The use of PCA was observed to shorten the 
accuracy plateau time for the deep learning models (Fig. 1b). This 
suggests that reducing the dimensionality of the data using PCA before 
training could be an effective approach for improving the performance 
of deep learning models. Overall, the PCA + HPM combination out-
performed all other deep learning models on this dataset, with training 
times of 89 s, and over 97% accuracy on all datasets when 200 or more 
epochs were used (Fig. 1b). This is likely due to the simpler FCN branch 
providing a shorter path to the classifier layers, assisting in training the 
deeper layers of the HPM model. Even when trained for only 100 epochs, 
this model achieved a test accuracy of 96% in just 46 s of training time. 

3.1.2. Chemical regression 
The same deep learning algorithms and data sets used for brand 

identification were used to predict ethanol content in whisky samples. 
The results are summarized in Fig. 2a and b, and represented in more 
detail in Table S7. Without using PCA, the CNN method outperformed 
other models, achieving an RP

2 score of 0.994 and an RMSEP of 0.39% for 
ethanol content in the sample, as shown in Fig. 2a. The HPM method 
achieved competitive results compared to CNN, with an RP2 score of 
0.993 and RMSEP of 0.43%. All models with PCA performed signifi-
cantly better than models without PCA. PCA + CNN and PCA + HPM 
displayed the best performance with a RP2 scores of 0.998 and RMSEP of 
0.24% and 0.25%, respectively. 

The deep learning models were tested on samples that were not used 
during training to evaluate their ability to generalize. The unseen test set 
included twenty whisky and three gin samples. The best results were 
achieved using the PCA + FCN model when trained for 200 epochs, with 
an RU2 of 0.863 and RMSEU of 2.47% (Fig. 2b). The performance of 
ethanol content prediction on the unseen test set is shown in Table S7 
(see values of RU2 and RMSEU). This suggests that the simpler FCN 

model can quickly fit to a particular spectrum, such as ethanol, while 
more complex CNN-based models are required for brand identification. 
Optimizing the number of epochs is necessary to avoid overfitting and to 
ensure the generalization of the model. As anticipated, the three deep 
learning models without PCA did not perform well on the unseen test set. 
Interestingly, while the performance of the PCA + HPM model improved 
with an increase in the number of epochs, the performance of the PCA +
CNN and PCA + FCN models decreased. Increasing the number of 
samples in the training set or the number of epochs may improve the 
performance of the PCA + HPM model on the unseen test set. The pre-
dicted ethanol content for gin samples was slightly lower than the actual 
content, but the model still performed well, which is notable considering 
that gin was not included in the training data (Table S7). This suggests 
that the deep learning models were able to generalize well and accu-
rately predict the ethanol content in samples considerably varied from 
those used in the training model. 

The methanol prediction used the same deep learning algorithms as 
the brand identification and ethanol prediction. The results are pre-
sented in Table S8, and demonstrate the model performed poorly on the 
test set compared to the training and validation sets, indicating over- 

Fig. 1. Brand identification: (a) Deep learning model accuracies per epoch on 
the training set. (b) Accuracy of deep learning model on the test set and training 
time. The blue and red dots represent the test accuracy and training time re-
sults, respectively. Each dot represents an increase in accuracy and training 
time as the epochs increase by 100, 200, 500, 1000, and 2000. Shaded grey 
areas show where the model has > 96% accuracy. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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fitting. The PCA + HPM model showed the best performance among all 
the models. It achieved the lowest RMSEP of 0.98% (in terms of meth-
anol in the sample). However, its performance (RP2 value of 0.300) was 
still unsatisfactory. The model showed a very good fit when it was 
trained and tested on the same samples. Fig. 2c shows the performance 
of the model when both the training set and test sets are comprised of 
identical whisky samples with the same methanol concentrations, 
achieving R2 values of 0.999 for the training set and 0.991 for the test 
set. Fig. 2d shows the model results when the test set is similar whiskies 
from different manufacturers, with methanol concentrations not 
included in the training set. The model was unable to accurately predict 
methanol concentrations in the samples. 

3.2. Conventional machine learning 

3.2.1. Brand identification 
Nine conventional machine learning techniques were applied to 

classify whisky brands using Raman spectra. All of the conventional 
machine learning models that were used in this study are described in 
the supplementary material section S3. Fig. 3 shows the accuracy results 
for conventional machine learning with and without PCA. Several ma-
chine learning algorithms including KNN, RF, and linear discriminant 
analysis (LDA), without using PCA, achieved a high level of test accu-
racy, exceeding 96%. Several machine learning methods had signifi-
cantly improved performance when using PCA. In particular, the test 

accuracy of quadratic discriminant analysis (QDA) increased from 25% 
to over 99% when using three or more PCA features while the test ac-
curacy of artificial neural network (ANN) improved from 4% to 85% 
when using six PCA features. These findings support the fact that PCA 
can effectively reduce noise in the data and improve classifier perfor-
mance. It is worth noting that although certain methods, such as radial 
basis function SVM and Gaussian Process, achieved high accuracy on the 
training set, this did not result in high accuracy on the test set, with 
values lower than 10%. 

3.2.2. Methanol regression 
We tested machine learning regression models such as PCR, PLSR, 

and ridge regression to develop a model that could handle data from new 
whiskies with unknown methanol concentrations. PCR, PLSR, and ridge 
regression were used to create multivariate models to measure the levels 
of methanol. Machine learning regression models that were used in this 
study are described in the supplementary material section S4. The re-
sults are summarized in Table S9. The best results were achieved with 
PLSR using mean-centering (PLSR7), which had RP2 = 0.997 and 
RMSEP = 0.05% (in terms of methanol in the sample) (Fig. 4). In 
particular, the PLSR7 model exhibited high performance for both the 
training and test sets, with the same R2 (0.997) and RMSE (0.05%) 
values. The model demonstrated its effective learning and generaliza-
tion capabilities by performing well on a different set of whisky samples 
that were not included in the training set, indicating the model can 

Fig. 2. Ethanol content prediction: (a) Using PCA + HPM with 2000 epochs (RP2 = 0.998 and RMSEP = 0.25%). (b) Using PCA + FCN with 200 epochs applied to a 
dataset with previously unseen whisky brands (red dot) and gin samples (green x) (RU2 = 0.863 and RMSEU = 2.47% for the test set). Methanol content prediction: 
(c) Using PCA + HPM with 1000 epochs. The spectral data of Talisker, Cragganmore, 40% ethanol/water, Caol Ila, and Cynelish spiked with methanol were divided 
into training (60%), validation (20%), and test (20%) sets. (d) Using PCA + HPM with 1000 epochs. The spectral data of Talisker, Cragganmore, and 40% ethanol/ 
water spiked with methanol were split into training (80%) and validation (20%) sets. The spectra of Caol Ila and Cynelish spiked with methanol were only used as a 
test set. The blue and red dots represent the results of the training and test sets, respectively. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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handle various types of whisky samples. The peak close to 1020 cm− 1 

was assigned to the methanol C–O stretching vibration and was the most 
significant feature contributing to this model, according to comparison 
the PLSR loading plot and the Raman spectra of methanol (Fig. S7). It 
should be noted that the methanol peak intensity could not be tracked 
directly due to its relative proximity to the ethanol peaks, as shown in 
Fig. S7c. 

Overall, the accurate quantification of methanol in whisky was made 
possible by PLSR and PCR with mean-centering, which also demon-
strated acceptable expansion performance (see PLSR7 and PCR7 in 
Table S9). Depending on the outcomes, polynomial baseline correction 
may be included, whereas vector normalization is not necessary to 
create methanol prediction models using PCR and PLSR. The PLSR7 
model was able to detect methanol concentrations in whiskies that were 
as low as 0.16%. This detection limit was based on the standard devia-
tion of the response (ICH Harmonised Tripartite Guideline, 2005) and 
further details are provided in the supplementary material section S5. 
This detection limit for methanol is significantly lower than the 

maximum tolerable concentration of 2% methanol in a spirit drink with 
40% alcohol by volume, which is considered safe for human consump-
tion (Paine and Dayan, 2001). Additionally, the detection limit is below 
the current EU general limit for naturally occurring methanol, which is 
10 g methanol/L ethanol (equivalent to 0.4% (v/v) methanol at 40% 
alcohol) (Paine and Dayan, 2001). 

3.2.3. Through-bottle whisky brand identification 
To explore the broader applicability and robustness of these 

methods, the machine learning methods including KNN, LDA, ANN, RF, 
and RBF SVM were applied to a through-bottle dataset. Each dataset was 
evaluated using each model, both with and without the inclusion of a 6 
component PCA model to determine its predictive power. The best 
outcomes of the experiments are shown in Table 1, with the full set of 
results in Table S10. The KNN model exhibited optimal performance 
when the training and testing datasets were similar, specifically when 
both were obtained either through vials (VV), bottles (TT), or a mix of 
vials and bottles (Mix). However, its performance declined when trained 

Fig. 3. Brand identification accuracy of conventional machine learning models. The blue and red dots represent the results of the training and test sets, respectively, 
with PCA. The dashed lines show the respective accuracy levels without PCA. The red and blue dashed lines overlap each other on the LDA and ANN graphs due to the 
identical accuracy they achieved on both the training and test sets. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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on data obtained through vials and tested on the data obtained through 
bottles (VT) or vice versa (TV). It should be noted that while the KNN 
model achieved perfect prediction in certain instances, other models 
also demonstrated high accuracy, exceeding 98% in some cases. 

The results obtained with this dataset provide valuable insights into 
the relative performance and predictability of the techniques used. Deep 
learning models were not applied in this case due to their need for larger 
volumes of data to produce meaningful results. 

4. Discussion 

For the primary analysis we chose a diverse set of twenty-eight 
whisky samples in terms of distilleries, flavours, cask types, ages, and 
ethanol contents in order to ensure that the training set is representative 
of real-world scenarios and collected data across different days to reduce 
environmental variability. Three deep learning methods were used to 
classify whisky brands and to quantify ethanol or methanol, and nine 
conventional machine learning techniques were used for whisky brand 

identification, and three regression models for methanol quantification. 
The accuracy of these approaches was compared when the spectral data 
was either unprocessed or preprocessed using PCA. The deep learning 
models and three regression models for chemical regression were also 
compared. The results on the test set are summarized in Table 2. 

Several traditional machine learning algorithms such as KNN, RF, 
and LDA, as well as deep learning algorithms such as CNN and HPM, 
demonstrated excellent performance of >94% using unprocessed data 
without PCA. It appears that the use of PCA improved the test accuracy 
of several conventional machine learning models, including QDA and 
ANN. Conventional machine learning models such as KNN, RF, and LDA, 
as well as deep learning models like CNN and HPM, achieved the best 
performance both with and without the use of PCA. The QDA and FCN 
models also performed well when PCA was used. While PCA can be 
beneficial for reducing the dimensionality of data and potentially 
improving the performance of some machine learning models, it is 
important to note that PCA is not always necessary. Certain machine 
learning algorithms, such as KNN and LDA, can handle high- 
dimensional data effectively and find the optimal features for classifi-
cation without the need for PCA. However, it is worth noting that while 
these conventional classification models are effective for classification 
tasks, they are not applicable for regression analysis. On the other hand, 
the deep learning models used in this study, such as CNN and HPM, have 
the flexibility to be applied to both classification and regression tasks, 
including chemical regression. This versatility makes deep learning 
models a powerful tool in spectroscopic analysis. On the unseen ethanol 
test set, only the PCA + FCN model demonstrated good performance, 
achieving an R2 value of 0.863 and an RMSE of 2.47%. In contrast, none 
of the deep learning models exhibited good performance on the unseen 
methanol test set while the three conventional regression models 
excelled on the unseen methanol test set, with R2 values greater than or 
equal to 0.995 and RMSEs greater than or equal to 0.07%. 

The findings of this study can be used to develop new methods for the 
quantification of ethanol in whisky, and to improve the quality and ef-
ficiency of whisky production. In particular, it is useful to note that the 
conventional machine learning and deep learning techniques are ad-
vantageous in different applications, particularly when there are varied 
quantities of training data available. For example, if the goal is to 
perform both brand identification and chemical regression simulta-
neously, a deep learning model may be the most suitable choice. How-
ever, if the task only requires either brand identification or chemical 
regression, then conventional machine learning models may result in 
equivalent or higher accuracy. It is also important to note that in order to 
achieve optimal performance with conventional machine learning 
models, it is necessary to carefully optimize them based on the results of 
spectral preprocessing and the number of PCA or PLS features used. 

Although the deep learning model has the ability to classify and 
predict many categories and contaminant levels simultaneously to a 
high precision, it takes vastly more data and computation to develop this 
knowledge base than traditional techniques. For example, when it comes 
to detecting methanol concentrations, a inherently challenging task 
given the low concentrations and the small changes to the spectra, this 
technique in its current form struggles compared to a more hands-on 
technique. Manual spectral windowing would likely improve perfor-
mance, however this requires prior knowledge of the expected spectral 
changes which we have generally avoided with the goal of developing a 
flexible analysis approach. As such, it is recommended that if this al-
gorithm detects a low quantity of methanol a sample should be sent off 
for conventional laboratory analysis. 

Machine learning methods have shown strong performance in 
identifying brands even when applied to datasets obtained through 
bottles, as summarized in Table 1. The through-vial Raman measure-
ment system differs from the through-vial measurement system in terms 
of spectral range and laser power. These differences underscore the 
potential for generalizing machine learning methods. Our findings 
indicate that when the training and testing sets are consistent, such as 

Fig. 4. Methanol content prediction using a PLSR model (PLSR7). The spectral 
data of Talisker, Cragganmore, and 40% ethanol/water spiked with methanol 
were used as a training set. The spectra of Caol Ila and Cynelish spiked with 
methanol were only used as a test set. The blue and red dots represent the 
prediction results on the training and unseen test sets, respectively. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 

Table 1 
The best outcomes of through-bottle brand identification.  

Dataseta Best Model Accuracy (%) 

VV KNN, RF, PCA + KNN, PCA + LDA, PCA + RF 100.0 
TT KNN, PCA + KNN 100.0 
VT RF 39.7 
TV PCA + ANN 52.3 
Mixb KNN, PCA + KNN, PCA + RF 100.0  

a The datasets are named using the format “<Train><Test>“. Raman spectra 
were obtained either through vials (denoted as ‘V’) or through bottles (denoted 
as ‘T’). For example, if the model was trained using measurements obtained 
through vials and tested using measurements obtained through bottles, the 
dataset would be named ‘VT’. 

b The training and test datasets include measurements obtained through both 
vials and bottles. 
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not being trained on through-bottle data and tested on through-vial 
data, the prediction problem can be largely solved using the tech-
niques outlined in this work. Notably, even when applied to different 
types of containers, some level of predictability was still observed. This 
suggests that the key features of the whisky spectra remain prominent 
when compared between beam and vessel types. These results highlight 
the robustness of the models and methods described here, although 
further training and a more diverse dataset may be required for practical 
applications as although the through-the-bottle method reduces the 
glass background it does not eliminate it completely. Future work will 
investigate methods to separately record the glass fluorescence and 
Raman spectra, such that this can be integrated within the data analysis 
process to more accurately separate the contents Raman from the 
container. 

5. Conclusions 

In this study, conventional machine learning and deep learning 
effectively discriminated between twenty-eight whisky brands. Spectra 
were obtained with a small volume and, aside from decanting from the 
bottles into vials, no sample preparation was required. Despite previous 
publications in the literature addressing the application of Raman 
spectroscopy and chemometric methods for whisky analysis, our 
approach does not require a manual preprocessing and performed 
extremely well in terms of brand identification and ethanol prediction. 
We utilized PCA to reduce the dimensionality of the Raman spectra and 
retain the most relevant features for classification. Following PCA, we 
applied various machine learning algorithms for classification and 

regression. KNN and LDA performed well with or without PCA, while RF 
and QDA excelled with PCA. Therefore, the use of PCA depends on the 
machine learning algorithm and the data. For deep learning, the PCA +
HPM was the best for both brand identification (test accuracy of 98%) 
and ethanol content prediction (RP

2 of 0.998 and RMSEP of 0.25%). The 
PCA model accurately predicted the ethanol content in new samples, 
which were not used for training the model, with an Ru

2 of 0.863 and 
RMSEU of 2.47%. The PLSR effectively predicted methanol contents (RP

2 

of 0.997, RMSEP of 0.05%, and the detection limit of 0.17%). 
Machine learning and deep learning models have shown strong 

performance on raw data, indicating their adaptability to new applica-
tions without the need for spectral preprocessing. The new HPM model 
can identify brands and quantify ethanol simultaneously, unlike con-
ventional machine learning methods. The ability of deep learning 
models to quantify ethanol and methanol is expected to improve with 
larger training datasets. Our methods were applied to a through-bottle 
configuration, allowing spectra to be obtained from unopened sam-
ples. Even with a small preliminary dataset, the accuracy of brand 
identification remained high, demonstrating the practical potential of 
our methods. Our chemical regression models for ethanol and methanol 
have demonstrated their ability to be applied to new samples. Specif-
ically, the ethanol quantification model can predict the concentration of 
ethanol in gin, and the methanol quantification model can effectively 
generalize to unseen samples. 

Here is a summary of when to use each model.  

• Deep learning models: Ideal for brand identification and ethanol 
quantification, but demand substantial data and resources. 

Table 2 
Comparison table of brand identification and chemical regression on the test set. 

aSix PCA features were used as input for classification and regression. 
N/A (pink) - not applicable. 
A - applicable but not tested. 
Green - excellent performance. 
Red - poor performance. 

K.J. Lee et al.                                                                                                                                                                                                                                    



Current Research in Food Science 8 (2024) 100729

9

• Conventional machine learning models (KNN, LDA, RF): Great for 
brand identification, not for ethanol quantification, require careful 
setup.  

• PLSR: Remarkably effective for methanol quantification, even on 
new samples. 

• PCA: Useful for simplifying Raman spectra and enhancing perfor-
mance of some models, especially deep learning models, though not 
always necessary. 

Our technique has demonstrated its potential in detecting counterfeit 
spirits and assessing the quality of other high-value liquid samples. Our 
machine learning method was successful in accurately identifying 
whisky brands with subtle differences in ingredients, providing evidence 
of its effectiveness. The methods and techniques we developed should be 
applicable to detecting adulteration or substitution by training the 
model with a new dataset. Additionally, the absence of manual pre-
processing should enable this model to be applied directly to other high- 
value products such as edible oil, honey, or caviar. This represents a 
significant advancement in the field and opens up new possibilities for 
the detection of counterfeit and adulterated products. 
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