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Abstract: The genetic background of pain is becoming increasingly well understood, which opens
up possibilities for predicting the individual risk of persistent pain and the use of tailored therapies
adapted to the variant pattern of the patient’s pain-relevant genes. The individual variant pattern of
pain-relevant genes is accessible via next-generation sequencing, although the analysis of all “pain
genes” would be expensive. Here, we report on the development of a cost-effective next generation
sequencing-based pain-genotyping assay comprising the development of a customized AmpliSeq™
panel and bioinformatics approaches that condensate the genetic information of pain by identifying
the most representative genes. The panel includes 29 key genes that have been shown to cover 70%
of the biological functions exerted by a list of 540 so-called “pain genes” derived from transgenic
mice experiments. These were supplemented by 43 additional genes that had been independently
proposed as relevant for persistent pain. The functional genomics covered by the resulting 72 genes is
particularly represented by mitogen-activated protein kinase of extracellular signal-regulated kinase
and cytokine production and secretion. The present genotyping assay was established in 61 subjects
of Caucasian ethnicity and investigates the functional role of the selected genes in the context of
the known genetic architecture of pain without seeking functional associations for pain. The assay
identified a total of 691 genetic variants, of which many have reports for a clinical relevance for
pain or in another context. The assay is applicable for small to large-scale experimental setups at
contemporary genotyping costs.

Keywords: next generation sequencing; human genomics; pain genetics; pharmacogenomics;
computational functional genomics; data science; knowledge discovery

1. Introduction

A genetic background of pain plays a role in rare hereditary extreme phenotypes that
cause either pain insensitivity [1] or paroxysmal pain disorders [2], in the perception of
acute pain [3], in the risk of pain persistence after a triggering event [4], or in the response
to pharmacological [5] or non-pharmacological [6] pain treatments. The involvement of
540 “pain genes” in pain is supported by robust evidence [7,8], and further suggestions have
been communicated [9,10]. With predominantly small effects exerted by common genetic
variants [11], a breakthrough in the genetic profiling of individual risks, as occasionally
expected [12], has not yet really been achieved [13]. Instead, this seems to be linked to
a complex pattern of functional genetic variants [14], which is being discovered in an
evolutionary rather than revolutionary way, which is supported by technical advances
over the last decade [15] that allow to establish genotype versus phenotype associations
for thousands of genetic variants in a still manageable small number of patients [14,16].
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As a basis for the association of human genotypes with pain and the risk for its
persistence, we propose a set of 29 genes as key players among the currently known pain-
relevant genes [17]. Specifically, the functional genomics-based architecture of pain has
been presented as a polyhierarchy of biological processes [8] based on the organization
of the Gene Ontology knowledge base that captures the current knowledge about the
biological roles of all genes and their respective products [18,19]. With the 29 genes,
a respective representation created with 540 pain-relevant genes could be reconstructed by
70%, based on a bioinformatics analysis of the Gene Ontology knowledge base [17].

The present report describes the development of a genotyping assay for these 29 genes,
with extension by further genes based on proposed importance for persistent pain to take
full advantage of the technical specifications of the AmpliSeqTM gene sequencing library
technique (Figure 1), resulting in a set of d = 72 genes (Table 1) continuing the research
path of functional genomics of pain that has been pursued in previous reports [7,9,10,20].
Here, (i) the assembly of the present set of genes is reported along with (ii) a computational
analysis of its functional genomics and (iii) its establishment in a subset of samples from a
cohort of patients undergoing breast cancer surgery [21], together with (iv) an evidence-
based analysis of known functional implications of the variants identified in these samples,
although without aiming for a functional association in the present cohort.

Table 1. Overview of the n = 72 genes contained in the proposed NGS panel. Subset 1 includes d = 29 genes identified using
a computational functional genomics-based approach in which the gene sets are reduced to the most relevant items based
on the importance of the gene within the polyhierarchy of biological processes characterizing the disease [17]. Subset 2
resulted from the intersection of two proposed sets of human genes involved in modulating the risk or clinical course of
persistent pain “Mogil” [9], and “Zorina-Lichtenwalter”.

Gene Symbol NCBI Gene Description Reference

Subset #1
ADRA2A 150 Adrenoceptor alpha 2A [22]
ADRB2 * 154 Adrenoceptor beta 2 [23]

AGER 177 Advanced glycosylation end-product specific
receptor [24]

APOE * 348 Apolipoprotein E [25]
CCL21 6366 C-C motif chemokine ligand 21 [26]
CCL5 6352 C-C motif chemokine ligand 5 [27]
CCR2 729230 C-C motif chemokine receptor 2 [28]
CCR7 1236 C-C motif chemokine receptor 7 [29]
CD4 920 CD4 molecule [30]

CD40 958 CD40 molecule [31]
CD74 972 CD74 molecule [32]

CHRNA7 1139 Cholinergic receptor nicotinic alpha 7 subunit [33]
DRD1 1812 Dopamine receptor D1 [34]

DRD2 * 1813 Dopamine receptor D2 [34]
EDN1 1906 Endothelin 1 [35]
F2R 2149 Coagulation Factor II thrombin receptor [36]

F2RL1 2150 F2R like trypsin Receptor 1 [36]
IFNG 3458 Interferon gamma [37]
IL1B * 3553 Interleukin 1 beta [38]

IL6 3569 Interleukin 6 [39]
LYN 4067 LYN proto-oncogene, Src family tyrosine kinase [40]

MAPK1 5594 Mitogen-activated protein kinase 1 [41]
OPRM1 * 4988 Opioid receptor mu 1 [42]
P2RX7 * 5027 Purinergic receptor P2X 7 [43]
PRKCA 5578 Protein kinase C alpha [44]
PRKCD 5580 Protein kinase C delta [45]

TLR4 7099 Toll-like receptor 4 [46]
TLR9 54106 Toll-like receptor 9 [47]
TNF * 7124 Tumor necrosis factor [48]
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Table 1. Cont.

Gene Symbol NCBI Gene Description Reference

Subset #2
ACAN 176 Aggrecan [49]
ACE 1636 Angiotensin I converting enzyme [50]

ADRA1D 146 Adrenoceptor alpha 1D [51]
ADRA2C 152 Adrenoceptor alpha 2C [52]
ADRB2 * 154 Adrenoceptor beta 2 [53]
APOE * 348 Apolipoprotein E [25]

AR 367 Androgen receptor [54]
CALCA 796 Calcitonin related polypeptide alpha [55]
CASP9 842 Caspase 9 [56]
CFTR 1080 CF transmembrane conductance regulator [57]

CRHBP 1393 Corticotropin releasing hormone binding protein [58]
COMT 1312 Catechol-O-methyltransferase [59]
DRD2 * 1813 Dopamine receptor D2 [34]
DRD4 1815 Dopamine receptor D4 [60]
ESR1 2099 Estrogen receptor 1 [61]
GCH1 2643 GTP cyclohydrolase 1 [62]
GDF5 8200 Growth differentiation factor 5 [63]

GSTM1 2944 Glutathione S-transferase mu 1 [64]

HLA-DRB1 3123 Major histocompatibility complex, class II, DR
beta 1 [65]

HTR2A 3356 5-hydroxytryptamine receptor 2A [66]
IL1A 3552 Interleukin 1 alpha [67]
IL10 3586 Interleukin 10 [68]

IL1B * 3553 Interleukin 1 beta [38]
IL1RN 3557 Interleukin 1 receptor antagonist [69]
CXCL8 3576 C-X-C motif chemokine ligand 8 [70]

KCNS1 3787 Potassium voltage-gated channel modifier
subfamily S member 1 [71]

MAOA 4128 Monoamine oxidase A [72]
MC2R 4158 Melanocortin 2 receptor [73]

MTHFD1 4522
Methylenetetrahydrofolate dehydrogenase,
cyclohydrolase and formyltetrahydrofolate

synthetase 1
[74]

MTRR 4552 5-methyltetrahydrofolate-homocysteine
methyltransferase reductase [75]

NFKBIA 4792 NFKB inhibitor alpha [76]
NR3C1 2908 Nuclear receptor subfamily 3 group C member 1 [77]

OPRM1 * 4988 Opioid receptor mu 1 [42]
P2RX7 * 5027 Purinergic receptor P2X 7 [43]

PGR 5241 Progesterone receptor [78]
POMC 5443 Proopiomelanocortin [79]
PRSS1 5644 Serine protease 1 [80]
PTGS2 5743 Prostaglandin-endoperoxide synthase 2 [81]
SCN9A 6335 Sodium voltage-gated channel alpha subunit 9 [82]

SERPINA6 866 Serpin family A member 6 [83]
SHMT1 6470 Serine hydroxy methyltransferase 1 [84]
SMAD3 4088 SMAD family member 3 [85]
SOD2 6648 Superoxide dismutase 2 [86]

SPINK1 6690 Serine peptidase inhibitor, Kazal type 1 [57]
STAT6 6778 Signal transducer and activator of transcription 6 [87]
TGFB1 7040 Transforming growth factor beta 1 [88]
TNF * 7124 Tumor necrosis factor [48]

TRPA1 8989 Transient receptor potential cation channel
subfamily A member 1 [89]

TRPM8 79054 Transient receptor potential cation channel
subfamily M member 8 [89]

TRPV1 7442 Transient receptor potential cation channel
subfamily V member 1 [89]

*: Gene occurs in both subsets.
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Figure 1. .Figure 1. Assembly of the pain-relevant gene set forming the proposed NGS panel from various
sources of evidence. The Venn diagram [90] visualizes the overlaps between the 29 key genes in the
functional genomic representation of pain (“Lippmann” [17]) (subset 1 of the present NGS panel) and
the two independent alternative proposals (“Mogil” [9] and “Zorina-Lichtenwalter” [10]) included as
subset 2. The colors of the areas correspond to the colors of the adjacent names of the respective gene
set. In addition, a set of d = 540 genes is indicated which have been empirically identified as relevant
to pain and are either listed in the PainGenes database (http://www.jbldesign.com/jmogil/enter.
html [7]) or were recognized as causing human hereditary diseases associated with extreme pain
phenotypes, regulated in chronic pain in at least three studies including human association studies,
or being targets of novel analgesics [91]. In addition, a further set of genes is included that belong to
an NGS panel in an earlier approach to human genes relevant for the persistence of pain (”Kringel
1” [20]) The black dashed line surrounds the genes of the present NGS panel. The figure has been
created using the R software package (version 4.0.2 for Linux; http://CRAN.R-project.org/ [92]) and
the library “venn” (https://cran.r-project.org/package=venn [93]).

2. Results
2.1. Participants and Descriptive Data

The NGS assay of the proposed set of 72 human genes relevant for persistent pain,
was established in 61 genomic DNA samples available from a cohort of patients after breast
cancer surgery [94] and including 55 subjects without pain and six patients with persistent
pain, which corresponded to the ratio of persistent pain versus no pain in the entire cohort
in order to resemble a random sample of subjects in terms of pain as much as possible.

http://www.jbldesign.com/jmogil/enter.html
http://www.jbldesign.com/jmogil/enter.html
http://CRAN.R-project.org/
https://cran.r-project.org/package=venn
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2.2. Main Results

As applied previously [95], only exons including 25 bases of padding around all tar-
geted coding regions for which the realized read-depths for each nucleotide was higher than
20 were contemplated as successfully analyzed. With this acceptance criterion, the whole
or almost whole coverage of the relevant sequences was obtained. The NGS sequencing
process of the whole patient cohort required seven separate runs, each with samples of
n = 9 or n = 10 patients. Coverage statistics were analogous between all runs and matched
the scope of accepted quality levels [20,21,94]. A median of 4.55 × 106 reads per run
was produced. The mean depth was close to 200 reads, the mean read length of called
bases resulted in 215 bases and average chip loading was 67% (Figure 2). To establish a
sequencing output with a high density of ISPs on a sequencing chip, the chip loading value
should exceed 60% (Life Technologies, Carlsbad, CA, USA). The generated results of all
NGS runs matched with the results obtained with Sanger sequencing of random samples,
meaning the accordance of nucleotide sequences between next generation sequencing and
Sanger sequencing was 100% in all validated samples.
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A B

Figure 2. .Figure 2. Technical detail of assay establishment and validation. (A): Pseudo-color image of the Ion 318TM v2 Chip plate
showing percent loading across the physical surface. This sequencing run had a 76% loading, which ensures a high Ion
Sphere Particles (ISP) density. Every 318 chip contains 11 million wells and the color scale on the right side conduces as a
loading indicator. Deep red coloration stays for a 100% loading, which means that every well in this area contains an ISP
(templated and non-templated) whereas deep blue coloration implies that the wells in this area are empty. (B): Alignment
of segments of the ion torrent sequence of the COMT gene as Golden Helix Genome Browse® readouts versus the same
sequence according to an externally predicted Sanger electropherogram. The figure has been created using the original
outputs of the Ion PGM System (Life Technologies, Darmstadt, Germany) and the Golden Helix Genome Browse® software
(Version 2.0.4, Golden Helix, Bozeman, MT, USA).

Following elimination of nucleotides agreeing with the standard human genome
sequence GRCh37 g1k (dated February 2009), the result of the NGS consisted of a vector of
nucleotide information about the d = 69 genes for each individual DNA sample. This vector
had a length equaling the set union of the number of chromosomal positions in which a non-
reference nucleotide had been found in any probe of the actual cohort. Specifically, a total
of 691 genetic variants were found, of which 161 were exonic, 22 intergenic, 255 intronic,
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and 215 variants were located in the 3′-UTR and 38 variants in the 5′-UTR (Figure 3).
Three genes (IFNG, GSTM1, and CXCL8) were not represented in the final set of genetic
variants. Panel design and assay quality parameters were re-examined with positive results.
The read gene length provided an explanation for the absence of variants (Figure 3). That is,
the three genes were among the shortest genes in the available panels. In fact, the number
of variants detected was significantly correlated with the total number of nucleotides
read (total number of variants: robust correlation coefficient: 0.612, p = 1.116 × 10−8,
exonic variants only: robust correlation coefficient: 0.398, p = 0.00054). The number of
nucleotides read per gene also matched well with the gene length queried from the database
“org.Hs.eg.db” (robust correlation coefficient: 0.8633, p < 2.22 × 10−16.

Int. J. Mol. Sci. 2021, 22, 656 4 of 7
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Figure 3. .
Figure 3. Number and localization of variants identified using the present AmpliSeqTM panel, in relation to the read DNA
length per gene. (A) Stacked bar plot representing the number of genetic variants per gene included in the assay, categorized
for the gene locations. The horizontal size of the cells is proportional to the number of nucleotides assayed in the respective
gene. The genes are ordered for descending read length. Variants were not found in three genes (IFNG, GSTM1 and CXCL8;
indicated in blue gene symbols at the x-axis), which are among the shortest genes. (B) Scatterplot of the total number of
variants versus the number of nucleotides read for the respective gene in the present assay. A robust regression line with
95% confidence interval is overlaid on the dot plot. The genes where no variants had been detected are indicated as blue
dots. Please note the decreasing order of gene length on the abscissa to match the main panel. The figure has been created
using the R software package (version 4.0.2 for Linux, city, http://CRAN.R-project.org/ [92]) and the R libraries “ggplot2”
(https://cran.r-project.org/package=ggplot2 [96]). UTR: untranslated region.

2.3. Other Analyses

The d = 29 genes have been shown to cover 70% of the DAG emerging from 540 pain
genes, I.e., can be regarded to represent pain completely to this extent [17]. However, as the
present panel had been filled with further genes, the present analyses aimed to functionally
characterize the set of d = 72 genes. This was approached by computational querying of
the knowledge about the function of human genes recorded in the knowledge base of gene
ontology (GO). Over-representation analysis (ORA) identified 70 GO terms as significantly
associated with the set of 72 genes, more often than randomly expected, at the selected
p-value threshold of 5 × 10−15 with correction for multiple tests according to Bonferroni.
Computed ABC analysis of the remarkableness of the GO terms qualifying as headlines
to describe significant branches of the obtained polyhierarchy categorized d = 14 terms
into ABC set “A” indicating the most important items (Figure 4). Further reduction of the
number of GO terms by subsumption of adjacent branches of the polyhierarchy to the next
suitable unifying term upwards the hierarchy led to six functional areas covered by the
72 genes.

http://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
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Figure 4. .
Figure 4. Computational functional genomics perspective on the biological processes in which the genes analyzed with
the proposed NGS panel are involved. The figure displays the results of an overrepresentation analysis (ORA; p-value
threshold, tp = 5 × 10−15 and Bonferroni α correction) of the 72 genes included in the present NGS panel (Table 1). (A) Bar
plot of the gene relevance in the functional genomics representation of the present gene set. As a basis for the selection of
the most relevant terms to describe the directed acyclic graph (DAG [97]) representing the polyhierarchical structure of the
Gene Ontology database, i.e., the terms that can serve as headlines for each branch of the DAG, the remarkableness measure
was previously introduced [98]. The bar plot shows the relevance of GO terms in decreasing order of the remarkableness
measure. The blue bars indicate the most relevant terms selected by an item categorization technique, implemented as a
computed ABC analysis [99]. (B) The ABC plot (blue line) shows the cumulative distribution function of the remarkableness
measure with the limits between sets A, B and C indicate as red lines. The results show that 14 GO terms belonged to ABC
set “A” and were therefore considered as most relevant to the DAG. (C) Top-down representation of the annotations (GO
terms) representing a systems biology perspective of the biological processes modulated by the set of 72 genes included
in the present NGS panel. Each ellipse represents a GO term. The graphical representation follows the standard of the
GO knowledge base, where GO terms are related to each other by “is-a”, “part-of”, “has-a” and “regulates” relationships
forming a branching polyhierarchy organized in a directed acyclic graph (DAG [97]). The color coding is as follows: No
color: GO terms that are important for the DAG’s structure but do not have a significant p-value in Fisher’s exact tests.
Red: Significantly overrepresented nodes. Green: Terms at the end (detail) of a branch of the DAG. In addition, the node’s
text will be colored in blue to indicate that this node is a detail. Yellow: Significant nodes with highest remarkableness
in each path from a detail to the root, i.e., the so-called “headlines”. The margins indicate over by its red color. Violet:
Functional areas, i.e., terms selected to describe the parts below them in the DAG most concisely. The figure has been created
using the R software package (version 4.0.2 for Linux; http://CRAN.R-project.org/ [92]) and the R libraries “ABCanalysis”
(http://cran.r-project.org/package=ABCanalysis [99]), “ggplot2” (https://cran.r-project.org/package=ggplot2 [96]) and
“dbtORA” (https://github.com/IME-TMP-FFM/dbtORA [100]).

http://CRAN.R-project.org/
http://cran.r-project.org/package=ABCanalysis
https://cran.r-project.org/package=ggplot2
https://github.com/IME-TMP-FFM/dbtORA
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These areas included: (i) the “regulation of localization” (GO:0032879), which mainly
concerned the regulation of protein secretion (GO:0050708); (ii) “response to a stimu-
lus” (GO:0050896) (Figure 5), especially to a chemical stimulus (GO: 0042221) and con-
verged to “cytokine-mediated signaling (GO:0019221) and the MAPK cascade (GO:0043410);
(iii) the “metabolic process” (GO: 0008152), which also converged to the MAPK cascade,
the ERK1 and ERK2 cascade (GO: 007031), and the protein kinases (GO:0045860); (iv) the
“multicellular organism process” (GO:0032501), which mainly involves cytokine production
(GO: 0001819), (v) “signaling” (GO:0023052), which in turn converges to the MAPK cascade,
and (vi) finally, the non-specific “regulation of biological quality” (GO:0065008), which is
considered to be relevant in the maintenance of homeostasis. Taken together, the set of n
= 72 genes was functionally mainly involved in the mitogen-activated protein kinase of
extracellular signal-regulated kinase, which, in interaction with cytokine production and
secretion, indicated the control of immune and inflammatory processes in pain.Int. J. Mol. Sci. 2021, 22, 656 6 of 7
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Figure 5. Detail of the directed acyclic graph (DAG [97]) shown in Figure 4, displaying the polyhierarchical structure of the
Gene Ontology database (“point of view”) below the GO term “response to stimulus” (GO:0050896). This was one of the
major biological processes identified by a functional genomics analysis aiming at characteristics of pain and defined as
“Any process that results in a change in state or activity of a cell or an organism (in terms of movement, secretion, enzyme
production, gene expression, etc.) as a result of a stimulus. The process begins with detection of the stimulus and ends with a
change in state or activity or the cell or organism” [19]. The color coding is as follows: No color: GO terms that are important
for the DAG’s structure but do not have a significant p-value in Fisher’s exact tests. Red: Significantly overrepresented
nodes. Green: Terms at the end (detail) of a branch of the DAG. In addition, the node’s text will be colored in blue to indicate
that this node is a detail. Yellow: Significant nodes with highest remarkableness in each path from a detail to the root, i.e.,
the so-called “headlines”. The margins indicate over by its red color. Violet: Functional areas, i.e., terms selected to describe
the parts below them in the DAG most concisely. The figure has been created using the R software package (version 4.0.2 for
Linux; http://CRAN.R-project.org/ [92]) and the library “dbtORA” (https://github.com/IME-TMP-FFM/dbtORA [100]).

3. Discussion

The primary subset of the present panel of pain-relevant genes represents key genes
of pain that had emerged in a computational functional genomics-based analysis that
considered the position of biological processes in which these genes were involved in
the polyhierarchical presentation of pain [17]. In a previous analysis of the functional
genomics of pain [8], the biological functions characterizing pain had been identified to
comprise 12 different components. Specifically, main functional areas were “behavior”,
“response to wounding” and “response to organic substance”, which are sub-terms of the
GO term “response to stimulus”. In addition, ion homeostasis and transport, the synap-
tic transmission of nociceptive input and intracellular signal transduction including the

http://CRAN.R-project.org/
https://github.com/IME-TMP-FFM/dbtORA


Int. J. Mol. Sci. 2021, 22, 878 9 of 28

G-protein coupled receptor- signaling pathway as well as anatomical structure develop-
ment and regulation of (multicellular) system processes completed the full functional
picture of pain. In a later analysis [17], the present subset 1 of n = 29 best-scoring genes was
found to identify the GO terms forming the complete polyhierarchy with precision and
recall of more than 70%. Thus, the present subset 1 includes genes which best reflect the
functional biology of pain. For comparison, when using a random sample of n = 29 genes
from the 540 pain-relevant genes, the average recall of the GO terms of the pain-DAG was
only 1.77% [17]. The relevance for pain in general was also supported by the observation
that for the currently 29 genes a significantly higher hit rate of drug targets was achieved
than for a random sample of 29 genes among the 540 pain genes [17]. Hence, several lines
of evidence provide support that subset 1 can be considered as a pain-relevant selection
of genes.

It was technically possible to add more genes without increasing the analytical cost,
and this option was chosen by adding subset 2, which uses previous and independent
efforts to select pain-relevant genes [9,10]. This shifted the functional genomics of pain
covered by the resent NGS Panel, resulting in the need for a new analysis, which led to an
emphasis on immune and inflammatory processes in the functional genomics of pain cov-
ered by the current NGS panel, particularly represented by the mitogen-activated protein
kinase of extracellular signal-regulated kinase and cytokine production and secretion.

Thus, the present panel provides a key set of pain genes that has been derived
from a computer-aided functional genomics analysis [17] of 540 genes of the PainGenes
database [7]. Although this covers 70% of the biological processes in which the 540 genes
are involved, it is not an exhaustive set of genes of interest for pain. The genes in the
PainGenes database were included based on studies in transgenic mice, with the condition
that at least one statistically significant difference was reported between the mutated mice
and their concurrently tested wild-type controls. However, alternative approaches, includ-
ing by the authors of the PainGenes database [9], used different criteria, such as reported
associations with clinical pain, resulting in additional gene sets that were suggested to be
pain relevant. A selection of these genes was included as subset 2 in the present panel,
and in addition, additional genes from these proposals were included in an earlier, similarly
designed NGS panel [20,95,101]. For example, the COMT genes were added, which were
extensively studied in connection with pain modulation [102], but were not included in the
important subset 1 of the present panel, but were members of subset 2.

3.1. Discussion of Main Results
3.1.1. Technical Considerations

Since 2008, when sequencing switched from Sanger-based to NGS technologies,
the cost per raw megabase has been significantly below the expectations predicted by
the reciprocal of Moore’s law, where the latter is an empirical observation from computer
hardware engineering and describes technological developments that are widely regarded
as successful (for data, see https://www.genome.gov/about-genomics/fact-sheets/DNA-
Sequencing-Costs-Data). The panel presented here, fits well into the current costs. Our se-
quencing project with the Ion TorrentTM platform using the personal genome machine with
318TM chips cost approx. € 630 per sequencing run while the cost per raw megabase of the
72 genes in 56 DNA samples required approximately € 0.20 per Mb. While the sequencing
cost per run for the TorrentTM and Ilumina MiSeq are comparable, the investment costs for
the MiSeq sequencer are higher, but this machine has a higher throughput, which reflects
in a slightly reduced sequencing cost per megabase [103].

3.1.2. Functional Involvement of Genes in Biological Processes

The selection of genes relied on empirical evidence of their involvement in pain.
For subset #1 (d = 29). This had been shown for all of the genes in the original paper [17].
This subset includes d = 29 genes identified using a computational functional genomics-
based approach in which the gene sets are reduced to the most relevant items based on

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
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the importance of the gene within the polyhierarchy of biological processes characterizing
pain. Subset #2 resulted from two proposed sets of human genes involved in modulating
the risk or clinical course of persistent pain “Mogil” [9] and “Zorina-Lichtenwalter” [10].
The chosen set of genes for subset ‘2 includes the intersection from both alternative propos-
als aiming at similar phenotypes. However, when analyzing these alternatives for mutual
agreement, an overlap of n = 50 could be observed. Combining all proposals into a large
panel was not an option due to the technical limitations of the IonTorrentTM restricting the
panel size to 500 kb (pipeline version 5.6.2, Carlsbad, CA, USA).

Both subsets comprised genes associated with the mesolimbic dopaminergic system,
i.e., DRD1, DRD2, DRD3, DRD4 which code for dopamine receptors which play an im-
portant role in pain modulation, suggesting that dopamine can modulate pain signals by
acting at both presynaptic and postsynaptic targets [104]. Further genes were involved in
cytokine production (CCL21 CCL5 CCR2, CCR7) and there is significant evidence showing
that certain cytokines are involved in not only the initiation but also the persistence of
pathologic pain by directly activating nociceptive sensory neurons [105]. Another main fo-
cal point were genes associated with immune regulatory processes including genes coding
for interleukins (IL1A, IL6, IL10, IL1B, IL1RN) [106–109] and the histocompatibility complex
related gene HLA-DRB1 [110], which has been shown to be involved in immunological
mechanisms of pain [111]. This is also supported by published evidence for the further
genes in this list, such as TNF [112], GCH1 [113], and P2RX7 [114]. The view of pain and
its development towards persistence as a trait resulting from alterations in the immune
system is a concept that is biologically highly plausible and agrees with other lines of
pain research and has been discussed more detailed in a previous work [115]. Another
major process group included members of the transient receptor potential (TRP) family
(TRPA1, TRPM8, TRPV1) that are expressed at nociceptors and which are well established
players in the perception of pain [116]. This similarly applies to the Toll-like receptor genes
(TLR4 and TLR9)), which have been associated with the inflammatory consequences of
glia activation (including microglia and astrocytes), sensory neurons, and other cell types
which can influence nociceptive processing [47].

3.1.3. Functional Involvement of Detected Variants

In the present study sample, a total of 691 genetic coding variants were found. Regard-
less of the sample preselection, 68 clinical associations, of which 29 have associated with
various painful conditions (Table 2), could be queried for the observed variants from open
access data sources. These comprise: (i) the Online Mendelian Inheritance in Man (OMIM®)
database (https://www.omim.org), (ii) the NCBI gene index database, the GeneCards
database (https://www.genecards.org) and the 1000 Genomes Browser (all accessed in Oc-
tober 2020). Although the present gene set has been assembled with a focus of a relevance
to pain, many of its members have been implicated in pharmacogenetic modulations of
drug effects (Table 3). Moreover, several of the genes in the present NGS panel have been
chosen as targets of analgesics, approved or under current clinical development (data not
shown). Functional polymorphisms that have been proven to influence gene functions are
the most common candidate mutations in human that play a vital role in the genetic basis
of certain diseases [111,117].

https://www.omim.org
https://www.genecards.org
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Table 2. Variants with reported clinical effects. The table provides a list of human variants in the 72 putative chronic pain
genes which were found in the present random sample of 61 subjects of Caucasian ethnicity, for which clinical associations
have been reported.

Gene Name Variant
DbSNP #

Accession
Number

Consequence Known Clinical
Association Reference

Pain Related
ACAN chr15:g.89398553C>A rs35430524 NON_SYNONYMOUS Chronic low back pain [49]
ACAN chr15:g.89402051A>G rs1042630 NON_SYNONYMOUS Chronic low back pain [49]

ADRB2 chr5:g.142780339C>A rs1042718 NON_SYNONYMOUS Associated with increased
response to fentanyl [118]

ADRB2 chr5:g.148206917C>T rs1042719 SYNONYMOUS Associated with chronic
pain in sickle cell disease [119]

ADRB2 chr5:g.148207447G>A rs1042720 SYNONYMOUS Associated with chronic
pain in sickle cell disease [119]

COMT chr22:g.19951207C>T rs4818 SYNONYMOUS Chronic post-surgical pain [120]
ESR1 chr6:g.152420095G>A rs2228480 SYNONYMOUS Risk of knee osteoarthritis [121]

HTR2A chr13:g.47409034G>A rs6314 NON_SYNONYMOUS Development of
rheumatoid arthritis [122]

IL1RN chr2:g.113887207T>C rs419598 SYNONYMOUS
Altered pain perception [123]

Knee osteoarthritis [124]
IL1RN chr2:g.113890304T>C rs315952 SYNONYMOUS Osteoarthritis [125]

IL6 chr7:g.22771039T>C rs13306435 SYNONYMOUS Associated with persistent
lumbar radicular pain [126]

KCNS1 chr20:g.43723627T>C rs734784 NON_SYNONYMOUS Pain variability [127]
MTRR chr5:g.7885959A>G rs162036 NON_SYNONYMOUS Associated with migraine [128]

P2RX7 chr12:g.121592689T>C rs17525809 NON_SYNONYMOUS Regulate the onset of
gouty arthritis [129]

P2RX7 chr12:g.121600253T>C rs208294 NON_SYNONYMOUS
Pain tolerance [130]

Variability in chronic pain
sensitivity [43]

P2RX7 chr12:g.121615103G>A rs1718119 NON_SYNONYMOUS Cold pain sensitivity and
analgesic effect of fentanyl [131]

P2RX7 chr12:g.121622304A>G rs3751143 NON_SYNONYMOUS Relevance to diabetic
neuropathic pain [132]

SCN9A chr2:g.167141109G>C rs41268673 NON_SYNONYMOUS Oxaliplatin induced
neuropathy [133]

chr2:g.166277030T>G rs12478318 NON_SYNONYMOUS

Genotype GT is associated
with Pain Insensitivity,

Congenital as compared to
genotype TT

[134]

TGFB1 chr19:g.41858876C>T rs1800471 NON_SYNONYMOUS
Painful bladder syndrome [135]
Insensitivity to pain and

erythromelalgia [136]

TRPA1 chr8:g.72975801T>C rs7819749 SYNONYMOUS
Sensitivity to heat stimuli

and topically applied
capsaicin

[16]

TRPM8 chr2:g.234854550G>A rs11562975 SYNONYMOUS Attenuated cold pain
sensation [137]

TRPV1 chr17:g.3494361G>T rs222748 NON_SYNONYMOUS Burning pain and
capsaicin sensitivity [138]

TRPV1 chr17:g.3494361G>T rs222748 NON_SYNONYMOUS
Burning pain and

capsaicin sensitivity [138]

Cold and heat pain
sensitivity [139]

TRPV1 chr17:g.3495374G>A rs222749 NON_SYNONYMOUS
Chronic migraine [55]

Altered pain perception [140]
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Table 2. Cont.

Gene Name Variant
DbSNP #

Accession
Number

Consequence Known Clinical
Association Reference

Non-Pain Related

ACAN chr15:g.89398407C>T rs3743398 NON_SYNONYMOUS Glioblastoma multiforme [141]

ACE chr17:g.61564052A>G rs4331 SYNONYMOUS Risk of late-onset
Alzheimer’s disease [142]

CASP9 chr1:g.15833506C>T rs2308950 NON_SYNONYMOUS
Risk of non-Hodgkin’s

lymphoma [143]

Predisposition to lung
cancer [144]

CASP9 chr1:g.15834360A>G rs2020902 SPLICE_SITE Bladder cancer risk [145]

CCR2 chr3:g.46399174G>T rs3918367 SYNONYMOUS
Associated with

endothelial function in
prediabetic individuals

[146]

CCR2 chr3:g.46399208G>A rs1799864 NON_SYNONYMOUS
Associated with prostatic
hyperplasia and prostate

cancer
[147]

CCR2 chr3:g.46399798T>C rs1799865 SYNONYMOUS
Associated with markers

of exercise-induced
skeletal muscle damage

[148]

CD4 chr12:g.6924109C>T rs11575099 SYNONYMOUS
Involved in multiple

sclerosis [149]

Stressful life events and
suicide [150]

CFTR chr7:g.117175372A>G rs121909046 NON_SYNONYMOUS
Associated with

respiratory and pancreatic
diseases

[151]

CFTR chr7:g.117199709G>C rs1800095 NON_SYNONYMOUS Associated with idiopathic
pancreatitis [152]

CFTR chr7:g.117235055T>A rs1042077 SYNONYMOUS Associated with cystic
fibrosis [153]

ESR1 chr6:g.152129308G>A rs746432 SYNONYMOUS Breast cancer risk [154]
HTR2A chr13:g.47409034G>A rs6314 NON_SYNONYMOUS Major depressive disorder [155]

HTR2A chr13:g.47409149T>A rs35224115 SYNONYMOUS Obsessive-compulsive
disorder [156]

HTR2A chr13:g.47466622G>A rs6305 SYNONYMOUS Schizophrenia [157]
IL1RN chr2:g.113877713A>C rs878972 SPLICE_SITE Prostate cancer risk [158]

IL6 chr7:g.22771156C>G rs2069849 NON_SYNONYMOUS Associated with obesity [159]

MTRR chr5:g.7878424T>A rs2303080 NON_SYNONYMOUS Risks of spina bifida and
conotruncal heart defects [160]

MTRR chr5:g.7889216G>A rs2287779 SYNONYMOUS Risk of childhood acute
lymphoblastic leukemia [161]

MTRR chr5:g.7889304C>T rs2287780 NON_SYNONYMOUS Gastric cancer risk [162]

NR3C1 chr5:g.142661490A>G rs6196 SYNONYMOUS
Associated with

corticosteroid dependency
and resistance

[163]

NR3C1 chr5:g.142662280G>T rs258751 NON_SYNONYMOUS
Associated with

high-altitude pulmonary
edema

[164]

NR3C1 chr5:g.142779317T>A rs56149945 NON_SYNONYMOUS Associated with cocaine
use [165]

NR3C1 chr5:g.142780337C>G rs6190 NON_SYNONYMOUS
Associated with mood

and anxiety disorders in
patients with asthma

[166]

NR3C1 chr5:g.142780339C>A rs6189 NON_SYNONYMOUS
Associated with mood

and anxiety disorders in
patients with asthma

[166]

P2RX7 chr12:g.121600238G>T rs28360447 STOP_GAINED Osteoporosis risk [167]
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Table 2. Cont.

Gene Name Variant
DbSNP #

Accession
Number

Consequence Known Clinical
Association Reference

PGR chr11:g.100909991T>C rs500760 SYNONYMOUS Gastric cancer risk [168]

PGR chr11:g.100922202G>A rs1042839 SYNONYMOUS Sporadic neuroendocrine
tumor risk [169]

PRKCA chr17:g.64685078G>A rs2227857 SYNONYMOUS Deep vein thrombosis [170]

POMC chr2:g.25387624G>A rs8192605 SYNONYMOUS
Associated with substance

dependence and body
mass index

[171]

SERPINA6 chr14:g.94772504G>A rs1042394 SYNONYMOUS Associated with stress
fractures [172]

SERPINA6 chr14:g.94776221A>C rs2228541 NON_SYNONYMOUS Lymphoblastic leukemia [173]

TLR4 chr9:g.120475302A>T rs4986790 NON_SYNONYMOUS Higher risk for gastric
cancer [174]

chr9:g.120475602C>T rs4986791 NON_SYNONYMOUS Associated with lower
respiratory tract infections [175]

TRPM8 chr2:g.234905078C>A rs11563208 SYNONYMOUS

Associated with
cold-induced airway

hyperresponsiveness in
bronchial asthma

[176]

TRPV1 chr17:g.3495391T>C rs55916885 NON_SYNONYMOUS Associated with asthma [177]
# https://www.ncbi.nlm.nih.gov/snp/?cmd=search.

Table 3. Gene variants with reported pharmacogenetic effects. The table provides a summary of variants in genes included
in the proposed panel of n = 72 genes and found in the DNA of the 61 analyzed subjects, that have been implicated in a
pharmacogenetic context to modulate the effects of drugs administered for the treatment of pain or as disease modifying
therapeutics in a painful disease.

Gene Name Variant Affected Drug Findings Reference

ADRA2A rs1800545 Oxycodone Allele A is associated with dose of opioids in people with
Pain as compared to allele G in the development sample [178]

ADRA2A rs11195419 Oxycodone Allele A is associated with dose of opioids in people with
Pain as compared to allele G in the development sample [178]

ADRB2 rs1042718 Fentanyl Genotype AC is associated with increased response to
fentanyl in healthy individuals as compared to genotype CC [118]

CALCA rs3781719 Botulinum
Patients with the AA genotype and chronic migraine may

have an increased response to botulinum toxin A as
compared to patients with the AG or GG genotypes.

[55]

CCL21 rs2812378 Infliximab Nominal association of this SNP with association of
rheumatoid arthritis risk alleles [179]

CD40 rs1126535 Adalimumab Allele T is associated with increased response to
adalimumab in people with Arthritis [180]

COMT rs4633 Morphine

Patients with the CC genotype may be more likely to require
postoperative intervention with opioids after

adenotonsillectomy as compared to patients with the TT
genotype. Other genetic and clinical factors may also

influence a patient’s requirement for pain management.

[181]

DRD2 rs6275 Heroine Polymorphism is associated with decreased likelihood of
headache disorders [182]

ESR1 rs9340799 Leflunomide

Patients with the AA genotype may experience greater
response to leflunomide as compared to patients with the
GG genotype. Other genetic and clinical factors may also
influence response to leflunomide, particularly rs2234693.

[183]

https://www.ncbi.nlm.nih.gov/snp/?cmd=search
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Table 3. Cont.

Gene Name Variant Affected Drug Findings Reference

IFNG rs2069705 Etanercept
Allele G is associated with increased response to Tumor
necrosis factor alpha (TNF-alpha) inhibitors in people

with Arthritis
[184]

IL1B rs1143634 Morphine Allele A is associated with increased dose of morphine in
women with Pain [185]

IL6 rs11265618 Tocilizumab
Patients with the CC genotype and rheumatoid arthritis may

have a better response when treated with tocilizumab as
compared to patients with the CT or TT genotype

[186]

MTRR rs1801394 Folic Acid

Female patients with the AA genotype and Migraine who
are treated with folic acid and a vitamin b-complex may

have decreased severity of pain as compared to patients with
the GG genotype.

[187]

OPRM1 rs1799971 Opioids
Allele G is associated with increased plasma concentrations

of morphine in women with Pain, Postoperative as
compared to allele A

[188]

P2RX7 rs1718125 Fentanyl
Patients with the CC genotype may have decreased fentanyl
dosage requirements as compared to patients with the CT or

TT genotypes
[131]

PTGS2 rs20417 Ibuprofen
Patients with the CC genotype may have decreased pain

relief to ibuprofen as compared to patients with GG or CG
genotype.

[189];
however,
see [190]

For example, a single nucleotide polymorphism determined as ER22/23EK (rs6189
and rs6190) is located in the exon 2 of the glucocorticoid receptor gene (NR3C1) and
involves codons 22 and 23. This SNP is revered be responsible for relative resistance to glu-
cocorticoids [111] and is associated with several effects like mood and anxiety disorders in
patients with asthma [191] and a more aggressive disease course in multiple sclerosis [111].
Results of a study of the functional consequences of P2RX7 polymorphisms in recombinant
cells in vitro [132] suggested a correlation between gain-of -function and loss-of-function
of P2RX7 expression. It was further demonstrated that in patients with diabetic peripheral
neuropathic pain (DPNP), the presence of the gain-of-function SNPs rs208294 (His155Tyr)
is associated with higher pain intensity scores. Another meta-analysis addressed the role
of P2RX7 SNP (rs1718119) with the odds of Tuberculosis [192] and the findings indicate
that this polymorphism could serve as a potential biological marker. Another recent study
aimed to examine whether pharmacogenetics explains some of the variability in the re-
sponse to fentanyl, which is an agonist of the µ-opioid receptor commonly used in the
treatment of moderate-severe pain. Carriers of the C523A polymorphism (rs1042718) in
the ADRB2 gene were associated with increased response to fentanyl [111].

3.1.4. Comparison to Other Proposals of Pain-Relevant Gene Assay Panels

The present panel for sequencing genes associated with pain complements alter-
native proposals, including commercial offerings of “pain gene” sets that promise to
provide ready-to-use assays for private testing or clinical association studies. For exam-
ple, the company GX Sciences (Austin, TX, US) advertises a panel containing 30 single
nucleotide polymorphisms in 28 different genes that comes with a do-it-yourself saliva
swab test kit. All genes have a referenced relationship to chronic pain, but no further
insight into the gene selection criteria is provided, nor is there any further information on
the genotyping method performed (https://www.gxsciences.com). This panel and the
currently proposed one have only 8.3% of their total genes in common, while 42.8% of
the GXS panel are so-called pain genes, i.e., genes mainly from the PainGenes database
(http://www.jbldesign.com/jmogil/enter.html [7], with some extensions [8] comprising
targets of approved analgesics [91] and genes known to be causally involved in familiarity
syndromes with either absent or paroxysmal exaggerated pain [1]. For comparison, 65.3%
of the presently proposed panel are “pain genes”.

https://www.gxsciences.com
http://www.jbldesign.com/jmogil/enter.html
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Another alternative panel for sequencing pain-related genes is provided by Live Tech-
nologies (Carlsbad, CA, USA), the manufacturer of the Ion TorrentTM platform used for
the present panel. It includes the complete exonic sequence of 64 pain-related genes. How-
ever, without further information on gene selection criteria (https://www.ampliseq.com).
This set and the currently proposed set have only 11.5% of their total genes in com-
mon. However, 59.5% of this panel also belongs to the so-called “pain genes” mentioned
above [8]. A third alternative is a cloud-based, publicly available knowledge base that
enables virtual gene panels for human diseases and includes a virtual panel for chronic
pain with 28 genes contributed by various departments, research groups, and consortia
(https://panelapp.genomicsengland.co.uk). This set shares only 2% of the genes with the
present panel, but 59.5% of its genes are also included in the “pain gene” set [8].

Thus, the present set of genes fits and complements other proposals. Taken above-
mentioned proposals, the panel introduced in the present report and our previous panel [20]
together, NGS sets for pain already cover 28.3% of the 540 genes included as references
in the “pain-genes” set, which is based on the most stringent inclusion criteria by also
requiring independent validations of a gene’s involvement in pain in knock-out models [7].
In contrast to the alternatives, the present set of pain-related genes is mainly based on a
selection resulting from a computer-assisted functional genomic analysis [17]. According to
a computational analysis of the functional involvement of the gene set [17], it covers > 70%
of the genetic architecture of pain. This outperforms alternative proposals that purportedly
single out pain-relevant genes but seem to lack a clear functional hypothesis. The apparent
discrepancies between the different proposals, which also extend to the sets of pain-related
genes used to complete the present panel, underscore that the genetic architecture of
persistent pain is still incompletely understood and that several independent lines of
research can be pursued, because combining all proposals into a large research panel is not
yet an easily implemented option because of the technical limitations of NGS applications.
The development of these panels is aimed at broadening the genetic perspective on pain.
Indeed, although many candidate gene association studies have identified multiple genes
relevant for pain phenotypes in the past decade, but roughly ten genes or gene complexes
account for over half of the findings and several of these candidate gene associations have
held up in replication [9].

3.2. Strengths and Limitations

The present AmpliSeqTM panel complements earlier proposals on genes relevant for
pain and especially persistent pain [7,9,10,20] and provides a validated assay suitable for
high-throughput analyses to further evaluate genetic biomarkers for pain in this clinical
setting. The biological roles of the included genes are clearly defined by the functional-
genomics description based on the current acquired knowledge about higher-level orga-
nization of gene products into biological pathways [193], of which the gold-standard is
the Gene Ontology (GO) knowledge base [19]. These include a set of genes that have been
shown to be essential for pain in a bioinformatics approach [17], which is in the present
report regarded as the primary subset of major importance. Among the limitations, firstly,
the selection of test persons does not reflect a random sample of a population, but only in-
cludes women with breast cancer. An attempt was made to reduce bias towards or against
persistent pain by maintaining the respective ratio observed in the original cohort [94].
However, this proportion may not be identical for different settings of persistent pain.
Furthermore, the inclusion of only women may have distorted the frequency of the X
chromosome variant observed in this analysis.

It is important to emphasize that the present report is limited to the details of assay
development including the gene selection process. The separate report of the panel develop-
ment provides the details of its establishment and validation, along with the computational
genomic bases of the gene selection and the functional implications of the selected gene set
in the context of previous proposals of important genes related to persistent pain. Hence,
it can be considered as a separate scientific analysis that would exceed the necessary ex-

https://www.ampliseq.com
https://panelapp.genomicsengland.co.uk
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planations provided within a genetic association report. In particular, the selection of the
main subset of the present panel is based on a functional analysis and thus goes beyond
the collection of genes discussed in the previous subsection, which seems to provide rather
random collections based solely on mentions in the literature as pain-relevant genes.

In contrast, the genetic analyses for risk of persistent pain will be performed in a cohort
of 70/70 women with persistent/non-persistent pain, extending a previous analysis [14].
After all, the immediate exploitation of the advanced technology which NGS provides
over single variant analysis, which was still common a decade ago, is still easier to achieve
in limited gene sets than in the whole genome due to technical limitations. In view
of the high prevalence of chronic pain of about one fifth to one third of the European
population [194,195], it is important to advance the discovery of genetic markers as quickly
as possible.

4. Materials and Methods
4.1. Assembly of a Pain-Relevant Gene Set

The present NGS panel of pain relevant genes (Table 1) comprises two subsets derived
(i) from a computational functional genomics bioinformatics approach to key players in the
genetic architecture of pain [17] and (ii) further genes taken from independent proposals of
published evidence-based genes relevant to (persistent) pain.

4.1.1. Computational Functional-Genomics Based Key Genes for Pain

The focus in the selection of genes was on maintaining, as completely as possible,
the functional genomics picture of pain with a reduced number of genes, as had been
achieved by applying the computational functional genomics-based method of reducing
disease-related gene sets to their key components [17]. Thus, subset 1 (Table 1) of the
presently proposed NGS panel consisted of the 29 genes with which it had been possible
to reproduce the biological processes in which the full set of 540 pain-relevant genes is
involved by over 70% although they represented only 5% of the original genes.

4.1.2. Published Evidence-Based Genes Relevant to Pain

In order to fully exploit the technical potential of the NGS panel, another 50 genes
were added as subset 2 (Table 1). Specifically, these genes were selected based on inter-
sections between two independently proposed alternative sets of human genes involved
in modulating the risk or clinical course of pain and its persistence (Figure 1). The sets
contained 127 genes [9] and 152 genes [10]. Their intersection included 50 genes. As subset
1 and subset 2 shared seven genes, the present NGS panel included 72 unique genes.

4.2. Establishment of the AmpliSeqTM NGS Panel
4.2.1. DNA Sample Acquisition

The present set of genes complements an earlier NGS panel [20], which was success-
fully applied to genotype versus phenotype associations in patients who had undergone
breast cancer surgery [14]. The laboratory analyses were therefore performed on the same
DNA samples that were used previously, but with a non-redundant technical implemen-
tation. The samples comprise a subset from a cohort of n = 1000 women with unilateral
non-metastatic breast cancer, which has already been reported in connection with the
development of persistent pain after surgery [21]. All subjects were of Caucasian ethnicity
by self-assignment. The study followed the Declaration of Helsinki and was approved by
the Coordinating Ethics Committee of the Helsinki University Hospital. Each participating
subject provided informed written consent including into the study of pain-relevant genes.

For the present method-establishment and validation, a genetic association analysis
with pain status was not intended. Nevertheless, in order to obtain a representative cohort
for the evaluation of the frequency of genetic variants, which is as close as possible to a
random sample of test subjects, the relative proportion of patients with persistent pain and
without persistent pain, as observed in the entire cohort of 1000 women [94], was retained



Int. J. Mol. Sci. 2021, 22, 878 17 of 28

in the composition of the samples. Specifically, for assay establishment, 60 samples were
planned. In the above-mentioned cohort, a total of 853 individuals were analyzed, 779 of
whom had a favorable outcome with respect to pain, while 74 had developed persistent pain
according to criteria defined in [94]. In 60 samples, this ratio corresponds to 5.7 individuals
with persistent pain. After rounding, the sample currently analyzed consisted of 55 subjects
without pain and six patients with persistent pain.

4.2.2. DNA Amplification

A multiplex PCR amplification strategy for the sequences of the coding genes was
accomplished online (Ion AmpliseqTM Designer; http://www.ampliseq.com) to amplify
the target region specified above with 25 base pair exon padding. After a comparison
of several primer design options, the design providing the maximum target sequence
coverage was chosen. The 403kb target-sized panel has been ordered with 1504 amplicons
and covered approximately 97.54% of the target sequence. A total of 10 ng DNA per sample
was used for the target enrichment by a multiplex PCR and each DNA pool was amplified
with the Ion AmpliseqTM Library Kit in conjunction with the Ion AmpliseqTM “custom
Primer Pool”-protocols according to the manufacturer procedures (Life Technologies,
Darmstadt, Germany).

After each pool had undergone 17 PCR cycles, the PCR primers were removed with
FuPa Reagent (Thermo Fisher Scientific, Dreieich, Germany) and the amplicons were
ligated to the sequencing adaptors with short stretches of index sequences (barcodes)
that enabled sample multiplexing for subsequent steps (Ion Xpress™ Barcode Adapters
Kit; Life Technologies, Carlsbad, CA, USA). After purification with AMPure XP beads
(Beckman Coulter, Krefeld, Germany), the barcoded libraries were quantified with a
Qubit® 2.0 Fluorimeter (Life Technologies, Darmstadt, Germany) and normalized for DNA
concentration to a final concentration of 20 pmol/L using the Ion Library Equalizer™ Kit
(Life Technologies, Darmstadt, Germany). Equalized barcoded libraries from 9–10 samples
at a time were pooled. To clonally amplify the library DNA onto the Ion Sphere Particles
(ISPs; Life Technologies, Darmstadt, Germany), the library pool was subjected to emulsion
PCR by using an Ion PGM HI-Q View Template Kit on an PGM OneTouch system (Life
Technologies, Darmstadt, Germany) following the manufacturer’s protocol.

4.2.3. DNA Sequencing

Enriched ISPs which carried many copies of the same DNA fragment were subjected
to sequencing on an Ion 318 Chip to sequence-pooled libraries with 9 to 10 samples.
The number of combined libraries that can be accommodated in a single sequencing run
depends on the size of the chip, the balance of barcoded library concentration, and the
coverage required. The high-capacity 318 chip was chosen (instead of the low-capacity
314 or the medium-capacity 316 chip) to obtain a high sequencing depth of coverage
of minimum 30 x. Sequencing was performed using the sequencing kit (Ion PGM Hi-
Q Sequencing Kit; Life Technologies, Darmstadt, Germany) as per the manufacturer’s
instructions with the 200 bp single-end run configuration. This kit contained the most ad-
vanced sequencing chemistry available to users of the Ion PGM System (Life Technologies,
Darmstadt, Germany).

4.2.4. Assay Validation

The current AmpliseqTM panel is technically identical to the panel which established
previously [20], which had been validated by external Sanger sequencing. Hence, no di-
vergences in the current panel were expected. Again, for method validation a genomic
region from the COMT gene which has already been in focus in a previous study [196],
was chosen for validation by Sanger sequencing [197,198] in an independent external
laboratory (Eurofins Genomics, Ebersberg, Germany), which was performed in ten DNA
samples randomly chosen from the n = 72 samples in the present cohort. Amplifica-
tion of the respective DNA segments was done using PCR primer pairs (forward, re-

http://www.ampliseq.com


Int. J. Mol. Sci. 2021, 22, 878 18 of 28

verse) of (i) 5′-CCTTATCGGCTGGAACGAGTT-3′, 5′-GTAAGGGCTTTGATGCCTGGT-3′

(ii) 5′-GTTATTCCTCTGTAAGCAGCTGCCT-3′, 5′-TGTTTGTTTTAGATTGTGGTGGGTT-
3′ (iii) 5′-TTTATTGCACAGACTTGCGGGTTC-3′, 5′-AGCCTTTTGAGAGATTTGAGTTTCA-
3′.The results of Sanger sequencing were aligned with the genomic sequence and analyzed
using Chromas Lite® (Version 2.1.1, Technelysium Pty Ltd., South Brisbane, Australia)
and the GenomeBrowse® (Version 2.0.4, Golden Helix, Bozeman, MT, USA) was used to
compare the sequences obtained with NGS or Sanger techniques.

4.3. Data Analysis
4.3.1. Bioinformatics Generation of Sequence Information

The raw data (unmapped BAM-files) from the sequencing runs were processed using
Torrent Suite Software (Version 5.2.2, Life Technologies, Darmstadt, Germany) to generate
read alignments which are filtered by the software into mapped BAM-files using the ref-
erence genomic sequence (hg19) of target genes. Variant calling was performed with the
Torrent Variant Caller Plugin using as key parameters: minimum allele frequency = 0.15,
minimum quality = 10, minimum coverage = 20 and minimum coverage on either strand = 3.
The annotation of called variants was done using the Ion Reporter Software (Version 4.4;
Life Technologies, Darmstadt, Germany) for the VCF files that contained the nucleotide
reads and the SNP & Variation Suite® (SVS) software (Version 8.9.0 for Linux, Golden Helix,
Bozeman, MT, USA) to map the sequences to the reference sequences GRCh37 hg19 (dated
February 2009). The SNP and Variation Suite software (SVS Version 8.4.4; Golden Helix,
Bozeman, MT, USA) was used for the analysis of sequence quality and coverage.

4.3.2. Descriptive Analysis of Variant Frequencies

Variants were identified and assigned to coding, regulatory, intronic or other locations
on the genes using the SVS software. Based on the observed allelic frequency, the expected
number of homozygous and heterozygous carriers of the respective SNP (single nucleotide
polymorphism) according to the Hardy-Weinberg equilibrium was compared with the
observed number using Fisher’s exact test [199] as proposed previously [200]. Only variants
within the Hardy–Weinberg equilibrium were retained. The number of variants detected
was analyzed for correlation with gene length, i.e., the number of nucleotides read for each
gene in the present assays. A robust correlation analysis was performed by calculating
the percentage bend correlation coefficient using the R-package “WRS2” (https://cran.r-
project.org/package=WRS2 [201]). Since the introns were considered only at their edges
and intergenic regions only when the primer localization suggested by the panel design
software included them, the correlation analysis was repeated for the exonic variants
only. In order to recheck the correspondence of the read number of nucleotides with
independent information about the length of the respective genes, the latter was retrieved
from the Bioconductor Annotation Data Package “org.Hs.eg.db” (https://bioconductor.
org/packages/release/data/annotation/html/org.Hs.eg.db.html [202]) using the R library
“EDASeq” (https://bioconductor.org/packages/release/bioc/html/EDASeq.html [203]).

4.3.3. Identification of the Functional Genomics Biological Roles of the Set of Pain Genes

The approach to the functional genomics biological roles of the set of pain genes
was the same as before for the complete set of pain genes [8,17], or for other contextually
selected sets of genes relevant to pain [115]. The methods were described in detail in
special publications [17,98]. The biological roles of the set of the n = 72 genes of the present
panel, versus the biological roles of all human genes, were retrieved via analyses of the
Gene Ontology knowledge base (GO; http://www.geneontology.org/) [204,205]. In the
GO, knowledge of the biological processes, molecular functions and cellular components
of genes is formulated using a controlled and clearly defined vocabulary of GO terms
annotated to the genes [8,98]. Here, the biological processes were used to compare the
results with previous reports that had used this GO category [8,98]. In the GO, the terms
are related by “is-a”, “part-of” and “regulated” relationships and form a polyhierarchy
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organized in a directed acyclic graph (DAG [97]), with a top-down polyhierarchy starting
with more general root terms and specializing in the leaves representing GO terms of
narrowest definitions.

In order to obtain the DAG describing the biological processes in which the 72 se-
lected genes are involved, an overrepresentation analysis (ORA) was performed, which
compared the occurrence of the specific set of genes annotated to certain GO terms with the
expected occurrence of all human genes to these terms. The significance of a GO term asso-
ciated with the present set of genes was determined using Fisher’s exact tests [199] with a
p-value threshold of tp < 5 × 10−15 and an α correction for multiple testing according to
Bonferroni [206]. The conservative thresholds were chosen heuristically, with the crite-
rion that the number of significant GO terms should not exceed the size of the gene set.
The analyses were performed using our R library “dbtORA” (https://github.com/IME-
TMP-FFM/dbtORA [100]) on the R software environment (version 4.0.2 for Linux, country;
http://CRAN.R-project.org/ [92]).

In order to obtain an understandable interpretation of the GO-based functional ge-
nomics of pain covered by the selected NGS panel of 72 genes, the information was further
reduced. As a basis for the selection of the most appropriate terms to describe the DAG,
i.e., the terms that can serve as headlines for each branch of the DAG, the remarkableness
measure was previously introduced [98]. That is, for each term Ti in the set of terms, its re-
markableness, Rem(Ti), was calculated as the product of certainty and information value,
i.e., Rem(Ti) = Cert(Ti)·In f o(Ti). There, the certainty of a term Ti in the significant term
set resulting from the ORA, is defined as Cert(Ti) = p (there is a Term with smaller p-value)
= |{Tk : p− value(Tk) < p− value(Ti)}|/nT , where nT denotes the number of significant
GO terms annotated to the given set of genes. This reflects how safe it is to assume that the
term Ti describes the gene set, with numerical values in the interval (0,1). The information
value of the term Ti can be captured using the (partial) Shannon information calculated
as In f o(Ti) = −e·pi·ln(pi) with pi = nG(Ti)/nG, where nG(Ti) is the number of genes in
the input set annotated to term Ti and nG is the number of all genes in the set. By using
the factor e and the natural logarithm the values of the information are normalized to the
interval (0,1).

In each branch of the DAG, the most remarkable term qualified as a potential heading,
i.e., GO terms that succinctly summarize the biological processes covered by the branch
of the polyhierarchy in which they represent the most remarkable term. Of the GO terms
that lend themselves to being headlines, the most important subset was identified using
an item categorization technique implemented as computed ABC analysis, which meets
the basic requirements of feature selection using filtering techniques [207]. ABC analysis
aims to divide a data set into three disjoint subsets named “A”, “B”, and “C”. Set “A”
should contain the “important few” elements, i.e., those elements that make it possible to
achieve maximum yield with minimum effort [208]. Sets “B” and “C” include elements
where an increase in expenditure is proportional to an increase in yield or the “trivial
many”, respectively. Hence, GO terms that were members of ABC set “A” were retained
as most significant to the functional genomics covered by the 72 genes in the present
NGS panel. The calculations were performed using the R package “ABCanalysis” (http:
//cran.r-project.org/package=ABCanalysis [99]). As this provided still many GO terms,
a more global abstraction was obtained by applying the method of “subsumption” as
introduced previously in the context of functional abstraction as a method to discover
knowledge in gene ontologies [98]. That is, let T be a term in a specific ontology which
covers the terms T1, . . . ,Tk. A set of headlines H containing T1, . . . ,Tk is abstracted if T1,
. . . ,Tk are replaced by T in H, thereby reducing the number of headlines. This aimed for
a 5–9 final terms describing the polyhierarchy, which would ideally be within Miller’s
optimum of a human understandable size of a set of objects [209].
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5. Conclusions

A 72-pain gene NGS panel is proposed that covers (i) a subset of 29 genes identified
previously in a bioinformatics approach as key genes covering the biological functions of
540 genes relevant to pain by 70% [17]. Additional genes that were included, had been
independently proposed as relevant for persistent pain [9,10], and the functional focus of
the whole panel was now on immune or inflammatory processes, in line with the increas-
ing evidence that such processes are key players in persistent pain [115]. Together with
a recently established AmpliSeq™ panel of 77 further pain-relevant genes [20], the assay
covers a relevant part of the current state of knowledge on the genetic architecture of
persistent pain (Figure 1). The assay is applicable for small to large-scale experimental
setups to access information about any nucleotide within the coding and regulatory por-
tions of pain-relevant genes in a study cohort at costs per raw megabase which are in line
with contemporary genotyping costs across different technical methods of NGS. In the
genotypes of the 61 subjects studied in the context of the present assay establishment, tens
of variants were found that had previously been reported with functional implications
for pain, pharmacogenetics of analgesics, and for pharmacological treatments not related
to pain.
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