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Abstract: In chronic kidney disease (CKD), hyperphosphatemia induces fibroblast growth factor-23
(FGF-23) expression that disturbs renal 1,25-dihydroxy vitamin D (1,25D) synthesis; thereby increasing
parathyroid hormone (PTH) production. FGF-23 acts on the parathyroid gland (PTG) to increase
1α-hydroxylase activity and results in increase intra-gland 1,25D production that attenuates PTH
secretion efficiently if sufficient 25D are available. Interesting, calcimimetics can further increase
PTG 1α-hydroxylase activity that emphasizes the demand for nutritional vitamin D (NVD) under
high PTH status. In addition, the changes in hydroxylase enzyme activity highlight the greater
parathyroid 25-hydroxyvitmain D (25D) requirement in secondary hyperparathyroidism (SHPT);
the higher proportion of oxyphil cells as hyperplastic parathyroid progression; lower cytosolic vitamin
D binding protein (DBP) content in the oxyphil cell; and calcitriol promote vitamin D degradation
are all possible reasons supports nutritional vitamin D (NVD; e.g., Cholecalciferol) supplement is
crucial in SHPT. Clinically, NVD can effectively restore serum 25D concentration and prevent the
further increase in PTH level. Therefore, NVD might have the benefit of alleviating the development
of SHPT in early CKD and further lowering PTH in moderate to severe SHPT in dialysis patients.
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1. Introduction

Secondary hyperparathyroidism (SHPT) is the most common complication of advanced renal
disease, and an independent risk for all-cause mortality and cardiovascular mortality. The prevalence
of SHPT within chronic kidney disease (CKD) population is highly variable, and dependent on the
definition of SHPT, renal disease severity, phosphorus burden and vitamin D status. The prevalence
of SHPT in patients with CKD stage 4 was estimated at 77.9% (PTH > 70 pg/mL) and 54.1% (PTH
> 110 pg/mL) in Spain [1] and within the dialysis population in Europe was ranged from 30–49%,
Americas (US, Canada) 54% and Japan 11.5% [2]. The Kidney Disease Improving Global Outcomes
(K-DIGO) CKD-MBD Guideline in 2017 suggested that calcitriol or other vitamin D receptor activator
(VDRA) analogs should not be routinely used in CKD stages 3–5 patients due to the risk of vascular
calcification [3]. A markedly increased parathyroid hormone (PTH) level prompts the initiation of
PTH lowering therapy in advanced CKD patients. Either calcitriol, calcimimetics, or combination
therapy is the choice of treatment in SHPT CKD patients. Nevertheless, 20–30% of SHPT patients
are treatment resistant to nonselective VDRA analogs such as calcitriol, whose serum PTH does not
decrease, even with an increased dose of VDRA analogs [4]. Neither new generation VDRA analogs or
calcimimetics can attenuate such treatment resistance [5,6].

Vitamin D deficiency (VDD) is a global public health problem in the general population,
with prevalence ranging from 20% and 100% [7–9]. The elderly, areas of higher latitudes, people with
darker skin tone, men and people who are overweight or obese individuals are all at high risk for
VDD [10]. In addition, several studies have also demonstrated that CKD is a significant risk factor
of VDD [11–13]. Gonzalez et al. reported that most hemodialysis (HD) patients (97%) had low 25D
levels [12]. Our previous studies also showed a high prevalence of low vitamin D levels in HD patients
with SHPT [14–18].

Recent studies have highlighted the benefits of nutritional vitamin D (NVD) supplement in areas
outside of traditional bone and mineral metabolism in the general population. Several observation
studies and randomized controlled trials have demonstrated that NVD replacement improved the
bone remodeling markers [19–21], but whether such improvements translate into being clinically
significant in CKD and SHPT is not yet clear. This article reviewed the pathophysiology of SHPT and
emerging role of NVD replacement in SHPT prevention in early CKD patients and the additive role of
NVD in furthering the PTH lowering effect in moderate to severe SHPT in dialysis patients.

2. The Pathophysiology of Secondary Hyperparathyroidism

As the glomerular filtration rate decreases in CKD progression, phosphate begins to accumulate
due to the decrease in the functional nephron number. In addition, 1,25-dihydroxy vitamin D
(1,25D) produced in the remaining kidney is decreased and renal 1α-hydroxylase activity is further
inhibited by fibroblast growth factor-23 (FGF-23) and other uremic factors that lead to 1,25D deficiency.
Both phosphate burden and 1,25D deficiency cause hypocalcemia and stimulate PTH secretion from
PTG, called SHPT. The PTH synthesis, transcription, and parathyroid cell proliferation are mainly
regulated through serum calcium and 1,25D level. Both hypocalcemia and 1,25D deficiency among
CKD patients result in PTH secretion and PTG hyperplasia [22] and consequently result in unbalanced
bone remodeling, soft tissue/vascular calcification, and increases the risk of cardiovascular event
and all-cause mortality [23–26]. Recently, evidence has emerged supporting the role of FGF-23
as the primary event in the pathogenesis of SHPT. Administration of the FGF-23 antibody can
markedly increase 1α-hydroxylase expression in kidney, which means that it can restore 1,25D levels
significantly [27,28]. These findings suggested that the increase of FGF-23 may be the principal
mechanism behind reduced 1,25D levels in early CKD.

As hypocalcemia, 1,25D and 25-hydroxyvitmain D (25D) deficiency worsen in CKD progression, a
general increase in the total number of parathyroid cells with a normal lobular structure occurs called
diffuse hyperplasia. After progressing into the end stage of renal disease or even dialysis dependent
status, SHPT becomes more severe and PTG becomes grossly enlarged and exhibits some nodular
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formation (nodular hyperplasia) (Figure 1). In advanced SHPT, the multi-nodule may develop into
a single large nodule [29]. Once nodular hyperplasia in SHPT is established, these glands might be
refractory to medical treatment and surgical parathyroidectomy is indicated [30]. Hyperphosphatemia
is a main risk factor aggravating the severity of PTG hyperplasia and dialysis vintage and serum PTH
level are also in a relation with nodular hyperplasia [31].
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Figure 1. The development of parathyroid gland hyperplasia in secondary hyperparathyroidism
(SHPT). In advanced SHPT, monoclonal cell growth vigorously that occupy the most of the gland and
form a single large nodule. Both α-klotho and FGFR1 expression on parathyroid cells are decreased
during the progress of hyperplasia and are negatively correlated with the volume of the hyperplastic
parathyroid tissue. The reduced VDR and CaSR expression is prone to nodular hyperplasia and
is considered to be in a relation to calcitriol or calcimimetics resistant. Increased 1α-hydroxylase
and decreased 24-hydroxylase expression in secondary hyperplasia PTG cells would highlight the
requirement of more 25D in SHPT. In parathyroid cell, the translocation of vitamin D from cytosol
into mitochondria for 1,25D synthesis with the help of cytosolic DBP, and reducing the cytosolic DBP
content within oxyphilic cell predominant parathyroid nodules might decrease the amount of local
intracellular 1,25D production. This hydroxylase enzyme and cytosolic DBP change highlight the
requirement of more 25D in SHPT, called vitamin D hunger. Increasing the serum level of 25D increases
the intra-parathyroid free and bound 25D levels, which might overcome the decreased DBP levels,
and improve the vitamin D hypo-responsiveness state in PTG among SHPT patients.(Abbreviation:
SHPT, secondary hyperparathyroidism; FGFR1, fibroblast growth factor receptor 1; VDR, vitamin D
receptor; CaSR, calcium sensing receptor; 1,25D, 1,25-dihydroxy vitamin D; PTH, parathyroid hormone;
PTG, parathyroid gland; VDD, vitamin D deficiency, DBP: vitamin D binding protein; 25D, 25-hydroxy
vitamin D.).

Pathophysiologically, hyperplasia precedes the decrease in CaSR expression. The decrease in
vitamin D receptor (VDR) is parallel to the increases in hyperplastic growth and contributes to decrease
the induction of the CaSR by VDRA [32,33]. Down regulation of CaSR may be attributed by parathyroid
cell hyperplasia, but not uremia per se [33]. Inadequate CaSR and VDR density in PTG cause the poor
response of extracellular calcium to suppress PTH and failure of calcitriol (1,25-dihydroxyvitamin D3)
in treating SHPT. In general, parathyroid hyperplasia presented in CKD stage 5 patients with PTH >
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400 ng/mL [34]. A PTG weight over 500 mg predicted nodular hyperplasia and this is equivalent to
an estimated value of 330 mm3 [35]. In addition, a PTG volume > 300 mm3 or maximum diameter >
8 mm predicted nodular hyperplasia [36,37]. Furthermore, a PTG volume > 500 mm3 or maximum
diameter > 10 mm might be refractory to the calcitriol treatment to SHPT.

In the kidney, 25D can be taken by the proximal renal tubule with the help of the cell surface
receptors megalin and cubulin. The conversion of 25D into its active biological form, 1,25D, is
in its majority catalyzed by mitochondrial 1α-hydroxylase and in the minority by microsomal
enzymes [38,39]. 1,25D then binds to DBP then delivered to target tissue to regulate a wide variety of
VDR genes.

1α-hydroxylase is a cytochrome P450 enzyme that in humans is encoded by the CYP27B1
gene [40]. 1α-hydroxylase is the key enzyme responsible for 1,25D biosynthesis. Activity of renal
1α-hydroxylase is the key that determines serum level of 1,25D. The 1α-hydroxylase gene is mainly
expressed in the renal proximal tubule and is also expressed at lower levels in extrarenal sites
such as PTG [41], osteoblasts in bones [42,43], vascular endothelial cells [44], the brain [45] and
placenta [46,47]. 1,25D produced in the kidney exerts it endocrine effect to regulate bone and mineral
hemostasis. Renal 1α-hydroxylase is tightly controlled by several physiological factors. For example,
PTH [48], calcitonin [49] and hypophosphatemia [50,51] can promote 1α-hydroxylase gene expression,
whereas FGF-23 and 1,25D suppress it. PTH and calcitonin positively induce renal CYP27B1 gene
expression via stimulating cyclic AMP (cAMP) generation [52–54] and activating the cAMP-responsive
elements (CRE) site within the gene promoter for renal 1α-hydroxylase (CYP27B1) [55], respectively.
FGF-23 can both influence the synthesis of 1,25D in the proximal tubule of the kidney by the suppression
expression of CYP27B1 and increase the activity of 24-hydroxylase [56,57]. Hypocalcemia can also
enhance renal 1α-hydroxylase activity, but much of this effect is mediated indirectly through PTH.
1,25D inhibits the 1α-hydroxylase activity through inhibiting PTH, increasing FGF-23 production;
and inducing the degradation enzyme 24-hydroxylase [49]. In the 24-hydroxylase knock out mice,
serum 1,25D levels were inconclusively high indicating that the excessive 1,25D cannot suppress its
own synthesis [3]. Therefore, 1,25D regulation on vitamin D metabolism is predominantly through
enhancing 24-hydroxylase degradation rather than negative feedback on1α-hydroxylase activity.

24-hydrolyase is the enzyme responsible for the catabolism of 1,25D and ultimately leads to the
excretion of the hormone as calcitroic acid [58]. In fact, both 25D and 1,25D are substrates for the
hydroxylation reaction of 24-hydrolyase (CYP24A1). 24-hydrolyase is capable of the hydroxylation of
the C23 or C24 side-chain carbons of 25D and 1,25D and results in the side chain cleavage and oxidation
to carboxylic acid in C24 hydroxylation and lactone formation in C23 hydroxylation [59]. CYP24A1
is expressed in many, if not all, target cells containing VDR, including kidney, bone, intestine [60].
Both 1,25D and VDRA are potent inducer of 24-hydroxylase gene expression to avoid excess of
circulating 1,25D and reduce risk of hypercalcemia. 1,25D is the preferred substrate relative to 25D [58],
because the affinity of 24-hydroxylase for 1,25D is 25-times higher than that for 25D, which mean the
24-hydroxylase can safely and effectively prevent the accumulation of toxic levels of 1,25D after large
dose of 25D supplement.

3. The Alteration of Vitamin D Metabolism in CKD

3.1. Decrease Vitamin D Synthesis and Increase Vitamin-D Catabolism in CKD

In CKD, PTH synthesis is increased in response to both 1,25D deficiency and hypocalcemia,
then PTH stimulates renal CYP27B1 expression to rescue the 1,25D level. 1,25D consequently induces
VDR-mediated intestinal calcium absorption to keep calcium homeostasis. PTH also downregulates
renal CYP24A1 mRNA transcription, a 24-hydroxylase enzyme responsible for vitamin D degradation,
and leads to attenuating 25D and 1,25D degradation via the cAMP/PKA signaling pathway [61,62].

As PTH controls blood calcium to keep serum calcium homeostasis, FGF-23 regulates the serum
phosphate level and is involved in vitamin D metabolism. Hyperphosphatemia can induce osteocytes
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and osteoblasts to express FGF-23 and subsequently reduces phosphate reabsorption by inhibiting
NaPi-IIa activity directly and indirectly by inhibiting renal CYP27B1 expression to lower blood 1,25D
level, then reduces intestinal phosphate absorption [63]. Additionally, FGF-23 induces renal CYP24A1
expression to degrade 25D and 1,25D levels [62].

The function of PTH and FGF-23 in regulating CYP27B1 works in a reciprocal manner and
compete with each other on CYP27B1 transcription. The direct administration of recombinant
FGF-23 or its overexpression in mice induces a dose-dependent decrease in renal CYP27B1 mRNA
expression, an increase in renal CYP24A1 mRNA expression, and a consequent decrease in serum
1,25D concentrations [28]. Instead, the administration of FGF-23 antibodies can increase renal
CYP27B1 mRNA and decrease renal CYP24A1 mRNA to restore serum 1,25D concentration to normal.
These changes are followed by increased serum calcium level, leading to decreased serum PTH [27].
Hence, FGF-23, rather than PTH, is a primary factor accounting for inappropriately low serum 1,25D
concentration in CKD since the early stage of CKD. In brief, an increase of FGF-23 in CKD follows
1,25D deficiency and hypocalcemia, thereby increasing the PTH level and results in SHPT in CKD.
The FGF-23 action may aggravate VDD if concurrently used with calcitriol or VDRA analogs during
SHPT treatment as both FGF-23 and VDRA analogs both downregulate CYP27B1 and upregulate
CYP24A1 expression to degrade 25D and 1,25D.

There is also another metabolic factor commonly presented in CKD that disturbs CYP27B1
expression such as diabetes [64], acidosis [65], and hyperuricemia [66,67]. Therefore, high FGF-23 and
CKD related metabolic factors are associated with CYP27B1 transcription inhibition in CKD.

Lower 25D bioavailability in CKD is also another cause of VDD. As limited sun exposure and
dietary vitamin D intake, less 25-hydroxyvitmain D filtered by declining GFR, diminished megalin
expression, and albuminuria increase filtered 25-hydroxyvitmain D lost in urine are all aggravating
factors that lead to 25D shortage and cannot provide an inadequate substrate for 1α-hydroxylase and
worsens VDD in CKD [46,68].

3.2. Nutritional Vitamin D Hunger in the PTG

In normal physiological conditions, FGF-23 can directly suppress PTH production by directly
inhibiting PTH transcription and secretion, and indirectly by increasing parathyroid 1α-hydroxylase
activity [69]. FGF-23 can also increase CaSR and VDR expression and decrease PTG volume. However,
low PTG α-Klotho and FGFR1 expression lets FGF-23 lose its inhibitory effect on parathyroid cells
and fails to increase CaSR and VDR [70]. Moreover, the administration of FGF-23 in CKD animals
cannot reduce the PTH level, which indicates FGF-23 resistance in PTG caused by the low expression
of α-Klotho and FGFR1 [71]. In summary, in patients with CKD, FGF-23 levels increase progressively
to compensate phosphate retention, but the high FGF-23 levels fail to suppress PTH secretion
due to decreased Klotho-FGFR1 complex expression in hyperplastic PTG, called FGF-23 resistance.
Furthermore, recent literature in dialysis patients of SHPT has shown that the expression of α-Klotho
and FGFR1 is decreased in PTG of dialysis patients and were negatively correlated with the volume of
the hyperplastic parathyroid tissue [72].

Compared with the normal gland, the mRNA expression and protein level for 1α-hydroxylase
(CYP27B1) in secondary hyperplastic parathyroid cells is higher [73]. Increased 1α-hydroxylase
(approximately 10-fold) and decreased 24-hydroxylase (approximately 1/10-fold) concentrations are
found in 78% of secondary hyperplasia PTG cells and highlight the requirement of more 25D in
SHPT [74]. The expression of 1α-hydroxylase is much higher in oxyphil cells than chief cells, which is
the dominant cell group in SHPT. Calcimimetics treatment had a further 42% increase in parathyroid
1α-hydroxylase mRNA and 2.2-fold decrease in 24-hydroxylase mRNA that resulted in an ~53%
decrease in PTH mRNA [75]. Besides, the decrease of megalin expression in the parathyroid gland
may decrease 25D uptake and mediate the demand for more circulating 25D to correct PTH synthesis.
Hence, the requirement for a substrate for vitamin D synthesis dramatically increases in SHPT and
becomes hungrier if receiving treatment of calcimimetics in severe SHPT, called “vitamin D hunger
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status” as SHPT progresses in CKD. Therefore, more evidence in the data have overwhelmingly
indicated the adjuvant role of NVD in SHPT prevention and PTH lowering effect in combination with
calcitriol or calcimimetics treatment.

4. The Change of Parathyroid Gland Cell Membrane CaSR and Nuclear VDR Expression
in SHPT

As SHPT progresses, the expression of VDR and CaSR are both reduced in PTG hyperplasia
and the CaSR becomes more decreased if PTG has nodular progression (Figure 1) [76]. Decreasing
these two receptors would limit the inhibitory ability of calcium and 1,25D in PTH secretion and also
hinder the therapeutic effect of calcimimetics or calcitriol. Thus, the way to increase VDR and CaSR
expression in parathyroid nodular hyperplasia is reasonable to improve the efficiency of calcimimetics
or calcitriol.

5. The Change of Parathyroid Cells Composition in SHPT

5.1. Increase Oxyphil Cells Proporation in PTG of SHPT

The PTG is composed of two cell types: chief cells and oxyphil cells. Chief cells are the
predominant cell in PTG and are responsible for PTH production and secretion in response to low
extracellular calcium levels, sensed by CaSR on the plasma membrane of chief cells. The oxyphil cell
form clusters that are scattered between the chief cell and their function is still unknown. Histologically,
oxyphil cells are larger than the chief cells and its cytoplasm is more eosinophilic due to higher
mitochondrial content. Oxyphil cells have been thought to be derived from chief cells as both chief cells
and oxyphil cells express PTH and glial cells missing 2 (GCM2), a parathyroid-specific transcription
factor that is essential for parathyroid cell development [77,78]. Another possible explanation
of oxyphil cell transdifferentiation was proposed by Müller-Höcker et al. where the defective
mitochondrial respiratory chain in chief cells would induce mitochondrial mutation, consequently,
mitochondrial proliferation can compensate it and transdifferentiate into oxyphil cells [77].

In young healthy adults, chief cells are dominant cells in PTG and oxyphil cells only account for
1% of PTG cells [79,80]. However, chief cells are gradually replaced by oxyphil cells as they increase
with age. Oxyphil cells dramatically increase in the number in hyperplastic PTG and are considered to
function to synthesize and secrete PTH, which contribute to the pathophysiology of SHPT due to the
heterotransplantation of the human parathyroid nodule that is exclusively composed of chief cells or
oxyphil cells into nude mice that are capable of secreting intact human PTH [81]. As with chief cells,
oxyphil cells can also synthesize calcitriol to suppress parathyroid proliferation [82], enhance PTH
secretion in response to a hypocalcemic stimulus, and even secrete PTH related protein (PTHrP) [83,84].

5.2. The Alteration of Parathyroid Cell Composition after SHPT Treatment

The proportion of oxyphil cells was significantly increased in CKD and had a positive correlation
with total PTG weight in SHPT, which suggests that oxyphil cell proliferation is sensitive to PTG
stimulation [85]. After calcimimetics treatment, the oxyphil cell content was significantly higher than
in the paricalcitol group (a less calcemic analog of calcitriol) [80,86]. In addition, in a retrospective
analysis, the proliferation of oxyphil cells was the major pathological progression in SHPT and was
highly associated with calcitriol treatment. The dose and duration of oral calcitriol treatment was
an independent predictor of the high oxyphil cell ratio [87]. These findings underline that higher
oxyphil cell proportion among PTG cells in treatment resistance is associated with the calcemic effect
on CaSR activation, following the chief-to-oxyphil cell transdifferentiation. The demand of NDV is
dramatically raised in severe or refractory SHPT as the expression of 1α-hydroxylase is parallel to
the number of oxyphil cells in PTG. Thus, the adequate supplement of NVD might be good for PTH
lowering therapeutic effects. Our previous study also revealed that using NVD on a combination of
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VDRA analogs and low dose calcimimetics may provide a beneficial effect in patients with severe or
refractory SHPT [17].

5.3. The Regression of Parathyroid Hyperplasia after SHPT Treatment

Calcitriol can effectively lower the PTH level in hemodialysis patients with a concomitant
reduction in PTG volume after 12 weeks of treatment (Figure 2) [88]. Fukagawa et al. proposed
that an initial PTG size > 0.5 cm3 was highly associated with calcitriol resistance [89]. This finding was
further supported by histological analysis after parathyroidectomy, as PTG size > 0.5 cm3 may exhibit
nodular formation [35].
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Figure 2. Parathyroid gland regression after parathyroid hormone (PTH) lowering therapy. Calcitriol
and calcimimetics can effectively reduce PTG volume in SHPT and concurrently increase VDR and
CaSR expression to improve the efficient SHPT treatment. NVD supplement meets the demand of
parathyroid 25D requirement and lower PTH by dramatically increasing intra-gland 1,25D production.
(Abbreviation: PTG, parathyroid gland; SHPT, secondary hyperparathyroidism; VDR, vitamin D
receptor; CaSR, calcium sensing receptor; NVD, nutritional vitamin D; 25D, 25-hydroxy vitamin D;
PTH, parathyroid hormone; 1,25D, 1,25-dihydroxy vitamin D.).

Calcimimetics appear to be a safe and effective therapy to lower serum calcium, phosphorus,
PTH level, and attenuated PTG hyperplasia in CKD animals [90,91]. Calcimimetics increased both
CaSR and VDR expression in PTG and facilitated the inhibitory effect of calcitriol or VDRA analogs on
PTH synthesis and parathyroid cell proliferation, and thereby resulted in PTG hyperplasia regression.
The precise mechanism in reducing the PTG size after calcimimetics treatment remains a matter of
discussion and a decrease in parathyroid cell volume [92] or cell number decrease, or parathyroid cell
apoptosis [79,93] have all been proposed.

Calcimimetics directly elicit a rapid increase of CaSR and VDR mRNA in uremic rat PTG within
two weeks. Calcitriol also increases CaSR mRNA, but seems more related to the control down of
parathyroid hyperplasia than acting on VDR [94]. Actually, calcimimetics upregulate CaSR earlier
than calcitriol as calcitriol affects cell proliferation through nuclear receptor transcription action,
but calcimimetics sensitize hyperplastic PTG to the extracellular calcium level by the increased
expression of CaSR. Treatment of cinacalcet for four weeks can effectively prevent the increase in
parathyroid cell proliferation [94]. These findings highlight the synergistic effect of calcimimetics and
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calcitriol in the treatment of SHPT, and calcitriol has an add on effect on CaSR and VDR expression
with calcimimetics.

6. Vitamin D Binding Protein (DBP)

6.1. Role of DBP in Parathyroid 1,25D Synthesis

In general, vitamin D circulating in blood is composed of three forms: (1) 85–90% are bound to
DBP, a specific transport protein for vitamin D; (2) 10–15% are found in serum albumin with lower
affinity; and (3) only a tiny amount (less than 1%) in a free unbound form [95]. The sum of DBP-,
albumin-bound, and free form of vitamin D is referred to as the total vitamin D. 25D concentration in
blood is nearly 1000 times greater than that of 1,25D. DBP has the highest affinity with 25D, but only
a 10–100 folds lower affinity to 1,25D because of the steric hindrance of the additional hydroxyl
group [96]. Because of relative weak affinity between 25D and albumin, the combination of free and
albumin-bound 25D are often referred to as “bioavailable” vitamin D [97]. Whether free, bioavailable,
or total 25D represents the biological activity of vitamin D in target cells is still debatable. The free
hormone hypothesis states that only hormones free from binding protein are capable of moving
lipophilic steroid hormones through the cell membrane to bind to their intracellular receptors and
exert its biological function [98]. In a large prospective cohort study of incident hemodialysis patients,
Bhan et al. reported bioavailable, but not total 25D and 1,25D levels were significantly correlated with
serum calcium level. Additionally, bioavailable 25D was significantly associated with PTH level [97].
Furthermore, free and bioavailable 25D are more strongly correlated with bone mineral density than
total 25D in health young adults [98].

In brief, the free D hypothesis states that vitamin D hydroxyl metabolites in the circulation are
primarily bound to DBP and to a lesser extent, to albumin and possibly to lipoproteins; only the
unbound 25D and 1,25D freely crossing the cell membrane through the nuclear pore to interact with
the VDR [99]. Many tissues express the 1α-hydroxylase that metabolizes 25D to the active 1,25D locally.
In several tissues, such as the kidneys, parathyroid glands and placenta, 25D and 1,25D bound to DBP
may enter cell tissues by endocytosis via megalin/cubulin and are not limited to diffusion by the free
hormones [100].

Plasma DBP level is not decreased or even higher in CKD patients despite the urinary loss of
DBP, indicating the compensatory enhanced production of DBP. Thus, the plasma DBP level is not an
appropriate predictor of vitamin D deficiency in CKD patients [101]. In a previous proteomic study,
intracellular DBP was found to be significantly down-regulated in parathyroid gland cell, especially
among oxyphilic cell predominant parathyroid nodules, and this was assumed to be closely associated
with calcitriol resistance in SHPT patients [84].

Our previous studies demonstrated that NVD had a positive benefit as an adjuvant therapy with
paricalcitol/calcitriol and calcimimetics in treating SHPT in dialysis patients [16,17]. These clinical
studies also suggested that increase serum level of 25D may contribute to the more adequate control of
SHPT. Thus, we speculated that, for parathyroid cell, the translocation of vitamin D from cytosol into
mitochondria for 1,25D synthesis with the help of cytosolic DBP, and reducing the DBP content within
the cell might decrease the amount of local intracellular 1,25D production. Increasing the serum level
of 25D increases the intra-parathyroid free and bound 25D levels, which might overcome the decreased
DBP levels, and improve the vitamin D hypo-responsiveness state in PTG among SHPT patients.

6.2. Do DBP Genotypes Influence Intrinsic 1,25D Production in the Parathyroid Gland?

Variation in the DBP gene coding region significantly produces proteins with different serum
concentration and affinity to different vitamin D metabolites. Three common allelic forms of
DBP, known as group-specific component (Gc) 1F, 1S, and 2, are presented in serum at different
concentrations (1F > 1S > 2) and exhibit varying affinities for 25D and 1,25D (1F > 1S > 2).
Different forms of DBP influence the transport of vitamin D metabolites to peripheral target cells,
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for example, the DBP genotype determines the bioavailability of 25D into cultured monocytes [102]
and keratinocytes [103]. This suggests that monocytes respond to free 25D rather than DBP-bound 25D.
The antibacterial response (cathelicidin production) is more dominant in DPB Gc 1S and Gc 2 [104].
In addition, the DBP genotype also influences serum 25D and 1,25D levels in circulation, thus the
threshold for VDD may differ between Gc genotypes [105,106]. The DBP genotype also influences
renal 1,25D synthesis by facilitating 25D reabsorption into the proximal renal tubule, and this effect
appears to be more related to DBP Gc 1F [105]. The function of DBP is not merely to act as a serum
reservoir, but also as a carrier protein to the target cell, like the thyroid hormone-binding globulin or
sex hormone-binding globulin. DBP can prolong the circulating half-life of vitamin D and also regulate
its immediate bioavailability to target tissue. Currently, there is no available literature discussing the
effects of parathyroid DBP levels and their genotypes on 25D transportation within PTG. Future studies
need to explore the DBP levels among different genotypes, mechanisms regarding vitamin D transport
and metabolism within PTG and different treatment responses in SHPT patients.

7. The Negative Control of 1,25D on Vitamin D Metabolism

Although a number of tissues have been demonstrated to express 1α-hydroxylase, the expression
of that in kidney is the main source of circulating 1,25D. Renal 1α-hydroxylase is tightly regulated
by three hormones: PTH, FGF-23 and 1,25D itself [107]. PTH stimulate 1α-hydroxylase but FGF-23
and 1,25D inhibit it. The mechanism of 1,25D inhibits 1α-hydroxylase activity is through inhibiting
PTH and increasing FGF-23 production and inducing the degradation enzyme 24-hydroxylase [49].
Besides, 1,25D can also directly inhibit CYP24A1 expression by VDR and vitamin D inhibitory receptor
(VDIR) and diminish its transcription [108]. The difference in the serum levels of 1,25D upon i.v.
administration of 1-hydroxyvitamin D is due to the continuous conversion of the 1-hydroxyvitaminD
to 1,25D by the hepatic 25-hydroxylase, while the half-life of i.v. calcitriol is of a few hours due to
its degradation by 24-hydroxylase. In the 24-hydroxylase knock out mouse, serum 1,25D levels are
very high conclusively indicating that the excessive 1,25D cannot suppress its own synthesis [109].
Hence, 1,25D affect vitamin D metabolism is predominantly regulated by enhancing 24-hydroxylase
degradation rather than negative feedback of 1α-hydroxylase activity.

8. Synergistic Action of 25D and 1,25D on PTH Suppression

The relative potencies of 25D and 1,25D in reducing PTH secretion have been demonstrated
in primary cultures of bovine parathyroid cells (bPTC) [41]. Physiological concentration of 25D has
inhibitory effects on PTH transcription and thought to be related to endogenous 1α-hydroxylase
activity within the parathyroid cells [110]. 25D is several hundred times less potent than 1,25D in
suppressing PTH secretion and transcription in bPTC due to its lower affinity to VDR [41]. ADAM17
and transforming growth factor-α (TGF-α) synergy reinforce the vicious cycle of epidermal growth
factor (EGF) receptor activation which is related to PTG growth. 1,25D induce C/EBPβ gene expression
to suppress ADAM17 promoter activity and then suppress PTG growth. In SHPT, 25D been proved to
have synergistic effect with 1,25D on PTG growth suppression [111]. Nevertheless, this synergistic
effect is conclusively demonstrated in vitro and need further animal and clinical exploration.

9. The Role of Vitamin-D Deficiency (VDD) on PTH Metabolism

CKD has an impact on PTH metabolism at least in part through downregulation of VDR,
competitive inhibition between (1–84) PTH and its fragments and PTHR1 dysfunction and inhibitory
or competing downstream signal [107]. Previous experimental studies revealed that circulating uremic
toxins may trigger cellular oxidative stress [112]. Subsequent studies showed indoxyl sulfate and
inflammatory bioactive lipids (e.g., ox-LDL), as the most likely culprit [113,114]. Increased oxidative
stress may be in the causal effect between CKD and PTH hyporesponsivenes. Our previous study
showed T cell differentiation correlated with serum 25D level in HD patients. Low serum 25D level
contributes to the development of inflammation and oxidative stress through decrease T helper 2
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(Th2) differentiation [115]. Thus, avoid the VDD may attenuate the oxidative stress resulting in
decreasing PTH hyporesponsiveness. This may contribute to decrease the possibility of increase PTH
levels. Its clinical relevance, however, should be formally evaluated. In addition, supraphysiological
dose calcitriol widely used in treating SHPT may disturbed bone remodeling process and further
influence vascular calcification. Combined use of NVD in SHPT can attenuate the dose of calcitriol
with comparable PTH-lowering effect [116].

10. Nutritional Vitamin D Prevents Developing SHPT in Early CKD

VDD is highly prevalent in the CKD population. In a cross-sectional analysis of 825 consecutive
patients new to HD, 78% were considered VDD (<30 ng/mL) and around 18% had severe deficiency
(<10 ng/mL) and were associated with increased early mortality [117]. VDD is associated with elevated
PTH levels and worsening the SHPT. Some studies have reported the high association between free
25D and serum PTH decline [92], bone turnover markers and bone mineral density [96,118], but others
who have not reached such conclusions may be due to whether the total or free 25D represents the
surrogate marker of vitamin D bioactivity [119,120]. NVD, both the cholecalciferol and calcifediol
supplements are effective in increasing the total and free 25D level and are associated with serum PTH
level decline [121]. In CKD patients, supplementing with cholecalciferol for 12 weeks had a significant
increase (185%) in serum 25D concentration when compared with the placebo. Meanwhile, the PTH
levels also tended to decrease after cholecalciferol supplementation [122]. More recently, Westerberg
et al. reported high-dose cholecalciferol (8000 IU/day) in patients with CKD stage 3–4 halted the
development of SHPT and did not increase the risk of hypercalcemia and hyperphosphatemia [123].
In non-dialysis CKD patients with VDD, cholecalciferol supplementation was superior to ergocalciferol
with a two-fold increase of circulating 25D level [124]. The 2017 KDIGO CKD-MBD Guideline suggests
that VDD should be corrected if CKD stage 3 to 5a not yet dialysis patients have a progressive or
persistently high PTH level [3]. NVD supplements might be considered as the adjuvant therapy
for SHPT prevention in not yet HD patients for the following reasons: (1) High prevalence of VDD
in CKD patients; (2) NVD is the substrate for 1α-hydroxylase, whose activity is increased in SHPT;
(3) 25D directly interacts with VDR in PTG; (4) NVD is relatively inexpensive and has a lower risk
of toxicity, hypercalcemia, and hyperphosphatemia; and (5) NVD had a pleiotropic effect in our
previous reports [46]. Although more evidences support the benefit of initiating NVD treatment if
concurrently having VDD to lower the occurrence of SHPT, the efficiency of NVD supplement needs
more randomized controlled trials to prove.

11. The Role of NVD in the PTH-Lowering Effect in Dialysis Patients Remains Controversial

The PTH lowering effect of NVD in dialysis patients is still inconclusive. Some studies have
reported that NVD supplementation in VDD dialysis patients could significantly restore 25D levels,
but the PTH lowering effect had a nonsignificant downward trend or did not reach statistical
significance [125–127]. Kandula et al. in 2011 conducted a systemic review and meta-analysis that
analyzed 17 observational cohort studies and five randomized controlled trials to compare the benefit
and harm of vitamin D supplements in CKD with or without dialysis [128]. They reported a statistical
improvement in serum 25D (mean difference 24.1 ng/mL, 95% CI 19.6 to 28.6) and an associated decline
in PTH among the observational studies (mean difference −41.7 pg/mL, 95% CI −55.8 to −27.7).
The PTH lowering effect is more prominent in dialysis patients than in non-dialysis patients. In another
randomized controlled trial, there was a significant increase in serum 25(OH)D levels (mean difference
14 ng/mL, 95% CI 5.6 to 22.4) and an associated decrease in PTH levels (mean difference −31.5 pg/mL,
95% CI −57 to −6.1) with a low incidence of hypercalcemia (up to 3%) and hyperphosphatemia (up
to 7%) after NVD supplementation [129]. The Dialysis Infection and Vitamin D in New England
(DIVINE) was a randomized clinical trial (RCTs) study conducted in 2009 that evaluated the effect of
high dose ergocalciferol (50,000 IU/week), low-dose ergocalciferol (50,000 IU/mo), or a placebo for
12 weeks on serum 25D, 1,25D, calcium, phosphate, and PTH levels. However, the results shown in
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2015 revealed that oral ergocalciferol could increase 25D levels in maintenance HD patients, but did not
have significant alterations in the calcium, phosphate, nor PTH levels in the 12-week follow-up [130].

12. NVD Has Adjuvant Benefits in Treating SHPT in Dialysis Patients

NVD has additive benefits in treating SHPT if combined with calcitriol or calcimimetics in
dialysis patients. We previously reported cholecalciferol in combination with paricalcitol for 15 weeks
could effectively lower the PTH level in dialysis patients. Furthermore, a dose of 5000 IU/week of
cholecalciferol could maintain a serum 25D concentration > 30 ng/mL as early as after eight weeks of
supplementation [16]. In addition, we also found that cholecalciferol supplementation could additively
reduce serum PTH levels, improve 25D levels, and improve femoral neck bone mineral density
(BMD) when together with a calcimimetics and calcitriol combination in severe SHPT (PTH > 1000
pg/mL) dialysis patients [17]. Taken together, NVD had a positive effect as an adjuvant therapy with
calcitriol and calcimimetics in treating SHPT in dialysis patients (Figure 3) as (1) NVD is a substrate for
1α-hydroxylase, whose activity is elicited in SHPT progression and further enhanced directly by the
treatment of calcimimetics; (2) Calcimimetics promote the transdifferentiation of chief cells to oxyphil
cells, and oxyphil cells are abundant in 1α-hydroxylase and CaSR; (3) Calcimimetics increase CaSR
and VDR expression in PTG; and (4) Intra-gland 1,25D production can further suppress PTH by more
VDR expression i01230525n PTG.
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Figure 3. The adjuvant role of nutritional vitamin D (NVD) in SHPT treatment. NVD supplement had
the benefit of increasing parathyroid 1,25D production and may synergize with calcimimetics and/or
calcitriol by increasing CaSR and VDR expression which all contribute to suppress of PTH synthesis in
PTG of SHPT. 1-hydroxylase and 24-hydroxylase are mitochondrial enzymes. (Abbreviation: NVD,
nutritional vitamin D; 1,25D, 1,25-dihydroxy vitamin D; CaSR, calcium sensing receptor; VDR, vitamin
D receptor; PTH, parathyroid hormone; SHPT, secondary hyperparathyroidism.).

13. Conclusions

For the high prevalence of VDD in hemodialysis patients, an increase in 1α-hydroxylase to 10-fold
and decrease in 24-hydroxylase to 1/10-fold highlight the requirement of more 25D in the PTG of
SHPT. The expression of CaSR and VDR were also decreased in the PTG cells, which is thought to be
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related to calcimimetics or calcitriol resistance. A higher proportion of oxyphil cells as hyperplastic
parathyroid progression, lower cytosolic DBP content in oxyphil cells, and calcitriol promote vitamin
D degradation by enhancing 24-hydroxylase activity all aggravate vitamin D hunger in PTG. Hence,
NVD supplementation in SHPT is relative important. Clinically, NVD supplements can effectively
restore serum 25D concentration, alleviate the development of SHPT in early CKD, and have benefits
in further lowering PTH in moderate to severe SHPT in dialysis patients. However, these benefit of
NVD supplement in SHPT need more randomized control trials to prove.
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Abbreviation

25D 25-hydroxy vitamin D
1,25D 1,25-dihydroxy vitamin D
CKD chronic kidney disease
CKD-MBD chronic kidney disease-mineral bone disorders
CaSR calcium sensing receptor
DBP vitamin D binding protein
FGF-23 fibroblast growth factor-23
FGFR1 fibroblast growth factor receptor 1
HD hemodialysis
PTH parathyroid hormone
NVD nutritional vitamin D
PTG parathyroid gland
SHPT secondary hyperparathyroidism
VDD vitamin D deficiency
VDR vitamin D receptor
VDRA vitamin D receptor activator
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