

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Data on the sensory evaluation of the dry red and white wines quality obtained by traditional technologies from European and hybrid grape varieties in the Krasnodar Territory, Russia

Alexan A. Khalafyan^a, Zaual A. Temerdashev^{a,*}, Vera A. Akin'shina^a, Yuri F. Yakuba^b

^a Kuban State University, 149 Stavropol'skaya St., Krasnodar, 350040 Russia

^b North Caucasian Federal Research Center of Horticulture, Viticulture, Wine-making, Russia

ARTICLE INFO

Article history: Received 28 January 2021 Revised 10 March 2021 Accepted 19 March 2021 Available online 23 March 2021

Keywords: Wine tasting Expert evaluation of data Positional analysis

ABSTRACT

The analysis of data on the sensory evaluation of the quality of wines obtained using traditional technologies in the Krasnodar Territory, Russia, was carried out using the statistical ranking criteria - the Spearman and Kendall correlation coefficients, as well as the positional analysis - Cronbach's alpha. Data on the sensory evaluation of 60 samples of natural dry red and white wines are presented, among which 20 are white wines, 40 are red wines produced in 2010-2015. Eleven specialists aged between 32 and 66 years (the average age was 50 years; 4 females and 7 males) participated in the sensory evaluation procedure. All participants are considered experts in the field of wine, work in the wine industry and have professional experience in the field of sensory analysis. The results of the consistency study of expert evaluations, the reliability of the general score scale, as well as the analysis of the loyalty of experts in the wine quality assessment are presented in the article. The reliability of the proposed loyalty scale is shown, i.e., the scale of the sum of scores given by each expert in the evaluation of the quality

DOI of original article: 10.1016/j.heliyon.2021.e06162

* Corresponding author.

E-mail address: temza@kubsu.ru (Z.A. Temerdashev).

https://doi.org/10.1016/j.dib.2021.106992

2352-3409/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

of wines. The database on the sensory evaluation of the quality of wines, obtained for all wine samples using positional analysis, makes it possible to assess the contribution of each of the 60 wine samples to their ranking by mean scores. The data may be of interest to scientists and oenologists for the wine quality assessment.

> © 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Specifications Table

Subject	Oenology
Specific subject area	Sensory analysis
Type of data	Figures, tables
How data were acquired	Data analysis
Data format	Results of the sensory evaluation of tested wine samples
Parameters for data collection	60 samples of natural dry red and white grape wines produced in 2010–2015 were analyzed. All the wine samples were produced according to traditional technologies from European (Cabernet, Merlot, Aligote, Riesling, Saperavi, etc.) and hybrid grape varieties (Bianca, Viorica, Moldova, Pervenets Magaracha, etc.).
Description of data collection	Samples of natural red and white wines were analyzed, among which the first 20 were white wines, the remaining 40 were red. Eleven specialists aged between 32 and 66 years (the average age was 50 years; 4 females and 7 males) participated in the sensory evaluation procedure. All participants are considered experts in the field of wine, work in the wine industry and have professional experience in the field of sensory analysis.
Data source location	The wines were produced in 2010–2015 in the Krasnodar Territory, Russia by industrial producers (alcohol content – 9–13% by volume, acidity – 4–7 g/dm ³).
Data accessibility	Data available in the article
Related research article	A. A. Khalafyan, Z. A. Temerdashev, V. A. Akin'shina, Yu. F. Yakuba. Study of
	consistency of expert evaluations of wine sensory characteristics by positional
	analysis. Heliyon. 7(2) (2021) e06162.
	https://doi.org/10.1016/j.heliyon.2021.e06162

Value of the Data

- The data provide insight into the problems and solutions of statistical analysis of the sensory evaluation and establishing the consistency of expert evaluations of wine quality.
- Comparing to the traditionally applied Spearman correlation coefficient and Kendall coefficient of concordance, the Cronbach alpha criterion of the positional analysis is calculated using the initial score scale taking into account its variability and allowing to evaluate the contribution of each expert to the consistency of expert evaluations and determine the reliability of the total score scale for each wine sample.
- The data can be compared with publications of other authors and/or used in comparative analysis and expert evaluation of the quality of wines.

1. Data Description

Data processing of the sensory evaluation of wine quality has been carried out by various statistical methods – analysis of variance (ANOVA) [1–3], principal component analysis (PCA) [4], discriminant analysis [5], mapping on the Cartesian plane [6], regression analysis [7,8], statistical text analysis using Alceste [9], etc. Expert methods for data processing, which describe

the procedure for the sensory evaluation of wines [3,10–15], have a number of limitations. The results of the sensory evaluation of wines are influenced by the composition of experts, their qualification level and quantity as well as imbalance of wines. Individual characteristics inherent in each expert along with their physical and psycho-emotional state also contribute to the subjectivity of expert evaluations. In the present paper, the problems associated with analyzing the consistency of expert evaluations of wine quality, establishing the contribution of each expert to the total consistency and reliability of the total score scale for wine samples set by each expert have been considered. To process expert evaluations, Table 1 was created containing the scores set by 11 experts based on the results of organoleptic evaluation of 60 samples of white (samples 1–20) and red dry (samples 21–60) wines. The top row contains the number of experts, the first column is the sample number, the second and subsequent columns are expert scores of the wine quality, the last column is the sum of expert scores. The calculations were conducted using the STATISTICA software [16].

The obtained values of descriptive statistics of expert evaluations, including mean values (Mean, Median) and their ranges (Minimum, Maximum), interquartile ranges (Lower Quartile, Upper Quartile), standard deviation (Std.Dev.), are given in Tables 2–4 for all wines and separately for white and red wines.

The positional analysis of the results of organoleptic evaluation of the tested wine samples, carried out by the Reliability/Item Analysis module, allowed to calculate the Cronbach's alpha value equal to 0.843. This indicator, calculated according to the initial point scale taking into account its variability, made it possible to assess the contribution of each expert to the consistency of expert assessments. The closeness of Cronbach's alpha to 1 characterizes the reliability of the total score scale (column Sum, Table 1), hence the consistency of expert assessments, as high. Cronbach's alpha values, calculated with successive deletion of the assessments of experts 1, 2, 3,..., 11, allowed to determine the influence of each expert on the overall consistency of expert assessments, otherwise increases it. Experts 1, 2, 3, 4, 5, 8, 9, 10, 11 were established to increase the overall consistency of assessments, while experts 6 and 7 reduced it.

During Reliability/Item Analysis module implementation, a matrix file of the Pearson pairwise correlation coefficients was formed characterizing relationships between expert evaluations (Table 5).

Using pairwise correlation coefficients (Table 5) and designating the group of experts decreasing the consistency of evaluations as "reduce" (6, 7), while the group of experts increasing the consistency of evaluations as "increase", it can be seen that experts form the groups of homogeneity (clusters) in relation to their contribution to the consistency of evaluations. As can be seen from Fig. 1 constructed by principal component analysis (PCA), experts increasing the consistency are located on the central and left parts of the diagram, while those, which decrease the consistency, are on the right part of it.

The reliability of the total scale of scores (column Sum) and average scores given by experts (column The average) were assessed (Table 6) by positional analysis of transposed Table 1. The aggregate of average scores given by experts (column The average) is defined as the loyalty scale of experts. With the increase in the average value, the loyalty increases, otherwise the loyalty decreases.

Positional analysis of transposed data from Table 1 made it possible to evaluate the contribution of each of the 60 wine samples to the reliability of the loyalty scale (Table 7). Cronbach's alpha values after successive removal of wine samples from positional analysis allowed to isolate samples reducing/increasing the reliability of the loyalty scale. Samples 1, 12, 22, 25, 29, 32, 33, 34, 38, 42, 46, 47, 48, 49, 52, 53, 54, 55, 56, 60 (in bold italics) decrease the reliability of the loyalty scale, the rest – increase.

Wine samples increasing and decreasing the reliability of the loyalty scale also have a cluster structure. Unfortunately, a large number of samples did not allow to apply PCA method for cluster structure illustration, therefore, discriminant analysis scatterplot is given in Fig. 2. Wine samples decreasing the reliability are predominantly localized on the left part of the chart, while wine samples increasing the reliability are predominantly localized on the right part of the chart. -

Table 1Results of the sensory evaluation of tested wine samples.

Sample	Evnert 1	Evpert 2	Expert 3	Expert 4	Expert 5	Expert 6	Evpert 7	Evnert 8	Evnert 9	Evnert 10	Evnert 11	Sum
Number	LAPEIT I	LAPEIT 2	Expert 5	LAPEIT 4	Lxpert 5	Expert 0	LAPEIL 7	Expert 8	Expert 5	Expert 10	слрен н	Juili
1	77	80	80	80	81	82	77	85	85	83	81	891
2	83	83	79	79	79	63	82	79	83	78	78	866
3	89	79	81	83	82	76	83	79	86	77	85	900
4	90	85	82	78	82	78	85	76	85	84	78	903
5	90	87	79	85	85	82	84	83	85	85	85	930
6	90	84	80	84	83	76	77	86	83	81	84	908
7	85	87	82	85	84	78	83	86	84	86	87	927
8	90	86	80	83	84	84	83	87	82	82	79	920
9	95	92	85	84	86	80	88	88	84	84	80	946
10	88	86	82	79	81	64	85	80	83	79	86	893
11	83	/9	/9	/8	//	58	//	/2	80	/4	81	844
12	82 00	80 85	82 97	82 80	04 07	84 70	04 01	82 72	0/ 0/	60 00	04 96	922
13	00	07	0/	80 70	02 02	72	04 90	73	04	00	00 00	904
14	00	07	80	79 86	82 84	72 80	80	90 91	63 07	70	65 87	900 025
15	82	90	82	80	83	82	82	78	86	82	83	925
10	84	79	78	79	79	72	78	78	82	77	83	869
18	87	83	79	79	81	74	88	77	83	80	81	892
19	84	82	79	78	79	71	77	72	83	86	82	873
20	95	89	82	86	86	84	89	83	85	79	86	944
21	87	83	80	82	84	80	79	81	81	79	82	898
22	67	78	68	70	78	74	81	30	60	67	68	741
23	88	81	79	79	82	84	83	75	78	71	82	882
24	85	88	80	79	85	84	81	80	82	78	86	908
25	81	80	79	82	81	84	84	86	78	82	81	898
26	92	83	80	85	84	86	84	82	80	80	84	920
27	85	86	79	78	86	88	77	76	82	74	82	893
28	87	83	79	86	85	78	79	82	85	78	81	903
29	82	82	80	83	85	81	83	88	78	76	81	899
30	87	84	81	81	83	82	85	80	82	84	87	916
31	79	90	80	79	82	80	83	80	80	80	86	899
32	83	89	/9	82	84	88	82	92	/8	82	84	923
33	δ1 01	89	80	/8	84	90	//	81	82	84	81	907
25	81	00 01	80 00	04 01	00 05	82 82	63 07	65 01	75 96	00 77	00	910
36	87	89	81	81	84	86	84	92	82	87	86	924
37	87	90	83	82	81	84	85	79	79	85	84	010
38	85	80	80	81	81	78	81	88	77	79	79	889
39	94	82	81	80	84	86	84	81	81	83	80	916
40	87	91	82	80	85	82	85	92	82	89	83	938
41	82	89	82	82	85	84	89	84	78	87	81	923
42	79	78	77	78	82	80	86	60	78	79	70	847
43	84	87	81	78	86	82	84	73	78	82	80	895
44	87	82	82	85	85	82	78	80	83	75	85	904
45	86	92	86	87	86	93	84	89	83	79	79	944
46	88	89	86	80	83	94	83	89	84	87	86	949
47	82	79	84	80	84	92	86	85	86	88	79	925
48	85	85	85	83	83	91	86	88	80	83	81	930
49	86	93	88	88	84	92	88	95	78	88	90	970
50	87	84	83	84	86	81	89	80	78	80	83	915
51	84	86	84	80	85	84	85	86	83	82	80	919
52	/5	87	83	84	83	82	83	/8	85	/8	90	908
53	80	80 70	82	82	84 02	88 96	/ð	83 96	88 85	8U 9C	8U 97	905
54 55	85 86	79 80	04 80	04 80	0 <i>3</i>	00 84	02 00	03	0J 99	00	0/ 02	927 075
56	75	80	80	79	54 80	0-1 87	90 81	90 80	79	50 78	81	975 875
57	88	85	82	86	82	84	77	80	81	81	79	905
58	84	87	83	87	83	80	83	80	79	80	82	908
59	84	82	82	87	83	87	85	80	80	76	80	906
60	70	78	76	70	78	76	89	72	79	76	70	834

Fig. 1. Scatterplot for experts.

Fig. 2. Scatterplot for wine samples.

Table 2

Descriptive statistics of expert evaluations for all wines.

	Descriptive Statistics (Expert)						
Variable	Mean	Median	Minimum	Maximum	Lower Quartile	Upper Quartile	Std.Dev.
Expert 1	84,917	85,000	67,000	95,000	82,000	88,000	5299
Expert 2	84,883	85,000	78,000	93,000	82,000	88,500	4126
Expert 3	81,167	81,000	68,000	89,000	80,000	82,000	3076
Expert 4	81,600	82,000	70,000	89,000	79,000	84,000	3679
Expert 5	83,150	83,000	77,000	94,000	82,000	85,000	2596
Expert 6	81,250	82,000	58,000	94,000	78,000	84,000	6920
Expert 7	83,033	83,000	77,000	90,000	81,000	85,000	3556
Expert 8	81,133	81,000	30,000	95,000	79,000	86,000	9118
Expert 9	81,750	82,000	60,000	88,000	79,000	85,000	4173
Expert 10	80,950	80,500	67,000	90,000	78,000	84,000	4470
Expert 11	82,067	82,000	68,000	90,000	80,000	84,500	4050

Table 3

Descriptive statistics of expert evaluations for white wines.

	Descriptive Statistics (Expert)Include cases: 1:20						
Variable	Mean	Median	Minimum	Maximum	Lower Quartile	Upper Quartile	Std.Dev.
Expert 1	87,200	88,000	77,000	95,000	83,500	90,000	4720
Expert 2	84,850	85,500	79,000	92,000	82,500	87,000	3731
Expert 3	80,900	80,000	78,000	87,000	79,000	82,000	2198
Expert 4	81,350	80,000	78,000	86,000	79,000	84,000	2870
Expert 5	82,200	82,000	77,000	86,000	81,000	84,000	2441
Expert 6	75,600	77,000	58,000	84,000	72,000	82,000	7437
Expert 7	82,700	83,000	77,000	89,000	79,000	85,000	3975
Expert 8	80,750	80,500	72,000	90,000	77,500	85,500	5300
Expert 9	84,200	84,000	82,000	87,000	83,000	85,000	1436
Expert 10	81,200	81,500	74,000	86,000	79,000	84,000	3350
Expert 11	82,700	83,000	78,000	87,000	81,000	85,000	2716

Table 4

Descriptive statistics of expert evaluations for red wines.

	Descriptive Statistics (Expert)Include cases: 21:60						
Variable	Mean	Median	Minimum	Maximum	Lower Quartile	Upper Quartile	Std.Dev.
Expert 1	83,775	85,000	67,000	94,000	81,500	87,000	5255
Expert 2	84,900	85,000	78,000	93,000	81,500	89,000	4355
Expert 3	81,300	81,000	68,000	89,000	80,000	83,000	3451
Expert 4	81,725	82,000	70,000	89,000	79,500	84,000	4051
Expert 5	83,625	84,000	78,000	94,000	82,500	85,000	2569
Expert 6	84,075	84,000	74,000	94,000	81,500	86,500	4576
Expert 7	83,200	83,000	77,000	90,000	81,000	85,000	3368
Expert 8	81,325	81,500	30,000	95,000	80,000	87,000	10,582
Expert 9	80,525	80,500	60,000	88,000	78,000	83,000	4552
Expert 10	80,825	80,000	67,000	90,000	78,000	84,000	4971
Expert 11	81,750	82,000	68,000	90,000	80,000	84,000	4573

2. Experimental Design, Materials and Methods

2.1. Research objects

60 samples of natural dry red and white grape wines produced in 2010–2015 in the territory of main wineries of Krasnodar region (Russia) were analyzed: "Myskhako", "Fanagoria Number Reserve", "Kuban-Vino", "Southern wine company (SWK)", "Villa Victoria", "Chateau Tamagne",

Table 5

Matrix file of pairwise correlations between experts.

E	Expert 1	Expert 2	Expert 3	Expert 4	Expert 5	Expert 6	Expert 7	Expert 8	Expert 9	Expert 10	Expert 11
Expert 1 1	1000	0,381	0,437	0,532	0,414	0,072	0,174	0,465	0,433	0,249	0,426
Expert 2 0	0,381	1000	0,512	0,396	0,537	0,331	0,294	0,458	0,184	0,429	0,467
Expert 3 0	0,437	0,512	1000	0,620	0,559	0,397	0,345	0,674	0,545	0,606	0,546
Expert 4 0	0,532	0,396	0,620	1000	0,604	0,360	0,176	0,608	0,347	0,328	0,524
Expert 5 0	0,414	0,537	0,559	0,604	1000	0,550	0,337	0,487	0,299	0,379	0,307
Expert 6 0	0,072	0,331	0,397	0,360	0,550	1000	0,195	0,390	-0,013	0,343	0,148
Expert 7 0	0,174	0,294	0,345	0,176	0,337	0,195	1000	0,147	-0,068	0,308	-0,014
Expert 8 0	0,465	0,458	0,674	0,608	0,487	0,390	0,147	1000	0,533	0,579	0,569
Expert 9 0	0,433	0,184	0,545	0,347	0,299	-0,013	-0,068	0,533	1000	0,344	0,452
Expert 10 0	0,249	0,429	0,606	0,328	0,379	0,343	0,308	0,579	0,344	1000	0,357
Expert 11 0	0,426	0,467	0,546	0,524	0,307	0,148	-0,014	0,569	0,452	0,357	1000
Means 8	84,92	84,83	81,167	81,600	83,15	81,250	83,033	81,133	81,75	80,95	82,067
Std.Dev. 5	5299	4126	3076	3679	2596	6920	3556	9118	4173	4470	4050
No.Cases 6	60,00										
Matrix 1	1000										

Table 6

The values of the sum of scores and average scores given by experts.

Expert number	Sum	The average
1	5095	84,917
2	5093	84,883
3	4870	81,167
4	4896	81,600
5	4989	83,150
6	4875	81,250
7	4982	83,033
8	4868	81,133
9	4905	81,750
10	4857	80,950
11	4924	82,067

"Chateau le Grand Vostock". All the wine samples were produced according to traditional technologies from European (Cabernet, Merlot, Aligote, Riesling, Saperavi, etc.) and hybrid grape varieties (Bianca, Viorica, Moldova, Pervenets Magaracha, etc.) and were kindly provided for research by their manufacturers. The wines were poured into dark green glass bottles with screw caps and stored until use at 10 °C. All wine samples were dry, alcohol content varied from 9 to 13% (v/v) and pH values ranged from 3.61 to 3.79. Dissolved oxygen in wines was measured by the immersion of the probe before bottling in barrels, which was less than 1 mg/dm³.

Wines from European grape varieties obtained by traditional technologies without the use of sulfur dioxide were not considered, since this category significantly differs in taste from wines for which sulfiting was used.

2.2. Sensory analysis

All experimental studies related to sensory analysis were carried out by 11 specialists from the Federal Research Center for Horticulture, Viticulture, Winemaking (FSC HVW, Krasnodar, Russia). Participants are considered experts in the field of wine, work in the wine industry and have professional experience in sensory analysis.

The wine sample (50 cm³) was poured into each glass and covered with a Petri dish with diameter of 5.7 cm 30 min before the sensory evaluation. The tests were carried out in a well-lit tasting room with controlled temperature conditions. All samples were fed at 16–22 $^{\circ}$ C at tables with white napkins. Experts were prohibited to communicate during the sensory evaluation

Summary for scale: Mean=4941,27; Std.Dv.=87,2904; Valid N:11 (Expert tran)

Table 7Results of positional analysis for wine samples.

	Cronbach alpha: 0,869,019; Standardized alpha: 0,877,981; Average inter-item corr.: 0,124,210							
variable	Mean if deleted	Var. if deleted	StDv. if deleted	Itm-Totl Correl.	Alpha if deleted			
1	4860,273	7203,653	84,874	-0,652	0,876			
2	4862,545	6526,248	80,785	0,431	0,865			
3	4859,455	6662,976	81,627	0,407	0,866			
4	4859,182	6491,421	80,569	0,645	0,862			
5	4856,727	6605,834	81,276	0,732	0,863			
6	4858,727	6659,835	81,608	0,410	0,866			
7	4857,000	6806,546	82,502	0,278	0,868			
8	4857,636	6640,776	81,491	0,568	0,864			
9	4855.273	6376,380	79.852	0.762	0.860			
10	4860,091	6378,264	79,864	0,519	0,863			
11	4864,545	6517,338	80,730	0,320	0,868			
12	4857.455	6896.430	83.045	0.102	0.869			
13	4859.091	6536.083	80.846	0.448	0.864			
14	4858,909	6586.992	81.160	0.406	0.865			
15	4857.182	6313.239	79.456	0.863	0.858			
16	4858 545	6666.066	81 646	0 522	0.865			
17	4862 273	6695 289	81 825	0.437	0.866			
18	4860182	6485 239	80 531	0,680	0,862			
19	4861 909	6684 810	81 761	0,300	0,867			
20	4855 455	6356 793	79 730	0,500	0,859			
20	4850 636	6653 686	81 570	0,805	0,855			
21	4872 000	6194 446	79 6 1	0,725	0,004			
22	4861.001	6470.910	20 11	0,274	0,000			
23	4001,091	6566 562	81.024	0,022	0,802			
24	4030,727	7017 967	81,034 82 772	0,702	0,803			
25	4853,030	6608 040	81,775	-0,237	0,872			
20	4860.001	6552 002	80,250	0,372	0,804			
27	4800,091	6667059	80,901	0,409	0,004			
20	4039,102	6921 702	81,032	0,462	0,800			
29	4859,545	6704 729	02,004	0,109	0,005			
50 21	4858,000	0/04,720	01,002	0,367	0,000			
31	4859,545	6951222	81,014 82,772	0,477	0,805			
32 22	4037,304	6949 220	02,775 90.755	0,069	0,870			
24	4030,010	0040,000	02,733 02,177	0,098	0,870			
34	4858,545	6918,430	83,177	-0,004	0,871			
30	4857,273	0442,302	80,200	0,811	0,860			
30	4850,304	0/45,808	82,133	0,309	0,867			
37	4857,727	6592,380	81,193	0,636	0,863			
38	4860,455	6832,612	82,660	0,171	0,869			
39	4858,000	6582,000	81,130	0,530	0,804			
40	4856,000	6/32,363	82,051	0,287	0,867			
41	4857,304	6764,414	82,240	0,283	0,867			
42	4864,273	6608,744	81,294	0,261	0,869			
43	4859,909	6499,901	80,622	0,665	0,862			
44	4859,091	6/08,62/	81,906	0,380	0,866			
45	4855,455	6778,430	82,331	0,182	0,869			
46	4855,000	6938,728	83,299	-0,041	0,871			
4/	4857,182	/255,966	85,182	-0,530	0,878			
48	4856,727	6965,289	83,458	-0,095	0,871			
49	4853,091	6980,810	83,551	-0,100	0,873			
50	4858,091	6592,265	81,193	0,633	0,863			
51	4857,727	6803,653	82,484	0,358	0,867			
52	4858,727	6944,925	83,336	-0,051	0,872			
53	4859,000	7148,364	84,548	-0,436	0,875			
54	4857,000	7162,545	84,632	-0,652	0,875			
55	4852,636	6953,140	83,385	-0,068	0,871			
56	4861.727	7044.199	83,930	-0.404	0.872			

(continued on next page)

Table 7 (continued)

	Summary for scale: Mean=4941,27; Std.Dv.=87,2904; Valid N:11 (Expert tran) Cronbach alpha: 0,869,019; Standardized alpha: 0,877,981; Average inter-item corr.: 0,124,210							
variable	Mean if deleted	Var. if deleted	StDv. if deleted	Itm-Totl Correl.	Alpha if deleted			
57	4859,000	6722,000	81,988	0,387	0,866			
58	4858,727	6676,743	81,711	0,571	0,865			
59	4858,909	6813,537	82,544	0,197	0,868			
60	4865,455	6852,248	82,778	0,053	0,872			

procedure. The wines were served in transparent tulip-shaped glasses with a volume of 220 dm³. After evaluating each sample, participants were asked to wait at least 30 s, cleanse their palettes with water and crackers. The intervals between tasting of each sample were 2 min. During each interval, experts rinsed their mouths with water. Experts evaluated each sample in triplicate during the working week.

The sensory evaluation results of wine quality were expressed on a scale from 50 to 100 according to the well-known rating system [12]. According to this system, any wine sample is given 50 points, and based on the results of the sensory evaluation, the following maximum points can be added: appearance – up to 5 points, aroma – up to 15 points, taste – up to 20 points, overall impression and capability of aging – up to 10 points. For a consolidated assessment of the organoleptic characteristics of wines, the average scores of sensory evaluations were used according to the results of tasting by a group of experts.

In Russia, official methods for the sensory evaluation of wines express the results as points or use descriptive characteristics in terms of organoleptic indicators (transparency, color, aroma, taste). Ten or 100-point score scales are used. The 100-point system is used, as a rule, at international tasting competitions.

2.3. Data analysis

All calculations were implemented using the STATISTICA software (v. 10) [16]. The pairwise consistency of experts was determined using Spearman's rank correlation coefficient, the "individual" consistency was established by the multiple correlation coefficient, group consistency – by means of Kendall's concordance coefficient and Cronbach's alpha criterion (Reliability and Item Analysis). However, the listed statistical criteria for the consistency of expert evaluations – Spearman's rank correlation coefficients, Kendall's and Kronbach's alpha correlations do not have generally accepted ranges of variation for their interpretation in the nominal scale, therefore, we focused on the degree of their proximity to 0 and 1. If the value of the criteria is closer to 0, the consistency is lower; following this trend, if the value is closer to 1, the consistency is higher. Scatter plots for experts and wine samples were built using the Multidimensional Scaling module.

Ethical Statement

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All participants gave their consent in this experiment. No additional regulations were required.

CRediT Author Statements

Alexan A. Khalafyan: Software, Formal analysis, Writing - Original Draft; Zaual A. Temerdashev: Conceptualization, Methodology, Writing - Review & Editing, Supervision, Project administration; Vera. A. Akin'shina: Software, Data analysis; Yuri F. Yakuba: Sensory analysis.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests of personal relationship that could have appeared to influence the work reported in this paper.

Acknowledgments

This study was supported by the Russian Foundation for Basic Research (project no. 18–03–00059); experiments were carried out with the use of scientific equipment of the Ecological and Analytical Center of the Kuban State University.

Reference

- I. Etaio, F.J. Pérez Elortondo, M. Albisu, M. Gaston, M. Ojeda, P. Schlich, Development of a quantitative sensory method for the description of young red wines from Rioja Alavesa, J. Sens. Stud 23 (2008) 631–655, doi:10.1111/j. 1745-459X.2008.00177.x.
- [2] A. Rinaldi, L. Moio, Effect of enological tannin addition on astringency subqualities and phenolic content of red wines, J. Sens. Stud. (2018) e12325, doi:10.1111/joss.12325.
- [3] D. Taladrid, L. Lorente, B. Bartolomé, M.V. Moreno-Arribas, L. Laguna, An integrative salivary approach regarding palate cleansers in wine tasting, J. Texture Stud. 50 (2019) 75–82, doi:10.1111/jtxs.12361.
- [4] N. Piclin, M. Pintore, C.M. Lanza, A. Scacco, S. Guccione, L. Giurato, J.R. Chrétien, Sensory analysis of red wines: discrimination by adaptive fuzzy partition, J. Sens. Stud 23 (2008) 558–569, doi:10.1111/j.1745-459X.2008.00172.x.
- [5] A.A. Khalafyan, Yu.F. Yakuba, Z.A. Temerdashev, Application of ranging analysis to the quality assessment of wines on a nominal scale, J. Anal. Chem. 71 (2016) 205–214, doi:10.1134/s1061934816020155.
- [6] H. Hopfer, H. Heymann, A summary of projective mapping observations The effect of replicates and shape, and individual performance measurements, Food Qual. Prefer. 28 (2013) 164–181, doi:10.1016/j.foodqual.2012.08.017.
- [7] A.K. Baker, C.F. Ross, Sensory evaluation of impact of wine matrix on red wine finish: a preliminary study, J. Sens. Stud. 29 (2014) 139–148, doi:10.1111/joss.12089.
- [8] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, J. Reis, Modeling wine preferences by data mining from physicochemical properties, Decis. Support. Syst. 47 (2009) 547–533, doi:10.1016/j.dss.2009.05.016.
- [9] H. Rodrigues, W.V. Parr, Contribution of cross-cultural studies to understanding wine appreciation: a review, Food Res. Int. 115 (2019) 251–258, doi:10.1016/j.foodres.2018.09.008.
- [10] R.S. Jackson, Wines: wine tasting, in: B. Caballero, P. Finglas, F. Toldra (Eds.), Encyclopedia of Food and Health, Academic Press, 2015, pp. 577–584, doi:10.1016/B978-0-12-384947-2.00757-1.
- [11] Edition: R.S. Jackson, Oral Sensations (Taste and Mouth-Feel), in: R.S. Jackson (Ed.), Wine Tasting. A Professional Handbook, 3 rd, Academic Press, 2017, pp. 103–136, doi:10.1016/B978-0-12-801813-2.00004-5. Edition:.
- [12] R.M. Parker, in: Bordeaux: a Consumer's Guide to the World's Finest Wines, 4th. ed., London: Simon & Schuster, 2003, p. 1244.
- [13] C. Spence, Perceptual learning in the chemical senses: a review, Food Res. Int. 123 (2019) 746–761, doi:10.1016/j. foodres.2019.06.005.
- [14] C. Spence, Q.J. Wang, Wine expertise: perceptual learning in the chemical senses, Curr. Opin. Food Sci. 27 (2019) 49–56, doi:10.1016/j.cofs.2019.05.003.
- [15] Q.J. Wang, C. Spence, Wine complexity: an empirical investigation, Food Qual. Prefer 68 (2018) 238–244, doi:10. 1016/j.foodqual.2018.03.011.
- [16] T. Hill, P. Lewicki, in: Statistics Methods and Applications, StatSoft, Tulsa, OK, 2007, p. 719.