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Abstract: The aim of this study was to systematically review the literature concerning the integration
of multimodality imaging with artificial intelligence methods for visualization of tumor cell infiltra-
tion in glioma patients. The review was performed in accordance with the preferred reporting items
for systematic reviews and meta-analysis (PRISMA) guidelines. The literature search was conducted
in PubMed, Embase, The Cochrane Library and Web of Science and yielded 1304 results. 14 studies
were included in the qualitative analysis. The reference standard for tumor infiltration was either
histopathology or recurrence on image follow-up. Critical assessment was performed according to
the Quality Assessment of Diagnostic Accuracy Studies (QUADAS2). All studies concluded their
findings to be of significant value for future clinical practice. Diagnostic test accuracy reached an
area under the curve of 0.74–0.91 reported in six studies. There was no consensus with regard
to included image modalities, models or training and test strategies. The integration of artificial
intelligence with multiparametric imaging shows promise for visualizing tumor cell infiltration in
glioma patients. This approach can possibly optimize surgical resection margins and help provide
personalized radiotherapy planning.

Keywords: artificial intelligence; glioma; glioblastoma; magnetic resonance imaging; multi-modality
imaging; advanced imaging

1. Introduction

Gliomas, especially high-grade gliomas (HGG), are one of the most frequent types of
primary brain tumors with a median survival of only 15 months [1]. The current standard
for diagnosis and prognosis relies on conventional Magnetic Resonance Imaging (MRI),
especially T1 weighted contrast-enhanced (ce) and T2 weighted/FLAIR (Fluid attenuated
inversion recovery) MRI [2,3]. Whilst contrast enhanced MRI can help delineate tumor
margins it is not sufficient in depicting low-density tumor cell infiltration beyond the
contrast enhancing region, which is commonly occurring for high-grade gliomas [4–6].
Infiltrating tumor cells, which may even be present in brain regions without any MRI
abnormalities, could play an important role for the limited HGG treatment efficacy [7,8].
Indeed, eventually the vast majority of high-grade brain tumors will recur [9,10]. The
shortcomings of conventional MRI with regard to the diffuse infiltrative growth pattern of
HGG, along with the extensive intratumoral heterogeneity, makes tumor delineation and
the following surgical resection and radiotherapy planning challenging [6,11].

Recently, advanced imaging techniques have been explored as a way to help better
the detection and delineation of diffuse glioma infiltration in the non-enhancing tumor
region [12–17]. This includes additional parameters available from perfusion-weighted MRI
regarding image neovascularization as well as permeability and microscopic information on
tissue architecture from diffusion tensor imaging (DTI) [18,19]. However, single imaging
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modalities have only achieved moderate accuracy for the detection of infiltration [20].
In acknowledgement of this, various groups have focused their attention on an integration
of multiple imaging modalities in a predictive model showing the probability of tumor
presence or later tumor recurrence in glioma patients [21–32]. By the aid of artificial
intelligence (AI) methods a variety of imaging parameters can be considered simultaneously
as opposed to a manual visual assessment of tumor extent during treatment planning. Such
a combination of imaging modalities into a predictive model may aid delineation of tumor
infiltration and provide a more relevant target for surgical resection and radiotherapy [33].

The aim of this systematic review was to provide an overview of the literature concern-
ing the combination of multimodality imaging with AI to create a visualization of glioma
tumor cell infiltration. We focused on the diagnostic accuracy for detecting infiltration
through a predictive model, which MRI and supplementary modalities were combined
and what methodologies including artificial intelligence methods were applied.

2. Methods

This systematic review was completed in accordance with the preferred reporting
items for systematic reviews and meta-analysis (PRISMA) guidelines [34].

The literary search was conducted on the 28th of August 2020 in multiple databases;
PubMed, Embase, The Cochrane Library and Web of Science. The following search string
was used in all four databases:

(((((((((((((ai artificial intelligence) OR (machine learning)) OR (deep learning)) OR
(support vector machines)) OR (radiomics)) OR (image interpretation)) OR (multipara-
metric)) OR (multimodal)) OR (image processing)) OR (algorithm))) AND (MRI)) AND
(((glioma) OR (Glioblastoma)))) AND (((((infiltration) OR (invasion)) OR (recurrence)) OR
(“biopsy”)) OR (“biopsies”)).

The search string was constructed with four components covering the computational,
the MRI, the tumor type and the pathologic aspects. A large variety of keywords were
found necessary for the computational search component, since a vast methodology is
found within this field. Publications not written in English and/or published earlier than
the 1st of January 2010 were excluded from the study.

Inclusion criteria were studies, that combined multiparametric imaging (defined as
≥2 types and must include MRI) to create a visualization of tumor infiltration in glioma
patients exclusively. The visualization had to be presented as a map or likewise, showing
the probability of tumor presence or later tumor recurrence. Furthermore, all studies must
have a reference standard for tumor infiltration, which could be either histopathology from
a stereotactic biopsy or tumor recurrence on follow up imaging. Studies focused on imaging
of specific molecular markers such as but not limited to gene expressions, proteins or
immunophenotyping, within neurooncology were not included. As well, exclusion criteria
were publications concerning a single imaging modality, multiple imaging modalities
which were not combined to predict infiltration and all pre-clinical studies.

All results from the search strategy were managed in the Cochrane technology plat-
form, Covidence [35]. After the removal of duplicates the articles were screened by title
and abstract by two authors (S.H.D. and A.E.H.). If the abstract was inconclusive about an
article’s eligibility the study was included in the full text screening. Full text screening was
performed by the before mentioned same two authors using the same eligibility criteria.
In case of disagreement a consensus was reached. The literature search and study selection
process are summarized in the PRISMA flowchart in Figure 1. The initial search provided
1231 publications, 1163 of which were excluded during title and abstract screening. The
reference list of the remaining 68 publications were additionally screened by title and
73 articles, identified through these reference lists, were further screened by abstract using
the eligibility criteria previously mentioned. A total of 71 studies were screened by full text
and 14 articles were included in this review.
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) flowchart
of the literature search and study selection.

The extracted data from the included studies were number of participants, imaging
modalities, tumor segmentation method, tumor classification, training and test strategy,
artificial intelligence method, reference standard, pathologic marker and statistical eval-
uation of model performance. Imaging modalities which were obtained in the study but
ultimately not retained in the predictive model, either for tumor segmentation or training of
the model, were not presented amongst the results. Furthermore, the main table included
only the acquired imaging modalities; any derived maps or data, such as relative cerebral
blood volume (rCBV), apparent diffusion coefficient (ADC), fractional anisotropy (FA), etc.,
were not presented, but is available in Appendix A. The included studies did not provide
comparable data; therefore, no meta-analysis was performed.

The quality and bias assessment of the included studies was performed by the two
authors (S.H.D. and A.E.H). It was conducted using the Quality Assessment of Diagnostic
Accuracy Studies (QUADAS2), which evaluate the studies in 4 domains (patient selection,
index test, reference standard and flow and timing) regarding risk of bias and concerns for
applicability [36]. Lowest risk of bias and concern for applicability is preferable. A consen-
sus regarding the risk of bias and concerns for applicability was reached between the two
authors on all studies.

A lack of specification of consecutive or other type of patient selection was considered
as an unclear risk of bias. The reference standard for diagnostic accuracy studies involving
AI prediction models, is generally employed both during model training and testing, with
a potential risk of bias. Thus, the authors chose the following division regarding risk of bias
of the index test: A lack of independent diagnostic accuracy testing of model performance
resulted in a high risk of bias of the index test. Use of cross validation for this purpose was
classified as an unclear risk of bias while having a separate validation cohort for diagnostic
accuracy testing, was assessed as the optimal strategy and resulted in a low risk of bias.
As well, manual delineation of tumor infiltration as a reference standard was categorized
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as a low risk of bias since this along with histopathological confirmation was accepted in
the inclusion criteria. The applicability of the reference test was marked as unclear when
RANO criteria for Gliomas (Response Assessment in Neuro-Oncology), which defines
progression but not necessarily infiltration, was used as reference standard.

3. Results
3.1. Study Characteristics

14 studies were eligible for this review. Eight of these were retrospective studies [21–23,
27,30–32,37] and six were prospective [24–26,28,29,38]. Two of the reported six prospective
studies had clear specification of being consecutive [24,29]. The focus of all studies was
high-grade glioma, with two studies including also low-grade glioma [24,29]. All studies
except Durst et al. [24] incorporated two or more conventional MRI sequences (T1, T1ce,
T2, FLAIR) in their final model. These were primarily used for tumor segmentation and
image alignment. The most frequent integrated advanced modalities were diffusion tensor
imaging (DTI) and dynamic susceptibility contrast (DSC), being used in the model of nine
and seven studies, respectively, and appearing in combination in six studies [24–26,30–32].
Three studies incorporated FET-PET scans in their predictive model [27–29], one including
also FDG-PET [28].

A stereotactic biopsy as reference standard was applied in six studies, five of which
had an experienced neuropathologist assessing tumor presence through tumor nuclei
count or cell density [24–26,29,38]. Chang et al. used cell density estimated by a fully
automated cell-counting algorithm designed by the same group [37]. The remaining
eight studies hence used imaging follow-up as a reference standard. One study relied
on the RANO criteria for progression as a marker of pathology [22], while the remaining
seven used manual delineation [21,23,27,28,30–32]. In four studies, the delineation was
performed by ≥2 experts [28,30–32]. Anwar et al. had an experienced neuroradiologist
perform the delineation in concurrence with a multi-interdisciplinary tumor board [21].
Blumenthal et al. and Chang et al. [22,23] relied on the delineation of a single radiologist
while Lipkova et al. did not specify by who the delineation was performed [27].

Four of the included studies provided measures of diagnostic accuracy of model
performance by testing the predictive models on an independent validation patient co-
hort [30–32,38]. Of the remaining ten studies, five used leave one out cross validation
(LOOCV) and one study used two-fold cross validation (TFCV) to estimate the accuracy
of model performance [21,22,25,26,28,29]. Three studies did not provide an independent
accuracy test to assess model performance in practice but calculated a correlation between
actual and predicted cell counts [24,37] or tested their proposed model within the primary
training cohort [23]. Finally, Lipkova et al. performed a visual comparison between the out-
lines of the predicted and the delineated tumor recurrence, despite having an independent
validation cohort [27].

Included studies with main results are listed in Table 1. Extracted supplementary data
is listed in Appendix A.

3.2. Study Findings

The included studies all concluded their findings to be of significant value for future
clinical practice. The proposed prediction models were evaluated based on their presented
area under the curve (AUC) for visualization of tumor infiltration. An AUC was available
in six of the included 14 studies, with AUC ranging from 0.74–0.91 [21,23,28–31]. There was
no clear pattern between achieved AUC and included modalities. The eight studies with
no available AUC provided alternative parameters for model performance. This included
a sensitivity of 80.0%–100% and a specificity of 69.2%–100% in three studies [22,32,38]
with two studies including also an accuracy of 78%–81.8% [32,38]. Four studies reported a
Pearson’s correlation coefficient of 0.74–0.88 [24–26,37], while the final study provided no
quantitative evaluation parameter of model performance [27].
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Table 1. Results from all 14 included studies.

Author Participants Train-
ing/Validation Modalities AI Method Patholovgy Reference

Standard Pathologic Marker AUC
Training/Validation Conclusion

Akbari et al., 2016
[30]

31/34
(Retrospective)

T1, T1ce, T2, FLAIR,
DTI, DSC SVM HGG (GBM) Follow-up

imaging Manual delineation 0.80/0.84

Multiparametric MRI can elucidate
patterns of tumor infiltration within

peritumoral region that predict
tumor recurrence

Hu et al., 2015
[38] 11/7 (Prospective) T1ce, T2, DSC DLDA, (DQDA,

SVM) HGG (GBM) Biopsy Tumor nuclei NA
Multiparametric MRI and texture analysis
can help characterize and visualize GBM’s

spatial histologic heterogeneity

Rathore et al., 2018
[31]

31/59
(Retrospective)

T1, T1ce, T2, FLAIR,
DTI, DSC SVM HGG (GBM) Follow-up

imaging Manual delineation 0.83/0.91

Multiparametric MRI can assist in in vivo
estimation of the spatial extent and

pattern of tumor recurrence in
peritumoral edema

Yan et al., 2020
[32]

37/20
(Retrospective)

T1, T2, FLAIR, DTI,
DSC, Spectroscopy CNN HGG (GBM) Follow-up

imaging Manual delineation NA
Application of distinct imaging

characteristics can potentially identify site
of tumor progression.

Anwar et al., 2017
[21] 24 (Retrospective) T1ce, FLAIR, DWI, DTI,

Spectroscopy
Multinomial logistic

regression HGG (GBM) Follow-up
imaging Manual delineation 0.75 Integrating advanced MRI with dosimetry

can identify voxels at risk for progression

Blumenthal et al., 2017
[22] 32 (Retrospective) T1, T1ce, FLAIR, DCE SVM

HGG (GBM,
astrocytoma,

oligodendroglia)

Follow-up
imaging RANO NA

Proposed Segmented RANO criteria
classifies tumor and nontumor parts

within enhancing and
non-enhancing lesion.

Gaw et al., 2019
[25] 18 (Prospective) T1ce, T2, DTI, DSC

SSL + mechanistic
proliferation-

invasion
model

HGG (GBM) Biopsy Cell density NA
Predictive model can provide

patient-specific spatial maps of tumor
cell density

Hu et al., 2019
[26] 18 (Prospective) T1, T1ce, T2, DTI, DSC Multivariable linear

regression HGG (GBM) Biopsy Tumor cell density NA

Transfer learning optimizes tumor cell
density models with particularly high

predictive value in non-enhancing
infiltrative tumor region

Lundemann et al., 2019
[28] 9 (Prospective)

T1, T1ce, T2, FLAIR,
DTI, DCE,

FET-/FDG-PET
Binomial logistic

regression HGG (GBM) Follow-up
imaging Manual delineation 0.77 Model provides patient-specific maps of

voxel-wise probability of recurrence.

Verburg et al., 2020
[29] 20 (Prospective) T1, T1ce, T2, DTI,

FET-PET
Generalized linear

mixed model +
Akaike

LGG, HGG Biopsy
Neuropathologic

assessment of
presence of tumor

0.89 enhancing
Voxel-wise prediction model is more

accurate to detect glioma infiltration than
standard MRI in enhancing gliomas
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Table 1. Cont.

Author Participants Train-
ing/Validation Modalities AI Method Patholovgy Reference

Standard Pathologic Marker AUC
Training/Validation Conclusion

Chang et al., 2017
[23] 26 (Retrospective) T1, T1ce, FLAIR, DWI Multivariable logistic

regression HGG (GBM) Follow-up
imaging

Automated
segmentation with

manually edited
delineation

0.74 Likelihood of recurrence can be estimated
as a function of voxel-wise signal intensity.

Chang et al., 2017
[37] 28 (Retrospective) T1, T1ce, FLAIR, DWI Multivariable linear

regression HGG Biopsy Cell density NA

Correlation found between voxel-level
signal intensity and cell density can

provide mapping of
intratumoral heterogeneity

Durst et al., 2014
[24] 10 (Prospective) T1ce, DTI, DSC Multivariate

regression LGG, HGG Biopsy Nuclear density NA
Multiparametric voxel-based model may

be able to more accurately predict
infiltrative edge of tumor.

Lipkova et al., 2019
[27] 8 (Retrospective) T1ce, FLAIR, FET-PET Bayesian machine

learning HGG (GBM) Follow-up
imaging Manual delineation NA

Prediction of tumor cell density through
multiparametric MRI and computational

tumor growth model

AI: Artificial intelligence, AUC: Area under the curve, DTI: Diffusion Tensor Imaging, DSC: Dynamic Susceptibility Contrast, DCE: Dynamic Contrast Enhanced-MRI, DWI: Diffusion weighted imaging, FET-PET:
18F-fluoro-ethyl-tyrosine PET, FDG-PET: fluorodeoxyglucose-PET, SVM: Support vector machine, DLDA: Diagonal Linear Discriminate Analysis, DQDA: Diagonal Quadratic Discrimate Analysis, CNN:
Convoluted neural network, SSL: Semi-Supervised Learning, HGG: High-Grade Glioma, GBM: Glioblastoma, LGG: Low-Grade Glioma, RANO: Response Assessment in Neuro-Oncology, NA: Not available.
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3.3. Quality Assessment

The QUADAS2 consensus within each domain for studies performing diagnostic accu-
racy testing on a separate validation cohort, those performing cross-validation and those with
no independent diagnostic accuracy test of model performance, are listed in Tables 2–4.

Table 2. QUADAS2. Diagnostic accuracy test on separate validation cohort.

Study Patient Selection Index Test Reference Standard Flow and Timing
RoB CrA RoB CrA RoB CrA RoB

Akbari et al., 2016
[30] Unclear Low Low Low High Low Low

Hu et al., 2015
[38] Unclear Low Low Low Low Low Low

Rathore et al., 2018
[31] Unclear Low Low Low High Low Low

Yan et al., 2020
[32] Unclear Low Low Low Low Low Low

RoB: Risk of Bias, CrA: Concerns for applicability.

Table 3. QUADAS2. Diagnostic accuracy test by cross-validation.

Study Patient Selection Index Test Reference Standard Flow and Timing
RoB Cra Rob Cra Rob Cra Rob

Anwar et al., 2017
[21] Unclear Unclear Unclear Low Low Low Low

Blumenthal et al., 2017
[22] Unclear Low Unclear Low Low Unclear Low

Gaw et al., 2019
[25] Unclear Low Unclear Low Low Low Low

Hu et al., 2019
[26] Unclear Low Unclear Low Low Low Low

Lundemann et al.,
2019
[28]

Unclear Low Unclear Low Low Low Low

Verburg et al., 2019
[29] Low Low Unclear Low Low Low Low

RoB: Risk of Bias, CrA: Concerns for applicability.

Table 4. QUADAS2. No independent diagnostic accuracy test of model performance.

Study Patient Selection Index Test Reference Standard Flow and Timing
RoB CrA RoB CrA RoB CrA RoB

Chang et al., 2017
[23] Unclear Low High Low Low Low Low

Chang et al., 2017
[37] Unclear Low High Low High Low Low

Durst et al., 2014
[24] Low Low High Low Low Low Low

Lipkova et al., 2019
[27] Unclear Low High Low Unclear Low Low

RoB: Risk of Bias, CrA: Concerns for applicability.

4. Discussion

This systematic review shows that the combination of multimodality imaging with
artificial intelligence (AI) can visualize glioma infiltration. The predictive models were
presented as maps, showing the probability of tumor presence or later recurrence in
glioma patients. There was no consensus amongst the included studies regarding the best
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methodology to achieve this goal, although the inclusion of diffusion tensor imaging and
dynamic susceptibility contrast MRI in addition to conventional MRI was predominantly
used. The heterogeneity of incorporated modalities, reference standards and applied
artificial intelligence method made a systematic comparison between studies challenging.
Moreover, not all studies reported a diagnostic performance parameter of their findings
making a quantitative evaluation difficult. However, moderate to high diagnostic accuracy
was shown in many studies and all included studies concluded their findings to be of
significant value for future clinical practice.

The detection and delineation of tumor infiltration beyond radiologically visible
anatomic abnormalities, which are currently used for surgical resection and radiother-
apy planning, could have profound implications for treatment management of glioma
patients [39]. A visualization of tumor infiltration enables a tumor specific personalized
surgical resection extending outside the contrast-enhancing region, or potentially even into
normal appearing brain tissue. As well, an individualized risk-adapted radiotherapy plan,
including a prediction of tumor presence or recurrence, could be envisaged to optimize
local tumor control and minimize toxicity. However, further studies concerning the optimal
methodology in visualizing tumor infiltration is still needed. While this study illustrates
the capabilities of the combination of AI with multiparametric imaging for detection of
tumor infiltration, the eventual impact on patient prognosis by implementing a predic-
tive model during curative treatment planning would need to be addressed. Although
promising, the included studies show no insight as to whether their results would lead to
an improvement of the current survival of glioma patients. Therefor future randomized
controlled trials, providing clarification of the potential treatment effect are desired. The
field of medical imaging is constantly expanding and finding the optimal treatment strategy
amongst existing and newly discovered methods, while balancing high diagnostic accuracy
and cost–benefit could prove challenging.

Previous reviews and meta-analyses have focused on single modality imaging, conven-
tional and/or advanced, in visualizing tumor cell infiltration in glioma patients [20,33,40].
The systematic review presented here extends the findings of earlier studies by revealing
a diagnostic value in combining imaging modalities to detect tumor cell infiltration and
predict tumor presence or recurrence (see Table 1). Moreover, amongst the included stud-
ies, several groups found added value compared to conventional imaging or any single
modality [23,26,29,31,37,38].

The included studies employed a variety of AI algorithms to estimate predictive maps
from the multiparametric imaging data. Algorithms encompassed computationally simple
linear or logistic regression models [21,23,24,26,28,29,37], machine learning strategies as
support vector machines [22,30,31], Bayesian modeling [27] and even convoluted neural
networks [32]. Machine learning and neural network approaches can provide model
flexibility with respect to complex multiparametric imaging data sets, possibly increasing
the predictive performance. However, they are also more difficult to implement and may
require a larger amount of training data, as compared to regression approaches. As well,
incorporating biophysics of tumor infiltration as is seen with the mechanistic-proliferation
model may aid model predictions even further [25].

Although all included studies found significant value to own results, only ten studies
provided a separate validation cohort [30–32,38] or cross-validation [21,22,25,26,28,29] to
calculate a prediction accuracy of the proposed model. The four remaining studies did not
undertake any independent test of diagnostic accuracy, possibly reducing the significance
of their findings [23,24,27,37].

The small sample sets available makes the development and testing of a predictive
model within glioma patients challenging. All of the included studies had a limited
amount of data (8–37 patients) to train their model upon thereby increasing the risk of
overfitting of the AI algorithm [41,42]. As well, scans were incorporated from a single
centre in all studies, thus restricting model training to the specific imaging machinery,
quality and protocol at that given location. One study provided a separate validation
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cohort from a different hospital than the training cohort, thereby reducing the risk of
overfitting [32]. A common database across locations, could provide a larger data set,
wider range of modalities for model inclusion and a variation in image quality upon which
to train a predictive algorithm and possibly creating a larger scale model better equipped
for detecting the vast heterogeneity of high-grade glioma infiltration [43].

In this study we accepted manual delineation on follow-up recurrence scans as a valid
reference standard for tumor infiltration. Although performed by radiological experts in
seven of the eight included studies using follow-up imaging [21–23,28,30–32], the subjec-
tive element of manual delineation will always pose an inherent challenge [44]. As well,
anatomical displacement between pre- and post-operative scans with regard to mass effect
and edema can possibly complicate image registration in studies with predictions from
pre-operative imaging [30–32]. A sub-optimal image registration of the predicted tumor
presence or recurrence map and the follow-up images could challenge the model eval-
uation. Two groups reported this an issue and sought to provide the best approximate
delineation of tumor infiltration on pre-operative scans, corresponding to the pathology
proven recurrence on follow-up imaging, possibly increasing risk of bias [30,31]. The
use of stereotactic biopsies provides a histopathologic confirmation of tumor presence
thereby minimizing the subjective element of manual delineation as the reference stan-
dard. However, there will be ethic limitations regarding stereotactic biopsies beyond the
enhancing and non-enhancing tumor region, complicating the visualization of tumor cell
infiltration in radiologically normal appearing brain tissue. The manual delineation of
recurrence on follow-up imaging provides an opportunity for easier applicability to whole
brain predictions, not limited to radiologically visible abnormal anatomic regions. In this
review studies predominantly restricted their visualization of tumor cell infiltration to the
peritumoral and radiotherapeutic target regions [22–28,30–32,37,38], although two groups
provided whole brain predictive maps [21,29].

Implementing a predictive model relying on advanced imaging techniques in daily
practice comes with a challenge. Diagnosis and treatment monitoring of gliomas currently
utilizes conventional MRI which is readily available and changing standardized routine
clinical protocols to include advanced imaging and analysis will require an implementation
effort. An example of such an effort is the existing software platform CaPTk (Cancer
Imaging Phenomics Toolkit), that integrates advanced tools for analysis of radiographic
cancer images, thereby alleviating the translation of artificial intelligence into medical
image analysis in daily practice [45–48].

This systematic review focused on imaging of tumor cell infiltration, therefore studies
providing no visualization of their predictive model were excluded. Likewise, studies
focusing solely on visualization of tumor specific molecular markers, amongst these IDH
(isocitrate dehydrogenase gene) mutation, EGFR (Epidermal Growth Factor) gene amplifi-
cation and the proliferation biomarker Ki-67, were not included despite promising results in
earlier studies [49–51]. Furthermore, studies aimed at predicting O6-Methylguanine-DNA
methyltransferase (MGMT) promotor methylation status were not included, although
showing promise as a prognostic biomarker for the alkylating chemotherapy treatment
effect [52]. Another relevant field of interest concerns prediction mapping of various im-
munophenotypes within the tumor region which can possibly be used to provide a patient
prognosis [53]. The newest World Health Organization (WHO) classification of gliomas
incorporates molecular markers in the pathological diagnosis, making any of these markers
relevant objects for future research concerning visualization of specific tumor subtypes [54].

5. Conclusions

In this review we demonstrated that integration of artificial intelligence with multi-
parametric imaging is a promising method for visualizing tumor cell infiltration in glioma
patients. The proposed predictive models were presented as maps showing the probability
of tumor presence or later recurrence both within the enhancing and non-enhancing re-
gions and moderate to high diagnostic accuracy could be obtained. There is still a need
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for future studies concerning the best methodology in achieving the goal of visualizing
tumor cell infiltration. Furthermore, larger cohorts in future prospective studies would
increase diversity to the dataset and improve model performance. Although challenging,
implementation of such a model can possibly optimize surgical resection margins and help
provide personalized radiotherapy planning.
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Appendix A

Table A1. Supplementary extracted data, not crucial to the main table.

Author Prediction
Region

Derived
Parameter Maps Test of Model Performance Sensitivity Specificity Accuracy r

Akbari et al., 2016
[30]

Peritumoral
edema

FA, RAD, AX,
AT, rCBV Independent validation cohort 91.18% 93.48% 91.25% -

Hu et al., 2015
[38] Peritumoral rCBV Independent validation cohort 100% 69.2% 81.8% -

Rathore et al., 2018
[31]

Peritumoral
edema

FA, RAD, AX,
ADC, rCBV Independent validation cohort 97.06% 76.73% 89.54% -

Yan et al., 2020
[32]

Peritumoral
edema

FA, ADC, rCBV,
Cho/NAA Independent validation cohort 80% 97.7% 78% -

Anwar et al., 2017
[21] Whole brain FA, ADC,

Cho/NAA LOOCV - - - -

Blumenthal et al.,
2017
[22]

Lesion area Vp, Ktrans, BAT TFCV 100% 100% - -

Gaw et al., 2019
[25] Peritumoral MD, FA, rCBV LOOCV - - - 0.838

Hu et al., 2019
[26] Peritumoral MD, FA, rCBV LOOCV - - - 0.88

Lundemann et al.,
2019
[28]

Radiotherapeutic
region

MD, FA, F, Vb,
Ve, Ki, MTT LOOCV - - - -

Verburg et al., 2020
[29] Whole brain ADC, FA LOOCV - - - -

Chang et al., 2017
[23] Peritumoral ADC Testing within primary

training cohort - - - -

Chang et al., 2017
[37] Peritumoral ADC Correlation - - - 0.74

Durst et al., 2014
[24]

Peritumoral
edema MD, FA, Ktrans Correlation - - - 0.75

Lipkova et al., 2019
[27] Peritumoral - Visual comparison on

independent validation cohort - - - -

FA: Fractional anisotropy, RAD: Radial Diffusivity, AX: Axial diffusivity, AT: Axial trace, rCBV: relative Cerebral Blood Volume, ADC:
Apparent Diffusion Coefficient, Cho/NNA: Cholin-to-NNA ratio/index, Vp: Plasma volume, Ktrans: Volume transfer konstant, BAT: Bolus
Arrival Time, MD: Mean diffusivity, F: Blood flow, Vb: Intravascular blood volume, Ve: Extra-vascular extra-cellular space volume, Ki:
Maps of vascular permeability, MTT: Mean Transit Time, LOOCV: Leave-one-out-cross-validation, TFCV: Two-fold-cross-validation, r:
Pearson’s correlation coefficient.
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