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Abstract: Vitreoretinal lymphoma (VRL) is an uncommon eye malignancy, and VRLs of T cell
origin are rare. They are difficult to treat, and their molecular underpinnings, including actionable
genomic alterations, remain to be elucidated. At present, vitreous fluid liquid biopsies represent a
valuable VRL sample for molecular analysis to study VRLs. In this study, we report the molecular
diagnostic workup of a rare case of bilateral T cell VRL and characterize its genomic landscape,
including identification of potentially targetable alterations. Using next-generation sequencing of
vitreous-derived DNA with a pan-cancer 126-gene panel, we found a copy number gain of BRAF and
copy number loss of tumor suppressor DNMT3A. To the best of our knowledge, this represents the
first exploration of the T cell VRL cancer genome and supports vitreous liquid biopsy as a suitable
approach for precision oncology treatments.

Keywords: precision oncology; next-generation sequencing; liquid biopsy; vitreoretinal lymphoma;
T cell lymphoma

1. Introduction

Vitreoretinal lymphoma (VRL), the most common ocular lymphoma, is often asso-
ciated with primary CNS lymphoma (PCNSL, up to 90%) from where it is thought to
spread to the eye [1,2]. VRL is rare (~380 US cases/year) and presents most commonly
as diffuse large B cell lymphoma (DLBCL) [1]. VRL can cause vision loss and has a poor
prognosis. Radio- and chemotherapy are used empirically and have short-lived responses
(progression-free survival (PFS) ~1-year, overall survival (OS) ~3 years). Genomic driver
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alterations have been described in a limited number of patients by us and others, but
precision oncology approaches that use molecularly informed targeted treatments remain
in their infancy [3,4].

Diagnostically, vitreous fluid-sampled VRL cells are analyzed by cytology and/or
flow cytometry for morphological features and cell surface markers. However, cell scarcity,
limited fluid amount, and the gelatinous consistency of the fluid contribute to inaccurate
results [5,6]. High-sensitivity assays, such as the detection of the lymphocyte cell receptor
V(D)J DNA recombination characteristic of clonal lymphoid populations or the use of next-
generation sequencing (NGS) to identify driver genomic alterations, are highly compatible
with vitreous liquid biopsy [3] obtained on an outpatient basis or during vitrectomy.
However, these molecular assays, especially genomic analysis, are not routinely performed.

While the majority of PCNSL/VRL cases are DLBCLs, an even rarer subset belongs
to the T cell subtype. Herein, we report for the first time to our knowledge the molecular
diagnostic and genomic analysis of vitreous liquid biopsy samples from a bilateral T cell
VRL case in a 63-year-old male. Following a pioneering approach we previously developed
for B cell VRL genomic analysis and precision medicine target nomination from vitreous
liquid biopsy [3], herein we used a targeted NGS gene panel (Oncomine Cancer Panel [7],
one of the assays used in the NCI-MATCH targeted therapy basket trial [8]) to analyze VRL
DNA from this patient.

2. Methods
2.1. Case Selection

The study was conducted with approval from the IRBs of the University of Michigan
(UM) and the University of Iowa (UI). We identified a case of T cell VRL in a 63-year-old
male who underwent therapeutic vitrectomy. Vitreous samples were genomically analyzed
at the UM Kellogg Eye Center and Pathology Department. Clinicopathological information
was obtained from the clinical archive.

2.2. DNA Analysis

Approximately 3.5 mL of undiluted vitreous fluid from each eye, stored at −80 ◦C,
was centrifuged at 1000× g for 5 min. Genomic DNA was extracted from the resulting
pellets using the Qiagen AllPrep FFPE DNA/RNA kit (Qiagen, Hilden, Germany), with
the following modifications for non-FFPE cells: (1) no de-paraffinization treatment; (2) first
56 ◦C incubation reduced to 2 min; (3) incubation at 90 ◦C omitted). DNA samples
were quantitated with the Qubit Fluorometer (ThermoFisher, Waltham, MA, USA). T cell
receptor (TCR) rearrangement testing was performed with the BIOMED-2 PCR assays
(Invivoscribe Technologies, Inc., San Diego, CA, USA) covering ~90% of TCRB and TCRG
rearrangements.

2.3. Next-Generation Sequencing

NGS was performed as previously described [3,9]. Briefly, 20 ng of DNA under-
went library construction using a targeted custom panel (Oncomine Cancer Panel (OCP),
ThermoFisher) targeting 126 cancer-related genes (3435 amplicons). Targets were selected
based on large-scale pan-solid tumor and lymphoma genomic data prioritizing recurrent
and/or targetable cancer mutations, short insertions/deletions, and copy number alter-
ations (CNAs) [7]. Sequencing and analysis were performed as previously reported [7,10].
Briefly, barcoded libraries were constructed with the AmpliSeq method (Library Kit 2.0,
ThermoFisher). Sequencing was performed on IonProton and Torrent Suite 5.0.2. Vari-
ant and CNA annotation, filtering, and prioritization were performed as reported using
in-house pipelines.

2.4. Next-Generation Sequencing Analysis

Data analysis was performed using Torrent Suite 5.0.2, with alignment by TMAP
using default parameters, and variant calling was performed using the Torrent Variant
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Caller plugin (version 4.0-r76860) using default low-stringency somatic variant settings.
Called variants were filtered to remove synonymous or non-coding variants, those with
flow-corrected read depths (FDP) <20, flow-corrected variant allele containing reads (FAO)
<6, variant allele fractions (FAO/FDP) <0.10, extreme skewing of forward/reverse flow-
corrected reads calling the variant (FSAF/FSAR <0.2 or >5), or indels within homopolymer
runs >4. Called variants were then filtered using a panel-specific, in-house blacklist.
Variants with allele frequencies >0.5% in the EXAC database and those reported in EXAC
and with observed variant allele fractions between 0.40 and 0.60 or >0.9 were considered
germline variants unless occurring at a known hot-spot. Variants located at the last mapped
base (or outside) of amplicon target regions, variants with the majority of supporting reads
harboring additional mismatches or indels (likely sequencing errors), those in repeat-rich
regions (likely mapping artifacts), and variants occurring exclusively in one amplicon if
overlapping amplicons cover the variant, were excluded. High-confidence somatic variants
passing the above criteria were then visually confirmed in Integrative Genomics Viewer
(Broad Institute, Cambridge, MA, USA, https://www.broadinstitute.org/igv/ (accessed
on 15 October 2020)). We have previously confirmed that these filtering criteria identify
prioritized high-confidence somatic variants that pass Sanger sequencing validation with
>95% accuracy [11].

Copy number analysis from total amplicon read counts provided by the Coverage
Analysis Plug-in (v4.0-r77897) was performed essentially as described using a validated
in-house approach. Log2 copy number ratio was calculated as the amplicon level ratio
between read counts in the tumor sample and read counts in a composite of normal
samples, normalized for sequencing depth and GC content. Gene-level estimates were
calculated as coverage-weighted averages of amplicon-level log2CN ratios. Genes with a
log2 copy number ratio estimate of <−1 or >0.6 were considered to have a high level of
loss or gain, respectively.

3. Results

A 63-year-old male with a past medical history of shingles and anterior uveitis in
the left eye six months prior, presented with blurred vision and floaters in both eyes.
Other baseline workup reported no relative afferent pupillary defect (diagnostic sign for
optic nerve pathology) and normal intraocular pressure (diagnostic sign for pressure-
induced vision changes). Most notably, the patient’s vitreous humor contained free-floating
cells in both eyes (where there should be none), and the left eye demonstrated whitish
deposits in the subretinal space of the central and peripheral retina (Figure 1A–H). PCR
of anterior aqueous ocular fluid was negative for herpes simplex virus, cytomegalovirus,
or varicella zoster virus infection, ruling out an infectious herpes zoster related etiology.
The patient underwent sequential diagnostic and therapeutic vitrectomy, at which time,
3.5 mL of undiluted vitreous was stored for future cytologic and genomic analysis. The
patient reported improved symptoms and postoperative visual acuity of perfect vision in
both eyes.

Cytology revealed mononuclear cells that were CD20- and CD10-negative and CD3-
positive, suggesting vitreous T cell presence (Figure 1I). Genomic DNA (66 ng (OS, oculus
sinister, left eye) and 37 ng (OD, oculus dexter, right eye) was extracted from the undiluted
vitreous and underwent T cell receptor (TCR) PCR testing. This assay has the sensitivity to
detect the 90% of most common V(D)J rearrangements in the TCRB and TCRG genes [12].
Nearly identical peaks of 186.02 bp (OS) and 186.04 bp (OD) were present at ~5–10%
frequency, indicating the presence of clonal T cell populations (Figure 2A). These peaks
were present only in the TCRG assay.

https://www.broadinstitute.org/igv/
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each vitreous sample. 

Figure 1. Clinical examination shows vitreous debris in both eyes. (A) Ultra-widefield retinal imaging
of the right eye (OD) showed vitreous clumps over the posterior pole. (B) Ultra-widefield retinal
imaging of the left eye (OS) showed vitreous cells (black arrowheads); inferior snowballs (white ar-
rowheads); and dense vitreous clumps over the posterior pole. (C,D) Infrared en-face imaging shows
level (green-line) at which optical coherence tomography (OCT) was used to image cross-section
of macula (E,F). Cross-sectional OCT showed (C) mild epiretinal membrane OD and (D) a dense
vitreous opacity over the macula OS. Posterior B-Scan ultrasonography revealed vitreous opacities
(G) OD and (H) OS. (I) Cytological examination for morphology and cell-surface marker staining for
CD20, CD10 and CD3 as well as vitreous DNA amounts are shown for each vitreous sample.
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Figure 2. DNA analysis of vitreous liquid biopsy samples. (A) DNA obtained from vitreous fluid
from each eye underwent clonal T cell receptor (TCR) rearrangement PCR testing covering ~90%
of the most common rearrangements in the TCRB and TCRG genes. Assays were run in duplicate
with negative controls (one replicate shown per sample). Clonal rearrangements were defined as
peaks identical between replicates that were at least 2× higher than the third highest peak. Capillary
electropherogram plots of band intensity over fragment length show a positive PCR result for TCRG
rearrangement at 186 bp, identical in both eyes, at ~10% frequency. No TCRB-positive bands were
observed in either sample. (B) NGS using the OCP version 1 panel was performed on each eye
sample. Copy number plots are shown as log2 copy number ratio (amplicon level ratio between
read counts in the tumor sample and read counts in a composite of normal samples, normalized
for sequencing depth and GC content). Dots represent individual amplicons, dots of the same
color represent a gene, and black horizontal bars represent average gene-level estimates (coverage-
weighted). Altered/relevant genes are highlighted. No mutations were observed in either sample.
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In order to rule out a non-malignant clonal T cell proliferation, (e.g., infection), NGS
using a panel of 126 cancer-related genes, modified from the Oncomine Cancer Panel (OCP)
used in the NCI MATCH clinical trial, was performed. Both OS and OD samples showed a
scarcity of mutations and short insertions or deletions in the genes assayed. This included
a lack of MYD88 hotspot mutations commonly observed in vitreoretinal and systemic
B cell lymphomas. However, copy number alterations (CNAs) were present in nearly
identical patterns between the two eyes. These were characterized by a copy gain in the
oncogene BRAF, an actionable alteration. Genes with copy number loss included the DNA
methyltransferase DNMT3A, a tumor suppressor and epigenetic DNA-modifying enzyme.
Neither sample showed a copy loss in the cell cycle inhibitor CDKN2A, a highly recurrent
B cell VRL alteration [3]. These CNAs were present at low levels, consistent with the low
TCRG rearrangement peak predominance of 5–10% (Figure 2B). In order to rule out our
observed CNAs being due to sequencing technical variability, we compared the nearly
identical OD and OS copy number profiles to a sample obtained from another patient
run in the same experiment and initially suspected for VRL but found not to harbor any
evidence of cancer (Supplementary Figure S1, Sample #7). OD/OS copy number profiles
differed from Sample #7, thus providing further support for OD and OS containing clonal
malignant populations harboring BRAF and DNMT3A CNAs. Taken together, these data
show the feasibility of vitreous liquid biopsy as a source suitable not only for commonly
performed morphological and surface marker detection, but also for obtaining precise
molecular genomic information in VRL cases. This information supports unambiguous
diagnostication and enables nomination of putative precision oncology biomarkers to
expand treatment options.

4. Discussion

To our knowledge, this work represents the first exploration of the actionable cancer
genome of a T cell VRL case. This patient showed a rare clonal T cell population, with no
lymphoma seen outside of the eye, and was treated with eight cycles of bilateral intravitreal
methotrexate. There was no recurrence and no CNS or systemic lymphoma seen during
his disease course. Using NGS, we found a scarcity of mutations/indels but presence of
CNAs in an oncogene and tumor suppressor.

Limitations include the “N-of-1” nature of this study which limits generalizability,
as well as our limited targeted gene set which does not preclude alterations in genes
that were not assayed here. An additional limitation is the low tumor content of both
samples (as indicated by the TCRG clonal peak dominance of 5–10% and modest CNA
levels). Although the evidence suggests presence of clonal malignant T cell populations
identical in each eye, a non-malignant cause cannot be definitively excluded based on the
available data.

Our data suggest largely distinct genomic landscapes between B cell VRLs and this
T cell case in agreement with previous non-ocular, systemic lymphoma studies [3,13–16].
While CDKN2A deleterious alterations (highly recurrent in B cell lymphomas) have been
shown to recur in systemic T cell lymphomas [16], our patient had a neutral copy number
for this gene. TP53 alterations, also described in systemic T cell lymphomas [14,16], were
absent in this patient. Taken together, our data suggest that T cell VRLs are amenable
to genomic analysis for diagnosis and precision oncology from minute vitreous liquid
biopsy samples.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22116099/s1, Figure S1: Copy number profile of a likely normal sample.
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