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Abstract

Temporal lobe epilepsy (TLE) patients are at risk of memory deficits, which have been linked to functional network
disturbances, particularly of integration of the default mode network (DMN). However, the cellular substrates of functional
network integration are unknown. We leverage a unique cross-scale dataset of drug-resistant TLE patients (n = 31), who
underwent pseudo resting-state functional magnetic resonance imaging (fMRI), resting-state magnetoencephalography
(MEG) and/or neuropsychological testing before neurosurgery. fMRI and MEG underwent atlas-based connectivity analyses.
Functional network centrality of the lateral middle temporal gyrus, part of the DMN, was used as a measure of local
network integration. Subsequently, non-pathological cortical tissue from this region was used for single cell morphological
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and electrophysiological patch-clamp analysis, assessing integration in terms of total dendritic length and action potential
rise speed. As could be hypothesized, greater network centrality related to better memory performance. Moreover, greater
network centrality correlated with more integrative properties at the cellular level across patients. We conclude that
individual differences in cognitively relevant functional network integration of a DMN region are mirrored by differences in
cellular integrative properties of this region in TLE patients. These findings connect previously separate scales of
investigation, increasing translational insight into focal pathology and large-scale network disturbances in TLE.

Key words: action potential kinetics, cellular morphology, connectome, graph theory, resting-state fMRI

Introduction
Temporal lobe epilepsy (TLE) is hallmarked by localized pathol-
ogy of the temporal lobe. It is often accompanied by cognitive
disturbances and particularly memory deficits (Meador 2002),
which are poorly understood through local pathological markers
alone. Indeed, cognition is increasingly thought to depend on
the orchestrated functional dynamics taking place on a large-
scale structural network of connected brain regions (Stam 2014;
Bassett and Sporns 2017). These functional network dynamics
can be studied using functional magnetic resonance imaging
(fMRI) and magnetoencephalography (MEG), which assess syn-
chronized brain activity of different regions.

The most important properties of brain networks in relation
to cognition are segregation and integration (Deco et al. 2015;
Cohen and D’Esposito 2016; Horien et al. 2020). Segregation
refers to the extent to which nodes are locally interconnected,
and integration signifies the level of integrative connectivity tak-
ing place, either globally or at a particular node. At specific brain
regions, the extent of segregation and integration typically show
opposite patterns (van den Heuvel and Sporns 2011; Bertolero
et al. 2017): Certain regions have a more segregative topological
role (e.g., regions within the visual system), whereas others are
considered mainly integrative (e.g., regions in the frontal lobe),
indicating that brain regions tend to have a “typical” role in the
brain network that can be quantified with either segragative or
integrative network measures. For example, centrality indicates
the expected level of network integration occurring at any par-
ticular node, with nodes showing high integration most likely
having low segregation.

Integrative connectivity of the temporal lobe, also overlap-
ping with the default mode network (DMN; Raichle et al. 2001),
may be paramount to explain individual memory differences
in TLE (DeSalvo et al. 2014; McCormick et al. 2014; Douw et al.
2015). An exemplar study explored the integrative connectivity
of the hippocampal circuit with the posterior DMN (Voets et
al. 2014) reporting that greater memory deficits were related to
lower network integration. An open question remains whether
combining different imaging and neurophysiological modalities
may improve explanation of cognitive variance in these patients.
Multilayer network theory provides a framework to integrate
such modalities into a single network consisting of intercon-
nected layers (De Domenico et al. 2013). Previous work suggests
that multilayer functional brain network integrative measures of
centrality supersede unilayer properties in explaining cognitive
functioning in Alzheimer’s disease patients (Yu et al. 2017), but
this approach has not been used in TLE or on combined fMRI and
MEG networks.

Moreover, the cellular substrates of functional network inte-
gration are unknown, limiting our understanding of how focal
cellular properties and pathology relate to large-scale network
disturbances in TLE and other neurological diseases (Bassett
and Bullmore 2009; Stam 2014). “Microstructure-informed

connectomics” (Larivière et al. 2019) may connect these scales
of measurement (Sporns 2016; van den Heuvel and Yeo 2017).
In animals, more integrative structural network regions are
comprised of bigger neurons with more axons (Scholtens et al.
2014). Moreover, cross-scale relations between structural brain
properties covary with disease characteristics in postmortem
studies of multiple sclerosis (Kiljan et al. 2019) and Alzheimer’s
disease (Jonkman et al. 2020). However, the cellular substrates of
functional network integration as an important correlate of cog-
nitive impairment have been impossible to investigate in vivo.

We leverage a unique cohort of TLE patients undergoing func-
tional neuroimaging and clinical neurophysiological recording
as well as tissue extraction of the lateral middle temporal gyrus,
a DMN region, through resective neurosurgery (Goriounova et al.
2018). We expected greater network integration to associate with
more integrative cellular characteristics in terms of morphology
and action potential (AP) kinetics (Poirazi et al. 2003; Eyal et al.
2014; Testa-Silva et al. 2014; Goriounova et al. 2018).

Materials and Methods
Patients

All patients undergoing resective neurosurgery for drug-
resistant epilepsy localized in the medial temporal lobe between
2009 and 2016 at Amsterdam University Medical Centers
(location VUmc, Amsterdam, the Netherlands) were eligible
for participation. All patients underwent temporal lobectomy,
which included the lateral middle temporal gyrus. Table 1 gives
an overview of clinical information that was extracted from
medical chart review. A schematic of the cross-scale analysis
pipeline is provided in Figure 1.

All procedures were performed with the approval of the
Medical Ethical Committee of VUmc, and in accordance with
Dutch license procedures and the Declaration of Helsinki. Writ-
ten informed consent was provided by all subjects for data and
tissue use for scientific research.

Data Availability Statement

Patients did not consent to sharing their raw data. However, the
full derived variable set used for analysis in the current work
is available from GitHub (https://github.com/multinetlab-amste
rdam/projects/tree/master/multiscale_integration), where our
code to do so can also be found.

Memory Functioning

Patients underwent cognitive assessments during presurgical
workup, as previously reported (Goriounova et al. 2018). In order
to assess verbal memory functioning, the Wechsler Memory
Scale (WMS) and the Dutch version of Rey’s Auditory Verbal
Learning Test (RAVLT) were selected for analysis. From the
WMS, the composite Verbal Memory Index was used, which

https://github.com/multinetlab-amsterdam/projects/tree/master/multiscale_integration
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Figure 1. Schematic representation of multi-scale analyses. In (A), cellular tissue collection from the middle temporal gyrus (pink node) is depicted. Morphological
analysis and electrophysiological recordings were performed. In (B), the functional network measure of eigenvector centrality is illustrated for the unilayer (fMRI or

MEG) and multilayer (combined fMRI and MEG) network analyses.

has a mean value of 100 with a standard deviation of 15 in a
normative and healthy population. From the RAVLT, immediate
recall in terms of total correctly encoded words across five trials
(15 words each) was quantified, with possible scores ranging
between 0 and 75 words in total. In addition, delayed recall of
the 15 words was assessed after 15 min, yielding an additional
outcome measure of memory retrieval. Higher values indicate
better memory performance.

Structural Neuroimaging

MRI was performed on a 1.5 T magnet (Siemens Sonata)
and included an anatomical 3D T1-weighted MPRAGE scan
(sequence parameters: time repetition [TR] = 2700 ms, time echo
[TE] = 5.2 ms, time to inversion [TI] = 950 ms, 1-mm isotropic
resolution, 176 slices). Image processing was performed using
FSL5. Standard procedures were used to preprocess structural
imaging: Non-brain tissue was removed from the 3D T1-
weighted images using the Brain Extraction Tool, and gray
and white matter segmentation was performed using FAST.
Non-brain tissue was removed and tissue segmentation was
performed. To construct each individual’s functional brain
network, the Automated Anatomical Labeling atlas was used to
define 78 cortical regions. This atlas was warped from standard
space to native space, and masked with each subject’s native
gray matter mask.

Functional Magnetic Resonance Imaging

Patients underwent presurgical fMRI for language localization.
Previous studies have shown that the intraindividual effect of
any task or state on network topology is small in comparison
with interindividual differences in network topology (Gratton
et al. 2018; Kraus et al. 2021), indicating that we may use these
pseudo resting-state data to investigate individual differences in
network integration. Resting-state analysis has previously been
used on such task data for network analysis in both healthy
controls and patients (Harris et al. 2014; Krienen et al. 2014;
Derks et al. 2017).

Scanning was performed using a standard echo-planar
imaging sequence (TR = 2850 ms, TE = 60 ms, 144 volumes, 3.3-
mm isotropic resolution, 7 min). During the scan, patients
performed a language task in which nine volumes of word gen-
eration were alternated with nine volumes of rest (imagery of a
landscape).

Preprocessing was performed using standard procedures
(Beckmann et al. 2005), including discarding the first five
volumes, motion correction, spatial smoothing, and high-
pass filtering. Six regions with low signal quality (mainly
orbitofrontal areas) were excluded, leaving 72 cortical regions
for analysis. In addition, ICA-AROMA was applied to minimize
the impact of movement (Pruim et al. 2015). Functional images
were co-registered to the anatomical scans. Time series were
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extracted from the centroids of all regions, after which a 72 × 72
connectivity matrix per subject was created using Pearson
correlation coefficients. Finally, the absolute values of these
correlations were used as weighted connectivity.

Magnetoencephalography

Patients underwent resting-state MEG as part of their presurgi-
cal work-up and/or in the setting of scientific research (Nissen
et al. 2017, 2018). Interictal eyes-closed recordings were acquired
in supine position using a whole-head system (Elekta Neuromag
Oy) with 306 channels inside a magnetically shielded room
(Vacuumschmelze GmbH). Data were recorded with a sampling
frequency of 1250 Hz, filtered online with a 410 Hz anti-aliasing
filter and a 0.1-Hz high-pass filter. The head position relative to
the sensors was recorded continuously with head-localization
coils. A 3D digitizer (Fastrak, Polhemus) digitized the head-
localization coil positions and scalp outline (roughly 500 points)
to allow surface matching of the scalp surface points with
anatomical MRI.

Three eyes-closed resting-state recordings of typically 15 min
each were recorded for clinical analysis of interictal epileptiform
activity. Only one recording was analyzed in this study and cho-
sen according to the following criteria with descending priority:
1) consisting of at least 5 min of data, 2) displaying the smallest
number of artifacts as per visual inspection, and 3) being the
earlier dataset of the three recordings.

Further analysis of these data has been extensively described
before (Nissen et al. 2017). Offline spatial filtering of the raw data
removed artifacts using the temporal extension of Signal Space
Separation (tSSS) using MaxFilter software (Elekta Neuromag Oy;
version 2.1). The reconstruction of neuronal sources was per-
formed with an atlas-based beamforming approach, after which
time series (virtual electrodes) for each centroid of each atlas
region were reconstructed (Hillebrand et al. 2016). These time
series were then filtered in the theta band (4–8 Hz), because of
its proven relevance for cognitive functioning in these patients
by others and ourselves (van Dellen et al. 2009; Douw et al. 2010;
Jin and Chung 2015), and to limit the number of investigated
variables in this limited sample.

As a measure of functional connectivity, the phase lag index
(PLI) was used. The PLI assesses the phase-relationship between
two regions by quantifying the asymmetry in the distribution
of instantaneous phase differences between two time series. It
is robust against zero-lag phase synchronization due to volume
conduction or field spread. This analysis yielded a 78 × 78 MEG
connectivity matrix per patient.

Network Analysis

We then created minimum spanning trees (MSTs) to extract
the functional backbone of each fMRI and MEG network and
adequately allow for comparison between patients and modal-
ities without having to use a subjective threshold for pairwise
connectivities (Stam et al. 2014). The MST is a binary network
that connects all nodes in a network without forming cycles
while maximizing connectivity strength. Eigenvector centrality
was then calculated per brain region. Of note, there is a plethora
of network measures that measure integration, which are highly
intercorrelated (Oldham et al. 2019). Instead of using multiple
measures in this sample with limited statistical power, we chose
to focus on eigenvector centrality as the network measure of

integration. Eigenvector centrality is a spectral centrality mea-
sure, which not only takes into account the number of connec-
tions of a node, but also weighs the number of connections of its
neighboring nodes (Lohmann et al. 2010).

In addition to modality-specific analysis of centrality, we
also explored multimodal centrality, since an open question is
whether combining different imaging and neurophysiological
modalities may improve explanation of cognitive variance in
these patients. Multilayer network theory offers an analytical
framework that allows for such synergy between modalities
to be captured (Mucha et al. 2010). Each layer in a multilayer
network represents a network characterized by one type of con-
nectivity. Interlayer connections link the same region across dif-
ferent layers. Importantly, multilayer network measures super-
sede summed properties of individual layers when trying to
explain the behavior of other types of complex networks (Stege-
huis et al. 2016). Multilayer techniques have only recently been
applied to neuroscience, but show promising results towards
explaining more cognitive variance than unilayer analyses in
for instance Alzheimer’s disease patients (Yu et al. 2017). We
therefore used the fMRI and MEG MSTs to construct a two-layer
network consisting of the 72 identical nodes representing each
brain region in the atlas available in both modalities. Each region
was connected only to itself across the two layers, forming an
interconnected binary multiplex network. We then calculated
multilayer eigenvector centrality per region (De Domenico et al.
2015). Ultimately, this network analysis yielded three centrality
values per patient (fMRI, MEG, and multilayer).

All analyses were performed using in-house Python scripts
(publicly available from our GitHub page (https://github.com/mu
ltinetlab-amsterdam/projects/tree/master/multiscale_integrati
on) in combination with the publicly available Brain Connectiv-
ity Toolbox (Rubinov and Sporns 2010) implemented in Matlab
R2012a (Mathworks).

Single Cell Electrophysiology and Morphology

Tissue exclusively originated from the lateral middle temporal
gyrus and was removed in order to gain access to the disease
focus in deeper lying structures. The tissue was resected prior
to temporal lobectomy, from the middle temporal gyrus at the
location 4-cm posterior to the temporal pole as a block of ∼ 1–
1.5 cm in diameter. The location of resection was consistent
across patients independent on the extent of temporal lobec-
tomy, and can be found in Figure 1 of Goriounova et al. (2018).
In all patients, the resected neocortical tissue was not part of
the epileptic focus or tumor and displayed no structural/func-
tional abnormalities according to presurgical MRI investigation
and histological analysis by an experienced pathologist. Data
analysis has been extensively described before (Goriounova et
al. 2018).

Upon surgical resection, the cortical tissue was immediately
transferred to ice-cold artificial cerebral spinal fluid, then trans-
ported to the electrophysiology lab within 15 min, where neocor-
tical slices (350-μm thickness) were prepared (Goriounova et al.
2018). Whole-cell patch-clamp recordings were made of layers 2
and 3 pyramidal neurons and APs were elicited by incrementing
step current injections (step size 30–50 pA). Waveforms were
sorted according to their instantaneous firing frequency (1/time
to previous AP) and AP rise speed was defined as the peak of AP
derivative (dV/dt) for all APs from all neurons from each subject.

During electrophysiological recordings, cells were loaded
with biocytin through the recording pipette. After recording,

https://github.com/multinetlab-amsterdam/projects/tree/master/multiscale_integration
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slices were fixed in 4% paraformaldehyde and cells were
revealed with chromogen 3,3-diaminobenzidine tetrahydrochlo-
ride using the avidin–biotin–peroxidase method. Neurons were
digitally reconstructed using Neurolucida software (Micro-
brightfield). Only neurons with virtually complete dendritic
structures were included.

We then selected three representative properties pertaining
to integration at the cellular scale. Larger dendrites may enable
neurons to have more synaptic contacts, putatively playing a
more important integrative role than neurons with smaller den-
drites (Poirazi et al. 2003; Eyal et al. 2014). Larger dendrites also
directly influence the speed of AP initiation, possibly providing
these cells with better temporal resolution and more efficient
information transfer (Eyal et al. 2014; Testa-Silva et al. 2014;
Goriounova et al. 2018). Thus, regions that act as integrators for
cognitive processes may be characterized by neurons with larger
dendrites and faster APs. We therefore extracted total dendritic
length (TDL) of all basal and apical dendrites and then averaged
these data (1–10 neurons per patient) as our first measure of
cellular integration, also because this measure proved cognitive
relevant in these patients before (Goriounova et al. 2018). In
addition, we selected rise speed of the first AP, and APs fired at
frequencies between 20 and 40 Hz for cross-scale analysis, also
due to their proven relevance for cognition in this patient cohort
(Goriounova et al. 2018).

Statistical Analysis

Statistical analysis was performed in Matlab R2012a (Math-
works).

Pairwise associations between functional network central-
ities and memory were tested using Spearman’s correlation
coefficients, because of the small sample size and likely non-
normal distribution of our data. For these associations between
memory functioning and network centrality, we corrected for
the nine tests performed across different measures.

Cross-scale pairwise associations were also tested using non-
parametric Spearman’s correlation coefficients because of the
sample characteristics, with bootstrapping (1000 samples, 95%
confidence intervals [CI]). When significant, robustness was
explored by permuting the micro–macro pairs to create a data-
specific correlation distribution (10 000 permutations) and by
leave-one-out analysis. Spatial specificity of the associations
was explored by correlating the cellular measure with functional
network centralities of all other ipsilateral nodes in the network.
The threshold for statistical significance was set at two-tailed
alpha < 0.05, but we also report significant results after applying
Bonferroni correction for multiple comparisons. In the cross-
scale analysis, we corrected for the nine associations tested
between network centralities and cellular properties. For the
spatial specificity analysis, we corrected for the 36 compar-
isons made between cellular properties and regional network
centralities.

Results
Patients

In 15 of the 46 TLE patients originally included (Goriounova et al.
2018), MEG and fMRI were not available. Therefore, 31 patients
(15 females) with a mean age of 33 years (± 11 years) were
included for the current analysis. Table 1 describes age, sex,

clinical information on histopathology, disease duration, side of
seizure focus, etcetera, per patient.

Functional Network Integration and Memory
Functioning

First, we sought to confirm that functional network centrality of
the lateral middle temporal gyrus, as part of the DMN, related
to memory functioning in these patients. Greater fMRI network
centrality was significantly related to greater RAVLT delayed
recall (rho = 0.857, CI [0.373 1.000], P = 0.024, n = 7; Fig. 2), although
this correlation did not survive correction for the nine tests
performed. Unfortunately, very few patients had complete data
across these scales, rendering the remaining pairwise testing of
associations underpowered.

Cross-Scale Correlations of Integrative Properties

We then asked whether greater functional network centrality of
the resected region went hand in hand with longer TDLs and
faster APs, hypothetically signs of greater integrative potential
at the cellular level (Fig. 2). Longer TDL was significantly related
to greater fMRI network centrality (rho = 0.758, CI [0.115 0.975],
P = 0.016, n = 10; Fig. 3A). This association remained significant
when creating a sample-specific distribution of the correla-
tion through permutation analysis (rho cutoff = 0.636, Fig. 3B
left panel). We then performed leave-one-out analyses, where
we iteratively excluded a single patient from the correlation
analysis to see whether this result was driven by individual
data points. This yielded significant results in 7 of 10 analyses
(Fig. 3B middle panel). Finally, we explored whether TDL of the
resected region also correlated with network centrality of other
cortical regions. This analysis revealed a significant negative
correlation between TDL of the resected region and fMRI net-
work centrality of the ipsilateral paracentral lobule (rho = −0.721,
P = 0.024, Fig. 3B right panel), although this result did not survive
correction for the 36 correlations tested. Regional TDL therefore
seems specifically correlated to fMRI network centrality of the
same region.

Furthermore, faster AP rise speed (first) was significantly
related to greater fMRI network centrality (rho = 0.539, CI
[0.042 0.868], P = 0.041, n = 15; Fig. 3C and D). This finding
remained in permutation testing (rho cutoff = 0.525), but was
mostly nonsignificant in leave-one-out analyses. Spatially, AP
rise speed (first) of the resected area was also significantly
associated with fMRI network centrality of the precentral
region (rho = 0.582, P = 0.025). Moreover, there were significant
negative relationships with fMRI network centrality of the
superior parietal region (rho = −0.657, P = 0.010) and temporal
pole (rho = −0.611, P = 0.018), although these correlations did
not survive correction for multiple comparisons and may thus
indicate regional specificity of this association.

Although the multilayer analyses were considered exploratory
due to the small sample size, the only pairwise correlation
that survived correction for the nine pairwise tests performed
between cellular and functional network characteristics of
the resected region was the significant positive association
between AP rise speed (first) and multilayer network centrality
(rho = 0.964, CI [0.698 1.000], P < 0.001, n = 7; Fig. 4A). Moreover,
this association was robust in permutation and leave-one-out
analyses, and was spatially specific, even when not correcting
for multiple comparisons.
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Figure 2. All pairwise correlations. This figure shows an overview of all associations between cellular properties and functional network centrality (top three rows), as
well as between functional network centrality and memory functioning (bottom three rows), using the maximum samples of patients with available data. In addition,
the middle three rows (in gray) reflect all pairwise correlations between scale-specific properties when considered in the same subgroup with complete functional
network data for the morphological (n = 5) and electrophysiological (n = 7) analyses. Green elements reflect positive correlations (with rho, P and n in text), ranging

from small correlations (rho < 0.4, light green) to medium correlations (0.4 < rho < 0.6, medium green) to large correlations (rho > 0.6, dark green). White, bold text
indicates statistical significance (P < 0.05) and very dark green elements with white, bold text indicates statistical significance after Bonferroni correction for multiple
(nine) comparisons. Blue elements reflect negative correlations in the same way. RAVLT immediate = Rey Auditory Verbal Learning Test immediate recall, RAVLT
immediate = Rey Auditory Verbal Learning Test delayed recall.

Since different numbers of patients were available for each
pairwise correlation depending on modalities available, we also
investigated whether the small subset of patients with complete
data showed the same patterns of correlation as the larger

but heterogeneous samples. Indeed, Figure 2 also shows the
associations of both unilayer and multilayer network indices
with cellular measures in the same samples of five patients (for
TDL) and seven patients (for AP rise speeds). As was the case for
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Figure 3. Significant pairwise associations between cellular properties and functional network centrality. (A) Displays a scatter plot of the significantly positive
correlation between TDL (in mm) and fMRI centrality. The dark blue diamond in the plot represents a single patient, who has low centrality and short dendritic
length (schematically depicted in the middle panel), whereas the light blue diamond represents a patient with high centrality and long dendritic length (right panel).

In (B), the analyses of the robustness of these results are displayed. The left panel shows the distribution of permuted correlations (10 000 permutations), with the
actual (pink) association being smaller than the alpha = 0.05 threshold indicated by the dotted line. The middle panel displays the 10 leave-one-out associations in
addition to the real correlation, yielding a significant correlation in 7 of 10 analyses as indicated by the asterisks. The right panel displays all correlations between

ipsilateral functional network centrality values (n = 36 regions) and TDL of the resected area. The reported positive association (with the resected region) in pink as
well as the negative correlation between paracentral centrality and TDL are significant. In (C), a scatter plot of the significantly positive correlation between AP rise
speed (first) and fMRI centrality is shown. In (D), the analyses of the robustness of these results are displayed in the same manner as in (B).
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Figure 4. Significant pairwise association between cellular properties and functional network centrality after correction for multiple comparisons. (A) Displays a scatter
plot of the significantly positive correlation between AP rise speed (first) and multilayer centrality, which is the only pairwise association significant after Bonferroni
correction for multiple comparisons. The dark blue diamond in the plot represents a single patient, who has low centrality and slow APs (schematically depicted
in the middle panel), whereas the light blue diamond represents a patient with high centrality and fast APs (right panel). In (B), the analyses of the robustness of

these results are displayed. The left panel shows the distribution of permuted correlations (10 000 permutations), with the actual (pink) association being smaller than
the alpha = 0.05 threshold indicated by the dotted line. The middle panel displays the seven leave-one-out associations in addition to the real correlation, yielding a
significant correlation in all analyses as indicated by the asterisks. The right panel displays all correlations between ipsilateral network centrality values (n = 36 regions)
and AP rise speed (first) of the resected area. The reported positive association (with the resected region) in pink is the only significant correlation.

the mixed samples, only multilayer network centrality and AP
rise speed (first) were significantly correlated in this complete
dataset, indicating that patient selection differences between
the above described subsamples did not confound the reported
pairwise correlations.

Post Hoc Analyses

In order to explore whether our main finding of a positive
correlation between functional network centrality and cellular
integrative properties held up across different network mea-
sures, the Brainnetome atlas (BNA; Fan et al. 2016), and MEG
frequency bands, post hoc analyses were performed, the details
of which can be found in the Supplementary Materials.

In order to interpret this large number of additional analyses,
we here focused on those associations with a medium to large
effect (rho > 0.4). As can be seen in Supplementary Figure 1,
fMRI degree centrality revealed similar positive associations
with cellular properties that we found for eigenvector centrality
across the two atlases. Significant was the positive correlation
between BNA fMRI degree centrality and rise speed of the first

AP (rho = 0.642, P = 0.010). MEG theta band degree centrality was
also positively associated with cellular properties when using
the AAL atlas, significantly so for TDL (rho = 0.677, P = 0.016), but
not for the BNA atlas.

The clustering coefficient yielded mostly negative correla-
tions with cellular properties, as could be expected, revealing
a significant negative correlation between BNA fMRI clustering
coefficient and TDL (rho = −0.673, P = 0.039).

Eigenvector centrality based on the BNA atlas yielded
only small (rho < 0.4) associations with cellular properties,
for both fMRI and MEG networks, whereas BNA multilayer
eigenvector centrality did yield medium positive associations
(0.4 < rho < 0.6) with cellular properties. Analysis of eigenvector
centrality in the additional MEG frequency bands revealed
several medium positive correlations (0.4 < rho < 0.6) with
cellular characteristics.

Discussion
We report on a unique cohort of TLE patients with data spanning
multiple scales of investigation, in order to explore the cellular

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab349#supplementary-data
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substrates of cognitively relevant functional network integration
of a DMN region. As expected (McCormick et al. 2014; Voets
et al. 2014; Douw et al. 2015), greater functional network inte-
gration of the lateral middle temporal gyrus related to better
memory functioning in these patients. Moreover, greater net-
work centrality of this brain region correlated with signs of
greater cellular integration: Patients with longer dendrites and
faster APs also displayed more integrative functional network
profiles.

Our findings signify that brain organization in terms of inte-
grative propensity is preserved across scales of measurement in
TLE patients. Functional network centrality of the investigated
DMN region correlated with neuronal morphology in terms of
TDL of its constituent neurons. In previous work, we showed that
pyramidal neurons of patients with higher intelligence in the
related cohort had larger, more complex dendrites (Goriounova
et al. 2018). Larger dendrites would enable neurons to have more
synaptic contacts, putatively playing a more important integra-
tive role than neurons with smaller dendrites (Poirazi et al. 2003;
Eyal et al. 2014). Greater dendritic length and axonal density of
neurons at particular locations have previously been linked to
structural network integration as measured with diffusion MRI:
more integratively connected network regions tended to have
bigger neurons with more axons, whereas locally connected
network regions were made up of smaller neurons that were
connected with lower axonal density (Scholtens et al. 2014;
Kiljan et al. 2019). The current results suggest that functional
network integration also mirrors more integrative neuronal mor-
phology, at least in the lateral middle temporal gyrus as part of
the DMN.

Functional network centrality also related to AP kinetics:
more integrative functional network topology related to faster
AP rise speeds. We previously found that patients with higher
intelligence had faster APs during high frequency activity, in
addition to the abovementioned longer TDLs (Goriounova et
al. 2018). Of note, larger dendrites also directly influence the
speed of AP initiation, putatively offering more integrative power
(Eyal et al. 2014; Testa-Silva et al. 2014; Goriounova et al. 2018).
Our current results put these local indicators of integration
into a cross-scale network perspective, as we report on asso-
ciations with functional network centrality. Our findings sup-
port a scale-free view on these type of brain properties, such
that within-region cellular integrative properties are reflected
by between-region functional network integration, which is of
particular relevance towards understanding (cognitive deficits
in) TLE. Based on our current findings, one may hypothesize
network centrality of the DMN is a mediator between cellu-
lar properties and memory functioning. Future studies with
larger sample sizes may further elucidate whether this is indeed
the case.

Of note, the functional network correlates of local AP kinet-
ics became particularly evident when taking both functional
modalities (fMRI and MEG) into account through multilayer
network analysis. This finding suggests that multimodal func-
tional centrality may capture cellular brain properties better
than either of the two modalities alone, which would be in
line with other multilayer brain network studies (Battiston et
al. 2017; De Domenico 2017). It should, however, be noted that
the lack of robust significance for unilayer network centrali-
ties as well as the significance of multilayer network central-
ity may reflect limited statistical power in small subsamples.
Although it is reassuring that all centralities (unilayer and mul-
tilayer) show the same positive association with TDL and AP

rise speed, it should be noted that particularly the multilayer
analysis sample was small (n = 7) and results may not generalize
robustly.

Two tests of memory functioning were explored: the verbal
memory index of the WMS (Wechsler 2009) and the RAVLT
(van der Elst et al. 2005). Although the WMS did not show any
significant correlations in this study, the RAVLT delayed recall
did. There are both differences and similarities between these
tests: They both measure verbal memory encoding, although
one is focused on simpler list learning (RAVLT) and the other
on learning word pairs (WMS). Previous work in healthy sub-
jects suggests that scores on these two types of tests are only
moderately intercorrelated (Wechsler 2009; Miller et al. 2012;
Thiruselvam et al. 2015), possibly due to the generally free-recall
format of the RAVLT, with potentially richer learning occurring
in the WMS due to the feedback that is given after each trial.
Future work should address the specificity of our results for
these different types of verbal memory.

Based on our findings, richer hypotheses may be formu-
lated on the relationships between local cellular organization
and functionality on the one hand, and large-scale network
topology on the other hand in TLE. Next steps may include
investigation of cellular and network properties of pathologi-
cal brain regions in addition to the non-pathological area of
the DMN assessed in this study. This would bridge the gap
between focal TLE pathology and its widespread cross-scale
effects on the brain, ultimately pertaining to cognitive impair-
ment. Such studies are of particular interest, since our current
finding of cross-scale preservation of integrative propensity in
a non-pathological brain region may not necessarily be specific
to TLE: Previous work in macaques and postmortem donors also
report on such correlations (Scholtens et al. 2014; Kiljan et al.
2019; Jonkman et al. 2020), raising the question whether cross-
scale integration is a basic organizational principle conserved
across species to begin with. By also involving focal pathological
cellular properties (and their large-scale network counterparts),
disease-specific processes may be disentangled from such fun-
damental principles, ultimately leading to a more comprehen-
sive framework on the development of cognitive complaints
in TLE. Such a framework could contribute to the formulation
of new treatment targets for the cognitive impairments that
many patients suffer from. For instance, neurostimulation to
remaining parts of the DMN may induce cellular and func-
tional network changes that go hand in hand with cognitive
improvement (Meisenhelter and Jobst 2018).

Several limitations of this study should be noted. First and
foremost, the unique nature of this multi-scale dataset meant
that only a small sample was available, also precluding sub-
group analysis or exploration of confounders that might have
affected the current results, for example, lateralization of the
epileptogenic zone, sex, and age. It was also impossible to use a
control group for this analysis: Healthy individuals can obviously
not be subjected to the cellular measurements we report on.
Also, although resting-state data was available for MEG, we used
pseudo resting-state fMRI data, which may have induced devia-
tions from previous works. However, interindividual differences
in functional network topology, which were our focus, are sev-
eral orders of magnitude larger than task versus rest differences
within individuals (Gratton et al. 2018). Taken together with
the fact that we found positive associations between centrality
and cellular integrative measures for both fMRI and MEG, it is
unlikely that task performance during fMRI impacted our main
findings, but future studies may detail the way in which network
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connectivity during task performance relates to both resting-
state connectivity and cellular properties and memory function-
ing in these patients. Another limitation is the spatial resolu-
tion of matching between the cellular and functional network
analyses: Although certainty about the location of origin of the
resected tissue was in the order of millimeters, the atlas region
used to reflect the tissue location spans several centimeters. We
chose this atlas as it has been used successfully by our group
in previous studies with comparable patient populations and
thus has proven cognitive and cellular relevance (van Dellen
et al. 2012, 2014; Carbo et al. 2017), but future studies may
aim to match tissue locations with increased spatial accuracy.
Furthermore, in post hoc analyses, we confirmed the positive
association between fMRI and multilayer (degree and/or eigen-
vector) centrality and cellular properties when using the BNA
with more and functionally defined parcels, but could not repli-
cate these same associations for MEG centrality alone. These
findings could be due to the intrinsically lower resolution of
MEG, as it is estimated based on adaptive parcellation that no
more than ∼70 cortical parcels capture the MEG connectome
(Farahibozorg et al. 2018). As such, the centroid voxel of the BNA
region at the tissue location may have been less representative
of the more widespread source of the MEG signals in this area.
As for MEG frequency bands, we focused on the theta band due
to previously reported associations with memory functioning
in these patients (van Dellen et al. 2009; Douw et al. 2010; Jin
and Chung 2015), although other frequency bands may also
relate to memory functioning. In our post hoc analyses, we
also found several non-significant but medium positive associ-
ations between centrality and cellular properties in the alpha
and broadband frequencies. Future studies may further explore
how exactly the different frequency bands relate to cellular
properties.

In conclusion, we show that individual differences in func-
tional network integration of a DMN region relate to cellu-
lar morphology and AP kinetics. These results underline the
translational nature of individual differences in brain prop-
erties between TLE patients, which has clinical relevance in
terms of memory functioning. Ultimately, such “microstructure-
informed connectomics” (Larivière et al. 2019) may lead the way
towards better understanding and treatment of neurological
disease in general, and memory functioning in TLE patients
specifically.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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