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During atrial fibrillation (AF), the heart relies heavily on the atrio-ventricular (AV) node

to regulate the heart rate. Thus, characterization of AV-nodal properties may provide

valuable information for patient monitoring and prediction of rate control drug effects. In

this work we present a network model consisting of the AV node, the bundle of His, and

the Purkinje fibers, together with an associated workflow, for robust estimation of the

model parameters from ECG. The model consists of two pathways, referred to as the

slow and the fast pathway, interconnected at one end. Both pathways are composed of

interacting nodes, with separate refractory periods and conduction delays determined by

the stimulation history of each node. Together with this model, a fitness function based

on the Poincaré plot accounting for dynamics in RR interval series and a problem specific

genetic algorithm, are also presented. The robustness of the parameter estimates is

evaluated using simulated data, based on clinical measurements from five AF patients.

Results show that the proposed model and workflow could estimate the slow pathway

parameters for the refractory period, RSPmin and 1RSP, with an error (mean ± std) of

10.3 ± 22 and −12.6 ± 26 ms, respectively, and the parameters for the conduction

delay, DSPmin,tot and 1DSPtot , with an error of 7 ± 35 and 4 ± 36 ms. Corresponding results

for the fast pathwaywere 31.7± 65,−0.3± 77, 17± 29, and 43± 109ms. These results

suggest that both conduction delay and refractory period can be robustly estimated

from non-invasive data with the proposed methodology. Furthermore, as an application

example, the methodology was used to analyze ECG data from one patient at baseline

and during treatment with Diltiazem, illustrating its potential to assess the effect of rate

control drugs.

Keywords: atrial fibrillation, atrioventricular node, rate control, mathematical modeling, genetic algorithm, ECG,

cardiac electrophysiology

1. INTRODUCTION

Atrial fibrillation (AF) is the most widespread sustained cardiac arrhythmia with an estimated
prevalence of 2–4% in the adult population (Benjamin et al., 2019). During AF, the electrical
activity in the atria is highly disorganized, leading to a rapid and irregular ventricular rhythm. In
order to reduce these effects, rate control drugs constitute one of the primary therapeutic options
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(Hindricks et al., 2020). These drugs are not designed to
terminate AF, but rather to lower the heart rate. They do this
by modulating the conduction through the AV node, preventing
some electrical signals emanating from the atria from being
transmitted to the ventricles, thereby reducing the ventricular
activation rate. Thus, rate control is often sufficient to improve
AF-related symptoms (Hindricks et al., 2020). The choice of
first-line rate control drugs can vary between beta-blockers and
non-dihydropyridine calcium channel blockers, with digoxin as a
second-line option (Hindricks et al., 2020). However, the current
method of finding the best treatment for a given patient is
largely based on trial and error (Hindricks et al., 2020). Thus,
patient specific characterization of AV node properties would be
beneficial to achieve optimal rate control.

Functionally, the AV node consists of two pathways,
connected to each other before entering the bundle of His
(Kurian et al., 2010). The two pathways are referred to as the slow
pathway (SP) and the fast pathway (FP), where the FP conducts
impulses faster than SP but has a longer refractory period.
During sinus rhythm, the impulses are typically conducted
through the FP due to its faster conduction rate. During AF,
however, conduction may alternate between SP and FP as a
result of the rapid arrival of atrial impulses. This, together with
concealed conduction, i.e., impulses inside the AV node that do
not lead to ventricular activation but still affect the conduction
characteristics of following impulses, gives rise to the complex
blocking and delay behavior the AV node has been shown
to possess.

In order to understand this blocking and delay behavior,
mathematical modeling has become an increasingly important
tool. Several models of the AV node and its function during AF
have previously been proposed, including various descriptions
of the conduction delay (Jørgensen et al., 2002; Mangin et al.,
2005; Climent et al., 2011) and the refractory period (Rashidi
and Khodarahmi, 2005). A model for simulating the ventricular
activation capable of replicating both conduction delay and
refractory period during AF was proposed by Lian et al. (2006).
Another model capable of replicating both conduction delay
and refractory period, based on the action potential of the AV
node cells and modeled by ordinary differential equations, was
proposed by Inada et al. (2009).

However, none of these models were developed with the
purpose of ECG based estimation of AV node parameters on
a patient specific basis. The models presented in Rashidi and
Khodarahmi (2005) and Lian et al. (2006) did not fit parameter
values to data, the models presented in Climent et al. (2011) and
Inada et al. (2009) were fitted to data from rabbits. The models
presented in Jørgensen et al. (2002) and Mangin et al. (2005)
were fitted to AF patients, but invasive data was required. To
make a model useful in a clinical setting, it should ideally allow
for fitting to non-invasive data such as surface electrocardiogram
(ECG). A statistical model developed for estimation of AV node
parameters from ECG data during AF was first presented in
Corino et al. (2011). This model has later been updated and
proven to replicate patient specific histograms of the time series
between two successive R waves on the ECG (RR interval series)
extracted from ECG data, as well as to assess the effect of rate

control drugs on the AV node (Henriksson et al., 2015). It
is a lumped model structure that still accounts for concealed
conduction, relative refractoriness, and dual pathways. However,
it lumps conduction delay and refractory period together, making
the estimated model parameters difficult to interpret.

In this work we present a network model of the AV
node, able to estimate patient specific conduction delay and
refractory period from ECG, building on previous work
presented in Wallman and Sandberg (2018). The model consists
of interconnected nodes forming two pathways, providing a
balance between complexity and computational efficiency, and
represents both spatial and temporal dynamics of the AV-node.
With novel additions to the model structure by including effects
from the bundle of His and Purkinje fibers, as well as a tailored
workflow taking advantage of dynamics in the data, the model
allows for estimation of parameters governing both refractory
period and conduction delay in a robust manner from non-
invasive data during AF. The ultimate aim of this work is to
monitor and predict the outcome of treatment with rate control
drugs in clinical settings to assist in treatment selection. In order
to do this, a robust characterization of the AV node is needed, and
thus the purpose of this study is to: (1) Describe and motivate
the model; (2) Present a tailored workflow for estimation of
parameters; (3) Demonstrate that presented combination of
model and workflow leads to robust parameter estimates that
mimic measured data well.

2. MATERIALS AND METHODS

The model of the AV node will be explained in section 2.1,
followed by a description of the data used to evaluate said model
in sections 2.2 and 2.3. In section 2.4, the methodology for
model parameter estimation is explained; which combined with
the optimization algorithm described in section 2.5 constitutes
the workflow.

2.1. Network Model of the Human AV Node
The model of the AV node, shown in Figure 1, consists of
a network of nodes and is based on the model presented in
Wallman and Sandberg (2018). The model consists of two
pathways, representing the SP and the FP, connected with a
coupling node. Each pathway is modeled with 10 nodes, where
each node corresponds to a localized part of the AV node.
Each node can block incoming impulses or send them through
adding a conduction delay. All nodes but the coupling node
sends impulses to all other nodes connected to it, whereas the
coupling node only receives impulses. A new refractory period
[Ri(n)] and conduction delay [Di(n)] are calculated every time
a node (i) receives a new impulse (n). The refractory period and
conduction delay are based on the stimulation history of the node
and are described using exponential functions. These exponential
functions have previously been used to fit AV node characteristics
(Shrier et al., 1987; Lian et al., 2006; Wallman and Sandberg,
2018), and can be seen in Equations (1–3).

Ri(n) = Rmin + 1R(1− e−t̃i(n)/τR ) (1)
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FIGURE 1 | A schematic representation of the proposed model. The arrow indicates the direction an impulse can conduct, and the colors represent nodes with the

same parameter sets. For simplicity, only a subset of the ten nodes in each pathway are showed.

Di(n) = Dmin + 1De−t̃i(n)/τD (2)

t̃i(n) = ti(n)− ti(n− 1)− Ri(n− 1) (3)

Here t̃i(n) refers to diastolic interval preceding impulse n, ti(n)
the arrival time of impulse n at node i, and ti(n−1) and Ri(n−1)
the arrival time and refractory period of impulse n − 1 at node
i, respectively. If t̃i(n) is negative, the node will still be in its
refractory period and thus the impulse will be blocked. The
model parameters defining minimum refractory period, Rmin;
maximum prolongation of refractory period, 1R; time constant
τR; minimum conduction delay,Dmin; maximum prolongation of
conduction delay, 1D; and the time constant τD, are assumed to
be fixed for the nodes in the SP and FP, respectively.

The coupling node models the total refractoriness and
conduction delay introduced by the connection between the AV
node and the bundle of His, the Purkinje fibers, and the bundle
of His. This node has a separate set of parameters, representing
separate functional properties, and will be denoted the His and
Purkinje (HP) node. The refractory period for the Purkinje fibers
is assumed to not affect the ventricular activation during AF.
Thus, the whole refractory period for the HP node is determined
by the bundle of His. However, the conduction delay for the HP
node is viewed as the time it takes an impulse to travel from the
start of the bundle of His to the end of the Purkinje fibers. The
conduction delay from the start of the bundle of His until the end
of the Purkinje fibers has clinically been showed to have a mean
of 60 ms with a standard deviation of 10 ms for patients suffering
from AF (Deshmukh et al., 2000). Thus, the conduction delay for
the HP node is fixed at 60 ms. The HP node’s refractory period is
estimated by the mean of the ten shortest RR intervals, RRmin.

This results in 12 free parameters for the proposed
model, denoted as a parameter vector θ = [RFPmin, 1RFP,
τFPR , RSPmin, 1RSP, τ SPR , DFP

min, 1DFP, τFPD , DSP
min, 1DSP, τ SPD ]. It

is assumed that the first node of each pathway is simultaneously
stimulated for incoming impulses from the atria. The model
can then be used to produce a RR interval series with minimal
computational demands using a modified version of Dijkstra’s
algorithm (Wallman and Sandberg, 2018). A link to the code for
the model together with a basic user example can be found at

section 5. The total minimum conduction delay and maximum
prolongation, defined as DFP

min,tot = NnD
FP
min; 1DFP

tot = Nn1DFP;

DSP
min,tot = NnD

SP
min; 1DSP

tot = Nn1DSP; where Nn = 10
are the number of nodes in each pathway, are introduced for
convenience of presentation.

2.2. ECG Data
This study was based on ambulatory ECG data from the RATe
control in Atrial Fibrillation (RATAF) study, which is approved
by the regional ethics committee and the Norwegian medicines
agency and was conducted in accordance with the Helsinki
Declaration (Ulimoen et al., 2013). The RATAF study contains
24-h Holter recordings of 60 patients under baseline and during
treatment with four different rate reducing drugs. All patients had
permanent AF, no heart failure or symptomatic ischemic heart
disease, an age of 71 ± 9 (mean ± std), and 70% were men. To
evaluate the presented model, we selected 15 min ECG segments,
one for each of five patients, obtained under baseline conditions
between 1:00 and 3:00 pm. These five patients were selected to
be representative for the whole data set, with varying RR interval
series characteristics and an average heart rate ranging between
63 and 140 bpm. In addition, corresponding ECG data obtained
during treatment with Diltiazem was also used for one of the
five patients.

The RR interval series were extracted from the ECG signals
by first detecting the R peaks, before removing RR intervals
preceding and following ectopic beats identified based on
heartbeat morphology (Lagerholm et al., 2000). Along with this,
the mean arrival rate of the atrium-to-atrium (AA) intervals
was estimated from the f-waves in the ECG by first extracting
the atrial activity from the ECG using spatiotemporal QRST
cancellation (Stridh and Sornmo, 2001), before tracking the atrial
fibrillatory rate (AFR) using a method based on a hiddenMarkov
model (Sandberg et al., 2008). Finally, correction of the atrial
fibrillatory rate by taking the atrial depolarization time into
account was used to obtain an estimate of the arrival rate. Here,
we denote the true mean arrival rate λ, and the estimated mean
arrival rate λ̂. One value of λ̂ was obtained for each ECG segment
(Corino et al., 2013).
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TABLE 1 | Characteristics of the data extracted from ECG and the simulated data, respectively, for all five patients.

Parameter Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

MEASURED DATA

Average HR (ms) 76.4 62.7 90.6 111.9 139.9

λ̂ (Hz) 8.45 9.13 6.73 9.03 10.04

SIMULATED DATA

Average HR (bpm) 75.3 62.3 93.1 110.5 139.5

λ (Hz) 8.45 9.13 6.73 9.03 10.04

SP ratio (%) 54 60 85 77 92

RFPmin (ms) 210 390 379 465 378

1RFP (ms) 516 475 594 1.47 383

τ FPR (ms) 168 217 222 113 145

RSPmin (ms) 205 313 280 257 287

1RSP (ms) 469 422 233 0.00 103

τSPR (ms) 220 40 204 172 227

DFP
min (ms) 4.77 1.13 1.44 9.05 6.43

1DFP (ms) 11.2 20.6 16.0 20.3 34.4

τ FPD (ms) 155 237 40.0 40.0 145

DSP
min (ms) 21.1 25.4 21.7 16.0 20.2

1DSP (ms) 51.9 15.1 4.62 3.74 2.47

τSPD (ms) 89.9 232 166 91.1 165

2.3. Simulated Data
Simulated data were created by fitting the model to the RR
interval series from the five patients, cf. section 2.5, and using the
resulting estimated model parameters to simulate an RR interval
series of 20 min. The sequence of atrial impulses arriving to the
AV node, and thus the input to the model, were simulated using
a Poisson process with the mean arrival rate set to the value of λ̂

estimated for each patient (Corino et al., 2011; Henriksson et al.,
2015). The parameter values used for the simulated data, along
with average heart rate of the simulated RR interval series, are
summarized in Table 1.

2.4. Model Parameter Estimation
To evaluate howwell themodelmatches the extracted RR interval
series, a fitness function comparing the model output to the
RR interval series is used. In order to take the dynamics of the
RR interval series into account, the Poincaré plot is used as a
basis for the fitness function. The Poincaré plot is a scatter plot
of successive pairs of RR intervals. To use the Poincaré plot
as a fitness function, the RR interval series is binned into two
dimensional bins centered between 250 and 1,800 ms in steps of
50 ms, resulting inN = 961 bins. The error function is computed
according to Equation (4).

ǫ = 1

N

N
∑

i=1

(

(xi − x̃i)
2/

√

x̃i

)

(4)

Here ǫ is the error value, and x̃i and xi the number of RR
intervals, in the i-th bin, of the measured data and model
output, respectively. The normalization by

√
x̃i is introduced to

avoid bins with a large number of data points to dominate the
optimization. The square root is used as a trade-off between
no normalization, making the bins with a large number of data
points dominate, and normalization with the wholemeasured bin
counts, making the accuracy of every bin have the same weight
regardless of how much of the data are in that bin. A schematic
representation of the parameter estimation process can be seen
in Figure 2.

2.5. Genetic Algorithm
An initial study of how ǫ varies with varying model parameter
values revealed a highly chaotic structure with a large
number of local minima. This prompted us to minimize ǫ

using a genetic algorithm (GA). A brief description of the
algorithm is given below, with more detailed information in
the Supplementary Section 1. Due to the high dimensional
parameter space and the risk of premature convergence early
in the optimization, a variant of an island model was used
(Wahde, 2008). A schematic representation of the GA is shown
in Figure 3. As visible in the figure, the full GA can be divided
into two sections. The first section consists of five separate GA.
This was implemented by restarting the algorithm five times
with 300 individuals in each generation. The individuals in each
starting run were initialized using a latin hypercube sampling
in the ranges: {RSPmin,R

FP
min} ∈ [250, 600] ms; {1RSP,1RFP} ∈

[0, 600] ms, {τ SPR , τFPR } ∈ [50, 300] ms; {DSP
min,D

FP
min} ∈ [0, 30] ms;

{1DSP,1DFP} ∈ [0, 75] ms; {τ SPD , τFPD } ∈ [50, 300] ms. These
starting runs last for six generations, and after each run the
best 150 of the individuals are saved and used in the second
section, the main GA. Thus, the main GA uses a population
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FIGURE 2 | A block diagram of the AV node model parameter estimation workflow, starting with a measured ECG signal and ending with estimated parameters.

FIGURE 3 | A schematic representation of the genetic algorithm. Circles represent stages of the algorithm with constant number of individuals and LRR. Numbers in

circles correspond to the number of iterations before proceeding to the next stage. The last stage is always used, even if the GA terminates early.

of 750 individuals in each generation. For both the starting
runs and the main GA, the 2.5% fittest individuals in each
generation survives into the next generation unchanged, whereas
the remaining individuals are created via tournament selection,
two-point crossover, and creepmutation (Wahde, 2008). In order
to avoid premature convergence, both incest prevention in the
form of mating restriction between too similar individuals during
crossover, and a varyingmutation rate depending on the diversity
of the individuals in each generation were implemented (Wahde,
2008). This process of selection, crossover, and mutation is then
continued until termination. The termination of the starting
runs always occurs after six generations. The termination for
the main GA occurs either when ǫ for the fittest individual
in each generation does not change for three generations, or
when 15 generations have been run. The fittest individual for the

k-th generation, ǫ̂k, is deemed to have changed if the difference

between ǫ̂(k) and ǫ̂(k− 2), seen in Equation (5), is lower than 25.

ǫ̂(k) = ǫ̂k + ǫ̂k−1 + ǫ̂k−2

3
(5)

As described in section 2.3, a Poisson process with mean arrival
rate λ̂ was used as input to the model, and due to the stochastic
nature of the Poisson process, ǫ varies between realizations. The
magnitude of this variation was analyzed by finding a parameter
set replicating the extracted RR interval series from patient 3
well, before simulating that parameter set with different lengths
of the resulting RR interval series, LRR, as seen in Figure 4, left
panel. Each LRR was simulated 1,000 times. Moreover, six more
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FIGURE 4 | Estimated distribution of ǫ as a function of LRR (left). Variance of ǫ divided by mean of ǫ as a function of the mean of ǫ (right).

parameter sets with increasing ǫ were also simulated 1,000 times
with the same LRR, as seen in Figure 4, right panel.

The ǫ variation is decreasing with larger LRR, however, the
running time for the model is linearly increasing with LRR, and
thus shorter outputs are preferable. The variation of ǫ is not as
important early in the optimization since the variation relative
ǫ is smaller for larger ǫ, see Figure 4, right panel. However,
after several generations most of the ǫ for individuals found
by the GA are low, and thus the variability in ǫ has a larger
impact on the algorithm. Therefore, LRR is increased throughout
the optimization.

As seen in Figure 3, the LRR for all generations in the
starting runs were 1,000 impulses. For the main GA, the first
five generations used a LRR of 3,000 impulses, the following
five generations a LRR of 5,000 impulses, followed by three
generations with length of 7,500 impulses, before ending with two
10,000 impulses long generations. To obtain a robust estimate

of ǫ̂(k), the individual with the best fit in each generation is
evaluated again with a LRR of 10,000. After termination for the
main GA, the 15 fittest individuals were tested again, with a LRR
of 50,000; this in order to select the fittest individual with a low
variation in ǫ.

3. RESULTS

The RR interval series extracted from the ECG along with the
simulated data, cf. sections 2.2 and 2.3, are used to evaluate the
proposed methodology. In section 3.1, the proposed approach
for optimization is compared to using only the main GA
with fixed LRR. The robustness and precision of the parameter
estimation are evaluated using simulated data in section 3.2.
Further, the robustness of the estimates is set in perspective
by using the model to estimate AV node characteristics for
one of the patients during both baseline and under influence
of the calcium channel blocker drug Diltiazem. In section 3.3,

the proposed model is compared to the model presented in
Wallman and Sandberg (2018).

3.1. Genetic Algorithm
The effect of using an island based start together with varying
LRR was evaluated by comparing it to using only the main GA, as
described in section 2.5, with LRR fixed at 5,000. The initialization
for this fixed GA was the same as for the starting runs, a latin
hypercube sampling in the same ranges, and the population size
was again 750. Performances of the two methods were evaluated
by comparing the error value of the fittest individual for each
generation, ǫ̂k with the cumulative LRR used for the evaluations,
i.e., the accumulated total number of impulses in each generation.
For the different starting runs, all runs were computed in parallel
so that ǫ̂k during this stage is the lowest value out of all the
five starting runs. The average results from comparing the two
versions of the GA on all five patients, each 100 times, are
shown in Figure 5. From this it is possible to see that a lower
ǫ̂k, and thus a better fit to the RR interval series, can be found
in less computational time using the proposed methodology.
For reference, estimating the parameters for one patient using a
single core on a standard desktop computer (Intel R© CoreTM i7-
6600U Processor, @ 2.60GHz) requires on average 20 min, with
variations due to the different terminating requirements for the
GA. It is also possible to see that the termination criteria for a
maximum number of generations stated in section 2.5 is typically
achieved after the GA has converged.

3.2. Parameter Estimation Robustness
Simulated RR interval series were used to evaluate the robustness
of the model parameter estimates. The results from optimizing
the model 200 times for the five simulated RR interval series
can be seen in Table 2, where the mean and standard deviation
for each of the 12 estimated parameters, for each of the five
patients, are listed. Moreover, the mean error, defined as the
difference between the mean value of the estimated parameter
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FIGURE 5 | (solid line) Mean normalized ǫ̂k of 100 optimizations of the five set

of patient data as a function of cumulative LRR for (blue) the island start

optimization with varying LRR and (orange) only the main GA with a fix LRR at

5,000. The shaded background represents one standard deviation. Here, ǫ̂k is

normalized with the best ǫ found for each patient, to account for the fact that

the model can not fit each RR interval series equally well.

and the ground truth, averaged over the five patients, are also
listed. Furthermore, the mean and standard deviation of the error
normalized with respect to the parameter ranges, cf. section 2.5,
are presented. From the SP ratio it is evident that the SP is
used more for transmission, and from the normalized error, it
is evident that the parameters associated with the SP are more
robustly estimated. The histogram and Poincaré plots for the five
simulated patients with the transmission pathway for each RR
interval marked out can be seen in Supplementary Section 3,
together with the simulated histograms showing the effect of
changes to λ.

To set the robustness in perspective, the AV nodal properties
were estimated 200 times for a single patient during baseline
and under the influence of the non-dihydropyridine calcium
channel blocker rate control drug Diltiazem. The results, shown
in Figure 6, indicate that the uncertainty in the parameter
estimation is sufficiently low in order to reveal the drug effect.

3.3. Model Comparison
To evaluate the ability of the model and proposed workflow to
represent AF data and to have a frame of reference, the proposed
model is compared with the model presented in Wallman and
Sandberg (2018); henceforth denoted the reference model. Both
models were fitted to the RR interval series from one example
patient, and the properties of the resulting simulated RR interval
series are shown in the form of histograms, Poincaré plots,
and autocorrelations, as seen in Figure 7. For both models,
the optimizer was run until no change in error value for the
fittest individual during ten generations occurred, to assure
convergence. Both models used the optimizer described in
section 2.5, but the reference model uses a fitness function based

on the histogram (Wallman and Sandberg, 2018). It is clear from
both the Poincaré plots and the autocorrelation plots that the
proposed model can better replicate the dynamics of the RR
interval series. The fit to the Poincaré plot can be quantified
by the resulting ǫ, which for the proposed model was 1,360,
compared to 6,740 for the reference model. Similarly, the value
for the first lag autocorrelation was −0.07 for the proposed
model and 0.52 for the reference, compared to the ground
truth at−0.07.

4. DISCUSSION

In this study, a mathematical model of the AV node, bundle of
His, and Purkinje network has been presented together with a
fitness function accounting for RR interval dynamics and genetic
algorithm tailored to the model. The model and workflow have
been evaluated with respect to robustness, accuracy, and ability
to represent data, using both measured and simulated data.

Ten nodes in each pathway were used as a trade-off between
detail and computation time. A small number of nodes can make
the conduction delay larger than the refractory period, allowing
impulses to bounce back and forth, whereas a large number of
nodes leads to a higher computational demand. The inclusion
of a last node in the model as functionally distinct from the
SP and FP has previously been used in other models of the
AV node (Inada et al., 2009). The incorporation of separate
conduction properties for the connecting node introduced
both new refractory period and conduction delay parameters.
However, literature data suggests that inter-patient variability
in conduction time over the bundle of His and the Purkinje
network is around 10 ms (Deshmukh et al., 2000), indicating
that the parameters representing the conduction delay could
be reasonably approximated by a constant value. Furthermore,
an initial study was conducted in which the refractory period
of the HP node was represented by Equation (1), with three
free parameters. This study showed that the parameter values
representing the refractory period in the HP node found after
optimization matched a constant value of RRmin, independent of
t̃i(n), well; indicating a good approximation (data not shown).
For more details about the parameter values of the HP node
during the optimizations, see Supplementary Section 2.

Reducing the number of free parameters reduces the
parameter space in which the GA operates, and in turn decreases
the running time as well as increases the robustness for the
optimization. The parameters for the HP node were especially
advantageous to fix or estimate directly from data. This was partly
because the clinical data and analysis of the optimization made
it possible, and partly because the most interesting information
regarding the AV node is contained in the parameters governing
SP and FP. Thus, setting the parameters corresponding to the
bundle of His and Purkinje fibers to fixed values enhanced the
ability of our method to estimate AV node properties.

The optimizer in this work utilized the fact that the model
could be used with varying speed and precision by changing
the output length, with higher speed and lower precision at
the start and shifting it during the optimization. This change
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TABLE 2 | The mean parameter values ± standard deviation of 200 optimizations for the five simulated data sets, together with the mean error ± mean standard

deviation for each parameter.

Parameter Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Error Normalized error (%)

RFPmin (ms) 311 ± 104 394 ± 53 430 ± 49 424 ± 45 419 ± 72 31.7 ± 65 7.9 ± 16

1RFP (ms) 436 ± 74 495 ± 57 479 ± 55 164 ± 131 393 ± 69 -0.3 ± 77 -0.1 ± 12

τ FPR (ms) 184 ± 38 211 ± 35 168 ± 39 183 ± 63 167 ± 53 9.4 ± 45 3.6 ± 17

RSPmin (ms) 225 ± 17 369 ± 71 271 ± 11 247 ± 8 281 ± 5 10.3 ± 22 2.6 ± 6

1RSP (ms) 430 ± 26 358 ± 60 247 ± 14 28 ± 20 101 ± 4 -12.6 ± 26 -1.9 ± 4

τSPR (ms) 201 ± 29 56 ± 10 216 ± 26 204 ± 55 198 ± 41 2.2 ± 32 0.8 ± 12

DFP
min,tot (ms) 65 ± 31 36 ± 22 53 ± 21 69 ± 39 92 ± 38 17 ± 29 5.7 ± 10

1DFP
tot (ms) 188 ± 92 273 ± 9.6 193 ± 95 248 ± 119 336 ± 145 43 ± 109 5.7 ± 15

τ FPD (ms) 132 ± 48 150 ± 43 133 ± 47 135 ± 47 154 ± 47 17 ± 46 7.1 ± 19

DSP
min,tot (ms) 184 ± 36 245 ± 25 246 ± 23 197 ± 47 209 ± 43 7 ± 35 2.5 ± 12

1DSP
tot (ms) 395 ± 73 214 ± 45 88 ± 19 66 ± 31 35 ± 11 4 ± 36 0.5 ± 5

τSPD (ms) 173 ± 33 187 ± 42 167 ± 39 179 ± 55 183 ± 47 29 ± 43 12 ± 18

Average HR (bpm) 75.3 ± 0.7 62.6 ± 0.5 93.6 ± 0.7 110.9 ± 1 139.2 ± 1 0.2 ± 0.8 -

SP ratio (%) 54 60 85 77 92 - -

The normalized error ± standard deviation as well as the ratio of impulses passing through the SP are also presented.

FIGURE 6 | The mean ± one standard deviation, indicated by the shaded background, of the estimate refractory period and conduction delay from Equation (1) and

(2), after 200 runs, are plotted for both baseline (blue) and Diltiazem (orange).

in output length also made it possible to run a broad search
of the parameter space fast at the start of the optimization by
restarting it several times; reducing the risk that a parameter set
producing a good fit to the RR interval series was missed. This
led to finding parameter sets matching the data faster, as shown

in Figure 5. With a computing time of 20 min on a standard
desktop computer in order to estimate the parameters, it possible
to utilize the model without the use of any cloud computing or
supercomputer, making it suitable for routine off-line analysis of
Holter recordings.

Frontiers in Physiology | www.frontiersin.org 8 October 2021 | Volume 12 | Article 728955

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Karlsson et al. Non-invasive AV Node Characterization in AF

FIGURE 7 | Histogram, Poincaré plot, and autocorrelation representation of the (orange) observed and (blue) modeled RR interval series for (top) the fitted proposed

model and (bottom) the fitted reference model.

The result of taking the RR interval series dynamics into
account during the optimization can clearly be seen in Figure 7,
where the proposed model and fitness function could represent
the Poincaré plot with an ǫ five times as low as the reference
model. This shows that matching the histograms well, as both
models did, does not necessarily mean that the model represents
the RR interval dynamics well. Using the Poincaré plot as basis
for the fitness function, it was possible to account for the RR
interval distribution and the one-step autocorrelation at the same
time. It should be noted that the information from the histogram
is still indirectly included in the Poincaré plot, which is likely
the reason why the proposed fitness function also gave well
matched histograms.

Since no ground truth of the estimated parameters is available
for the clinical data, it is not possible to directly verify their
correctness. However, it is still possible to verify that the
parameter values lay within ranges reported in literature. The
conduction delay for the HP node is fixed based on clinical data,
thus it lies within reasonable ranges by default. The refractory
period for the HP node was estimated using RRmin, and for

the five patients used in this study the range was [292, 655]
ms. Comparing this to the bundle branch refractory period of
[305, 520] ms, and the His-Purkinje system relative refractory
period of [330, 460] ms, reported in Denes et al. (1974), it
seems reasonable.

It is difficult to assess AV conduction delay during AF,
due to problems in determining which atrial impulse activated
the ventricles. However, the total minimum and maximum
prolongation of conduction delay parameters of the AV node,
DFP
min,tot , 1DFP

tot , DSP
min,tot , and 1DSP

tot , have previously been
estimated by mathematical models utilizing the relationship
between diastolic interval and delay in Equation (2). One such
example is the model byMangin et al. (2005), which uses invasive
data, for which the ranges of Dmin,tot , 1Dtot , and τD were
[80,300], [15,125], and [80,340], respectively. These ranges are of
the same order of magnitude as the values obtained for Dmin,tot ,
1Dtot , and τD in the present study, cf Table 2. It should be noted
that the present model, contrary to the Mangin model, has two
pathways where shorter delays are expected for the FP than for
the SP.
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The maximum refractory period, defined as the sum of
Rmin and 1R, can be compared with electrophysiological
measurements of the AV node effective refractory period. The
values obtained in the present study were in the ranges [466,
973] and [257, 735] ms for the FP and SP, respectively. AV
node effective refractory periods from patients with reentrant
tachycardia have been reported in the ranges 361 ± 57 and
283 ± 48 ms for the FP and SP, respectively (Natale et al.,
1994). As expected, the FP has larger values in both model
and measurements.

The use of simulated data was necessary in order to have a
ground truth to compare the estimated parameters with and in
turn evaluate the methodology. From these five simulated data
sets, it is clear that all of them primarily used the SP, cf. Table 2,
although the SP ratio differed. This higher usage of the SP may be
a contributing factor to that the parameters representing the SP
were more accurately estimated than the parameters representing
the FP. Moreover, the parameters τ SPR , τFPR , τ SPD , and τFPD all have
a larger error, which might imply that they have smaller overall
effect on the model output. Further, histograms and Poincaré
plots highlighting the transmission pathway for the RR intervals
(cf. Supplementary Section 3) show that longer RR intervals
tend to be transmitted via the FP, which is to be expected given its
lower total conduction time. More interestingly, it is evident that
different histogram peaks generated by the model are not created
solely from one pathway, but stem from complex interaction
between both the FP and SP. Moreover, it should also be noted
that the difference in heart rate between the observed RR interval
series and the RR series produced by the fitted model was less
than one beat per minute.

It is evident from the example in Figure 6 that the uncertainty
in conduction delay and refractory period introduced by the
parameter estimation is generally lower than the effect of the
drug, thus suggesting that it is possible to assess the effect of
rate control drugs on the AV node from non-invasive data. For
the example patient, the difference in conduction delay for the
SP between baseline and Diltiazem is minimal for t̃i > 200 ms.
However, one patient is not enough to know if this is a feature
specific to this particular patient, a property of the investigated
drug, or an artifact of the model formulation. The effect of rate
control drugs on the AV node refractory period have previously
been investigated (Sandberg et al., 2015), and with the proposed
methodology a similar investigation can be done for AV node
conduction delay.

4.1. Limitations and Future Work
Themain limitation of the present study is the lack of comparison
between the estimated parameter and the ground truth AV node
characteristics, making the results more difficult to evaluate.
Although simulated data was used as a substitute, it is not fully
known how closely it matches reality. Another limitation is the
assumption that both pathways are activated simultaneously, an
assumption that may not be valid, since the electrical activity
in the atria is highly disorganized. The variation in output
originating from the stochastic input sequence can also be seen as
a limitation to the proposed model, since the output for a single
set of parameters can vary depending on the realization of the

input sequence. However, without electrical measurements in the
atria, it is not possible tomodel the exact behavior of the AVnode.

Moreover, due to the computational time of estimating the
parameters for each simulated RR interval series 200 times, only
a subset of RATAF was used. However, the five patients were
selected to ensure a representative subset based on their RR
interval series characteristics. It should be noted that the focus
of the present study is to evaluate the robustness in parameter
estimation rather than analysis of the RATAF data set. Using the
model to analyze the entire RATAF data set, including all patients,
drugs, and time segments for outcome prediction forms a natural
next step in this line of inquiry, and efforts toward this goal are
ongoing at the time of writing.

Example results, cf. Figure 6, suggest that the estimates of
refractory period and conduction delay are sufficiently robust
to detect changes in response to treatment with rate control
drugs. However, this needs to be verified in a larger study
population. By using the model to simulate the treatment effect
of different drugs in a patient-specific setting, it might be possible
to predict the outcome of the drug treatment and thus assist
in treatment selection. Furthermore, it could also be useful in
drug development, by aiding in understanding what AV node
properties are affected by a novel compound, and in what way.

5. CONCLUSION

We have described and motivated a network model of the
AV node, bundle of His, and Purkinje network. The model is
demonstrated to be able to represent RR interval series extracted
from ECG data well, both in the forms of histograms, Poincaré
plots, and autocorrelation. This was made possible using the
presented problem specific fitness function and optimization
algorithm, taking advantage of the model’s ability to increase
running speed at the cost of precision. The robustness in
parameter estimation enabled fitting of delay specific parameters
from the AV node solely based on the ECG. It also made it
possible to detect changes to the model parameters originating
from the use of a rate control drug.

In summary, the combination of model and parameter
estimation workflow presented here constitutes a significant
improvement on previous AV node modeling efforts, suggesting
the possibility to use ECG measurements to analyze drug effect
on the AV node on a patient specific level.
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