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Brief Definit ive Report

To respond to the enormous variety of patho-
gens they might encounter, B lymphocytes have 
evolved processes to alter their genetic material 
to assemble novel functional Ig genes through 
site-specific V(D)J recombination. Later, contact 
with antigens can induce two different activation-
induced cytidine deaminase (AID)–dependent 
processes, which are known as somatic hyper-
mutation (SHM) and class switch recombina-
tion (CSR). SHM is responsible for the targeted 
introduction of point mutations into the variable 
(V) region of the Ig gene, creating Ig variants 
with enhanced affinity for a particular antigen. 
CSR allows for exchange of the initial IgM con-
stant region (C) with a downstream constant 
region (C, C, C, or C) through deletional 
recombination to generate different classes of  
effector antibodies (Alt et al., 2013).

AID, which converts cytosines into uracils, 
initiates both SHM and CSR by creating dU:
dG mismatches (Alt et al., 2013). During SHM, 

mutations arise from these mismatches through 
several different mechanisms: (a) DNA replica-
tion across the uracil leads to transition mutations; 
(b) abasic sites generated by the base excision re-
pair glycosylase UNG may be replicated in an 
error-prone manner by the translesional syn-
thesis (TLS) polymerase REV1 to yield either 
transition or transversion mutations at the site 
of the C/G base pair; and (c) mismatch repair 
(MMR) proteins (MSH2/MSH6 and EXO1) 
can trigger excision and error-prone resynthesis 
of short stretches of DNA by the TLS polymerase 
Pol, thus spreading mutations to surrounding 
U/G base pairs (Liu and Schatz, 2009). In con-
trast, during CSR, both base excision repair and 
MMR proteins induce double-stranded breaks 
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Fanconi anemia is a rare genetic disorder that can lead to bone marrow failure, congenital 
abnormalities, and increased risk for leukemia and cancer. Cells with loss-of-function 
mutations in the FANC pathway are characterized by chromosome fragility, altered muta-
bility, and abnormal regulation of the nonhomologous end-joining (NHEJ) pathway. So-
matic hypermutation (SHM) and immunoglobulin (Ig) class switch recombination (CSR) 
enable B cells to produce high-affinity antibodies of various isotypes. Both processes are 
initiated after the generation of dG:dU mismatches by activation-induced cytidine deami-
nase. Whereas SHM involves an error-prone repair process that introduces novel point 
mutations into the Ig gene, the mismatches generated during CSR are processed to create 
double-stranded breaks (DSBs) in DNA, which are then repaired by the NHEJ pathway. As 
several lines of evidence suggest a possible role for the FANC pathway in SHM and CSR, we 
analyzed both processes in B cells derived from Fanca/ mice. Here we show that Fanca is 
required for the induction of transition mutations at A/T residues during SHM and that 
despite globally normal CSR function in splenic B cells, Fanca is required during CSR to 
stabilize duplexes between pairs of short microhomology regions, thereby impeding short-
range recombination downstream of DSB formation.

© 2014 Nguyen et al.  This article is distributed under the terms of an Attribution– 
Noncommercial–Share Alike–No Mirror Sites license for the first six months after  
the publication date (see http://www.rupress.org/terms). After six months it is  
available under a Creative Commons License (Attribution–Noncommercial–Share  
Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/ 
by-nc-sa/3.0/).
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(Fig. 1 B). Consequently, the reduced mutation frequency we 
observed could be accounted for solely by the reduction in 
the number of highly mutated sequences. Alternatively, the 
number of DNA lesions generated by AID or the number of 
mutations introduced during the course of SHM could pre-
vent Fanca/ cells from proliferating normally within the GC, 
leading to an apparent reduction in mutation frequency; i.e., 
the accumulation, not the generation, of mutations may be com
promised in Fanca/ mice.

However, supporting a direct, specific role for Fanca dur-
ing SHM, we observed that the frequency of mutations at A/T 
residues was significantly reduced in Fanca/ mice (P = 104; 

(DSBs) within the switch (S) regions situated upstream of 
each Ig CH gene. These breaks are then repaired by either the 
classical nonhomologous end-joining (NHEJ) pathway, which 
directly rejoins DNA ends with minimal modification of the 
broken ends, or by the alternative NHEJ pathway, which makes 
use of sequence microhomologies (MHs) to associate and re-
join distal DSBs (Alt et al., 2013).

Fanconi anemia (FA) is a rare, inherited chromosomal 
breakage disorder presenting bone marrow failure and cancer 
predisposition. FA is genetically heterogeneous, with 16 FANC 
genes (named A through Q) identified to date. After DNA 
damage or replicative stress, eight FANC proteins (FANCA,  
-B, -C, -E, -F, -G, -L, and -M) assemble into the FANCcore 
complex, which is necessary for the monoubiquitination and 
nuclear foci formation of both FANCD2 and FANCI. Mono
ubiquitinated FANCD2/FANCI heterodimer functionally or 
biochemically interacts with FANCD1/BRCA2, FANCN/
PALB2, FANCJ/BRIP1, FANCO/RAD51C, FANCP/SXL4, 
and FANCQ/XPF to eliminate DNA lesions and rescue rep-
lication (Kottemann and Smogorzewska, 2013). FANC pro-
teins promote homologous recombination and suppress NHEJ 
repair (Adamo et al., 2010; Pace et al., 2010). Moreover, FANC 
pathway disruption has been associated with abnormalities 
of several proteins involved in SHM or CSR, including the 
TLS polymerases REV1 and Pol (Kim et al., 2012; Fu et al., 
2013; Renaud and Rosselli, 2013), the MMR protein MSH2 
(Williams et al., 2011), the helicase BLM, and the DSB repair 
protein MRE11 (Pichierri et al., 2002, 2004; Naim and Rosselli, 
2009). High levels of FANCD2 have been detected in germi-
nal center (GC) cells in the spleen, tonsil, and reactive lymph 
nodes (Hölzel et al., 2003). Finally, expression of the Fanca 
mRNA, but not the Fancg mRNA, is specifically increased in 
GC B cells, which show high levels of SHM and CSR (Heng 
and Painter, 2008). In light of the above, we decided to ana-
lyze SHM and CSR in B cells derived from Fanca/ mice to 
determine a possible involvement of FANCA in the process 
of secondary Ig diversification.

RESULTS AND DISCUSSION
Reduced A/T transitions during SHM in Fanca/ mice
To determine the impact of Fanca loss-of-function on SHM, 
we compared the levels and patterns of somatic mutation in 
the nonselected intronic region flanking the rearranged VHDJH4 
genes (JH4 intronic region) in Peyer’s patch peanut aggluti-
ninhigh (PNAhigh) B cells isolated from WT and Fanca/ mice. 
To calculate mutation frequency, the accumulated number of 
unique mutations was divided by the theoretical maximum 
number of the corresponding type of mutation to correct for 
base composition (MacCarthy et al., 2009). We observed that 
the distributions of mutations along the analyzed region were 
similar in Fanca/ and WT mice (Fig. 1 A) but that the over-
all mutation frequency was significantly lower (P < 103) in 
B cells from Fanca/ mice (Table 1). However, Fanca/ mice 
showed a consistent but nonsignificant decrease in the pro-
portion of highly mutated sequences (>10 mutations) and an 
increase in the proportion of sequences with <5 mutations 

Figure 1.  Reduced A/T transitions during SHM in Fanca/ mice. 
(A) Distribution of mutations in the JH4 intronic region (506 bp) that was 
amplified from Peyer’s patch PNAhigh B cells isolated from WT and 
Fanca/ mice. (B) Proportion of sequences with numbers of mutations 
per clone (the central circle shows the total number of analyzed se-
quences) from WT (n = 5) and Fanca/ mice (n = 5). (C) The spectrum of 
base substitutions is expressed as a percentage of the total number of 
mutations (left), and the frequency of mutation (right) was corrected for 
base composition. Gray boxes denote a significant decrease in mutation 
frequency compared with WT (the 2 test was applied according to the 
SHMTool algorithm; *, P < 0.05; **, P < 103; ***, P < 104). Data for the 
SHM are from five independent experiments. (D) Differential expression of 
Pol in FANCA- and FANCG-deficient cells. Whole cell extracts were pre-
pared from the indicated human lymphoblast cell lines and analyzed by 
immunoblotting for the expression of Pol, MSH2, FANCA, FANCG, and 
Vinculin (asterisks indicate nonspecific bands). Representative data from 
two independent experiments are shown.
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As the Fancg/ mice did not show defects in SHM (Krijger 
et al., 2010), we asked whether Fanca differs from Fancg  
in Pol expression/stabilization. To address this question, 
B220+/Gl7+ cells were sorted from Peyer’s patches isolated 
from Fanca/, Fancg/, and WT mice, and total RNA was 
prepared and subjected to semiquantitative RT-PCR. We 
failed to observe differences in the abundance of Pol tran-
scripts in either Fanca/ or Fancg/ mice compared with 
WT mice (not depicted). In the absence of reliable antibodies 
against mouse Pol, we examined Pol levels in human 
FANCA- or FANCG-deficient lymphoblasts by immunoblot. 
Pol is highly reduced in FANCA-deficient lymphoblasts, and 
its expression was rescued by the ectopic expression of the 
WT FANCA cDNA (Fig. 1 D, compare HSC-72 with HSC-
72 + FANCA). On the contrary, we observed only a moderate 
Pol reduction in FANCG-deficient cells (Fig. 1 D). Consistent 
with a previous study (Garcia-Higuera et al., 2000), we observed 
that FA-A cells failed to express significant levels of FANCG, 
whereas FANCA remained detectable in FA-G cells (Fig. 1 D). 
This result suggests that the reduced Pol levels in FANCG-
deficient cells were likely the result of FANCA destabilization 
in the absence of FANCG. Although Pol protein is reduced 
in FANCG-deficient cells, Fancg/ mice are fully able to induce 
A/T mutations (Krijger et al., 2010). This result is consistent 
with a previous study showing that a strong reduction in cellular 
Pol levels is mandatory to affect the rate of A/T mutations 
(Faili et al., 2004). The expression of MSH2, another crucial 
factor for generating A/T mutations during SHM, is not al-
tered in the absence of either FANCA or FANCG (Fig. 1 D).

It is interesting to note that in the absence of Fanca, the 
observed percentage of transitions and transversions within 
A/T bases cannot be explained exclusively by Pol reduction, 

Table 1), and this reduction was associated with a highly sig-
nificant (P < 105) decrease in the frequency of transitions  
at these sites (Table 1). In contrast, transversions at A/T sites 
were similar in both Fanca/ and WT mice (Table 1 and 
Fig. 1 C). Analysis of the patterns of nucleotide substitution 
showed a strong reduction in A to G transitions (P < 104) 
and a less robust, but still significant, decrease in T to C tran-
sitions (P < 0.05) in Fanca/ mice (Fig. 1 C). Moreover, muta-
tions in residues within WA motifs (W = A or T; underlining 
indicates the mutated residues) were significantly decreased 
in Fanca/ mice (P < 104; Table 1), whereas no significant 
difference was detected in the mutation frequency of TW 
motifs, indicating a targeting of WA motifs on the transcribed 
strand. In contrast, the mutation frequency at G/C residues as 
well as the frequencies of transversions or transitions at these 
sites was unchanged in the absence of Fanca (Table 1). Fur-
thermore, the types of base substitutions and the mutation 
frequencies at hotspots for AID (WRC/GYW) were also simi-
lar between the two groups of mice (Table 1 and Fig. 1 C), 
indicating that AID activity and targeting were normal in the 
absence of Fanca.

TLS polymerases have been shown to be involved in SHM 
(Weill and Reynaud, 2008), with Pol being the sole A/T 
mutator during the SHM process (Delbos et al., 2005). Addi-
tionally, WA motifs and the complementary TW motif have 
been shown to be hotspots for Pol activity at the Ig locus 
(Rogozin et al., 2001), with a preference for A to G substitu-
tions within WA motifs on the nontranscribed strand (Mayorov 
et al., 2005). Therefore, the altered mutation pattern we ob-
served in Fanca/ B cells may be partially caused by previ-
ously described effects of FANC pathway loss-of-function  
on Pol (Fu et al., 2013; Renaud and Rosselli, 2013).

Table 1.  Global analysis of unique mutation frequencies of the JH4 intronic region

JH4 intronic region WT Fanca/ P-value

Number of mice 5 5
Mutated sequences analyzed 150 161
Unique mutations (total) 787 665
Overall mutation frequency 10.5 x 102 8.8 x 102 0.0008

A/T mutations 11.2 x 102 8.7 x 102 0.0001

Transversions 9.1 x 102 8.2 x 102 0.2637

Transitions 15.5 x 102 9.7 x 102 <105

Motif
  WA 33.7 x 102 19.7 x 102 <104

  TW 14.7 x 102 9.5 x 102 0.1637

  G/C mutations 9.4 x 102 9.0 x 102 0.6013

  Transversions 6.9 x 102 6.4 x 102 0.5355

  Transitions 14.5 x 102 14.3 x 102 0.9504

Motif
  WRC 53.3 x 102 44.0 x 102 0.327

  GYW 36.8 x 102 36.8 x 102 1.0

All mutation frequencies were calculated according to the SHMTool algorithm. Bold denotes a significant decrease in the mutation frequency compared with WT. Underlining 
indicates the mutated residues in the motifs.
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at junctions was significantly increased (Fig. 3 D). Again, the 
mean length of the MHs was not affected by FANCA deple-
tion (2.25 ± 0.33 bp in siFANCA- vs. 2.62 ± 0.35 bp in 
siCT-treated cells). In summary, loss of Fanca function de-
creased the use of short junctional MHs and increased junc-
tional insertions during repair.

suggesting that others factors, yet unknown, involved in A/T 
mutation pathway are also affected. In conclusion, our obser-
vations demonstrate that loss of Fanca specifically affects the 
induction of A/T mutations during SHM.

Robust CSR in Fanca/ mice
To determine whether loss of Fanca affects Ig class switching, 
we determined the levels of IgM, IgG subclasses, and IgA in 
the serum from Fanca/ and WT mice at 8–12 wk of age. All 
Ig isotype titers were similar between WT and Fanca/ mice, 
indicating that Fanca/ B cells are proficient for Ig secretion 
(Fig. 2 A). We next examined the intrinsic ability of Fanca/ 
B cells to undergo CSR in vitro. Splenic B cells from Fanca/ 
and WT mice were stimulated with either IL-4 plus CD40 
to induce switching from IgM to IgG1 or with LPS to induce 
switching to IgG3 and IgG2b. Stimulated B cells were cul-
tured for 4 d and analyzed by flow cytometry for surface ex-
pression of IgG1, IgG3, and IgG2b. Fanca/ B cells were able 
to switch to all isotypes examined (Fig. 2 B). We also exam-
ined the kinetics of in vitro switching to IgG1 in WT and 
Fanca/ purified splenic B cells stimulated with CD40 plus 
IL-4 for 2–5 d, and we observed that Fanca/ and WT B cells 
switched to IgG1 at similar frequencies (Fig. 2 C). Building 
on previous observations made in Fancg/ mice (Krijger et al., 
2010), these data indicate that loss of the FANC pathway does 
not impair secondary Ig diversification and secretion.

Altered CSR junctions in Fanca/ mice
To address the role of Fanca in the repair of the DSBs created 
during CSR, we analyzed S-S1 junctions from Fanca/ 
and WT splenic B cells after activation with CD40 plus IL-4 
for 4 d. Fanca/ B cells displayed a slight decrease in the fre-
quency of direct and short MH (up to 6 bp) junctions (Fig. 3 A) 
and an increase in the frequency of long MH (>7 bp) junc-
tions, although the mean MH length was similar in the two 
groups of mice (2.45 ± 0.23 bp in Fanca/ vs. 2.29 ± 0.19 bp 
in WT mice). Moreover, sequence analysis revealed that the 
probability of nucleotide insertions at junctions was signifi-
cantly higher in Fanca/ than in WT mice (Fig. 3, A and B). 
Finally, analysis of breakpoint distribution within the S regions 
showed a similar pattern between WT and Fanca/ mice (not 
depicted), supporting a specific role for Fanca in broken DNA 
end processing during CSR.

To validate the previous observation, we used a geneti-
cally modified cell line bearing a single copy of an NHEJ 
reporter construct inserted into the genome (Fig. 3 C). The 
reporter contained two opposite-facing I-SceI target sites 
separated by 50 bp, which allowed us to determine rejoin-
ing efficiency of DSBs induced at these two sites. siRNA-
mediated knockdown of FANCA did not significantly affect 
the frequency of GFP-positive cells retrieved after I-SceI–
mediated induction of DSBs (not depicted), demonstrating 
that I-SceI–mediated cleavage and rejoining events did not 
require FANCA. However, we noticed that in the absence of 
FANCA, as during CSR, the frequency of MH junctions was 
mildly decreased and the frequency of nucleotide insertions 

Figure 2.  Robust CSR in Fanca/ mice. (A) Serum from Fanca/  
(n = 5) and WT mice (n = 7) was collected and analyzed by ELISA for the 
indicated IgM, IgG subclasses, and IgA. The results are displayed as mean ±  
SEM values for the Fanca/ titer as a percentage of WT. Data are repre-
sentative of two independent experiments with at least five mice per 
group. (B) Splenic B cells were isolated from Fanca/ and WT mice and 
stimulated in vitro with IL-4 and anti-CD40 or LPS. The expression of 
IgG1, IgG3, and IgG2b was determined 4 d later by flow cytometry. Bar 
graphs show the mean percentages of cells expressing the indicated IgG ± 
SEM. Data are representative of three independent experiments with at 
least three mice per group. (C) Splenic B cells were isolated from Fanca/ 
and WT mice and stimulated in vitro with IL-4 and anti-CD40. Surface 
IgG1 expression was determined by flow cytometry on days 2, 3, 4, and 5 
after stimulation. Bar graphs show the mean percentages of IgG1+ cells ± 
SEM. Data are representative of five independent experiments with at 
least five mice per group.
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could play a similar stabilizing role during the processing of 
DSBs created downstream of AID. Second, as a requirement 
for FANCA in XPF-ERCC1 endonuclease recruitment to 
DNA damage has been reported (Kumaresan and Lambert, 
2000), it is possible that Fanca may be required during CSR 
to eliminate single-stranded DNA overhangs at regions of 
matched MHs by recruiting/loading the necessary endonu-
clease. Finally, the insertion of multiple nucleotides at junctions 
may reflect a nontemplated addition of nucleotides during 
NHEJ by Pol, a TdT-like polymerase, which Fanca may op-
pose by promoting annealing.

Therefore, Fanca may enhance the stability of relatively 
short matched MH sequences, permitting the optimal assem-
bly/action of MSH2-MSH3. In turn, this would facilitate the 
recruitment of endonucleases to trim overhangs and avoid the 
inappropriate access of polymerases to DNA ends released from 
unstable aligned MH regions.

Increased intra-switch recombination (ISR) in Fanca/ mice
AID activity generates multiple DSBs within a given S region, 
and CSR joins the most upstream DSB with the most down-
stream DSB from two different S regions, which can be sepa-
rated by as much as 200 kb of DNA (Fig. 4 A). The intervening 
double-stranded DNA fragments are then degraded or joined 
to form excision circles. However, some rejoined sequences 
could be involved in unusual insertions of DNA fragments 
internal to an S region. This can result from local rejoining or 
ISR and can lead to the presence of S-S-S1 or S-S1-
S1 sequence junctions, as opposed to the canonical S-S1 
sequence (Reina-San-Martin et al., 2007). Remarkably, we 
found that the frequency of ISR was significantly higher in 
Fanca/ than in WT B cells (12.6 vs. 3.8%; Fig. 4 B). The lev-
els of S ISR in Fanca/ B cells (8.1%) were much higher 
than in WT B cells (1.2%), whereas the levels of S1 ISR in 
Fanca/ B cells were twofold greater than in WT B cells (4.7 
vs. 2.5%; Fig. 4 C). These findings suggest that ISR at the S 
region may occur more frequently than at the S1 region, 
consistent with previously published data showing that S 
appears to be intrinsically preferred by AID compared with 
other downstream S regions during CSR (Alt et al., 2013). 
Considering the small number of ISR junctions we obtained 
as well as the fact that the levels of S ISR appeared to be 
higher than those for S1 in WT mice, we cannot rule out the 
possibility that Fanca specifically inhibits ISR at S to a greater 
extent than at downstream S regions. Interestingly, we also 
observed increased insertions of long sequences (>10 bp) at 
junctions from siFANCA-transfected cells bearing an intra-
chromosomal NHEJ reporter system (Fig. 3 D). Strikingly, 
with the exception of one junction that showed a large inser-
tion from another region of the construct, these long inserted 
sequences originated from the 50-bp I-SceI–excised sequence. 
Again, this finding is consistent with our observations of ISR 
during the CSR process in Fanca/ mice.

Essentially all of the isolated ISR junctions were joined 
by the alternative NHEJ, representing 16 of 19 junctions in 
Fanca/ B cells and 5 of 6 junctions in WT B cells that were 

Insertional joining can occur when the overhangs at each 
end of a DSB are unstable, resulting in the dissociation and 
reannealing of DNA ends and the addition of a short stretch 
of newly synthesized nucleotides closer to the break site (Chan 
et al., 2010). Different scenarios can explain our findings. 
First, considering only the DNA end modifications that occur 
during CSR, the phenotype associated with Fanca loss at  
S junctions is reminiscent of that observed in both MSH2- and 
MSH3-deficient mice, which display increases in junctional 
insertions (Schrader et al., 2002; Li et al., 2004). In addition, 
it has been proposed that during single-strand annealing in 
yeast, the MSH2-MSH3 heterodimer binds to transient MH 
regions to stabilize the annealed intermediate or to signal to 
the Rad1-Rad10 endonuclease (homologues of mammalian 
XPF and ERCC1) to cleave the overhangs (Sugawara et al., 
1997). Thus, in the case of weak DNA end annealing, FANCA 

Figure 3.  Altered CSR junctions in Fanca/ mice. (A) Splenic  
B cells from WT (n = 6) and Fanca/ (n = 6) mice were stimulated with 
anti-CD40 and IL-4, and 4 d later, S–S1 junctions were amplified by 
PCR from genomic DNA and then sequenced. Percentage of sequences 
with blunt joins (0), indicated MH, and junctional insertions (Ins) are 
shown. Data from six independent experiments were pooled and ana-
lyzed by the 2 test (**, P < 103). (B) A plot representing the relative 
frequency of sequences with blunt joins, MH, or insertions for WT and 
Fanca/ B cells from A. (C) A schematic representation of the I-SceI 
chromosomal reporter. (D) The GCV6 cells containing the I-SceI substrate 
described in C were transfected with siCT or siFANCA for 48 h and subse-
quently with I-SceI–expressing plasmid. 3 d later, I-SceI junctions were 
amplified from genomic DNA and then sequenced. Percentage of se-
quences with blunt joins (0), indicated MH, or insertions at the I-SceI–
induced NHEJ junction are reported. Analyzed sequences were obtained 
from two independent experiments (*, P < 102).
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reductions in the absolute numbers of B lymphocytes in the 
blood and decreases in both IgM and IgG serum isotypes 
(Korthof et al., 2013).

Our data support a specific role for Fanca in the SHM 
process that contributes to the generation of mutations at A/T 
residues, potentially through the regulation of Pol expres-
sion/stabilization. A molecular analysis of the CSR-mediated 
junction clearly indicated a role for Fanca in control of the 
CSR process. In particular, Fanca appears to participate in the 
stabilization of duplexes between two short MH regions. Ad-
ditionally, our findings suggest a requirement for Fanca in 
inhibiting short-range recombination but not CSR-like long-
range recombination.

MATERIALS AND METHODS
Mice. Fanca/ and Fancg/ mice and their WT littermates (129Ola/FVB 
background) were generated as previously described (Cheng et al., 2000). 
The Ethics Committee for Animal Experimentation, in accordance with 
French regulations, approved all of the procedures in this study.

SHM analysis. Peyer’s patches were prepared from 8–12-wk-old Fanca/ 
and WT mice. Cells from the Peyer’s patches were stained with a PE-conjugated 
anti–mouse B220 rat mAb (RA3-6B2; BioLegend) and FITC-conjugated 
PNA (eBioscience). GC B220+PNAhigh B cells were sorted using a high-
output MoFlo cell sorter (Dako). The JH4 intron-flanking rearranged VH 
sequences were amplified using a mixture of five VH primers (designed to 
amplify most the majority of the mouse VH families) and a downstream primer, 
enabling the determination of 506 bp of the noncoding sequence, as reported 
previously (Delbos et al., 2005). Sequence alignments were performed using 
CodonCode Aligner 3.7 using NCBI Nucleotide sequence NT_114985.3 
(nucleotides 300967–301472) as the reference sequence. Analysis of the mu-
tated sequences was performed using the SHMTool webserver.

ELISA. Serum levels of IgM, IgG1, IgG2a, IgG2b, IgG3, and IgA from  
8–12-wk-old Fanca/ and WT mice were measured using the Mouse 
Immunoglobulin Isotyping ELISA kit (BD).

In vitro CSR assay. Splenic B cells were isolated from individual 8–12-wk-
old Fanca/ and WT mice by negative selection using the Mouse B Cell 
Isolation kit (Miltenyi Biotec). The cells were cultured in complete RPMI 
1640 medium (15% FBS, 20 mM Hepes, 1 mM sodium pyruvate, 2 mM 

either insertion or MH mediated (Fig. S1). Additionally, 
there were no significant differences in the sizes of the dele-
tions or recombination products at ISR junctions between 
Fanca/ and WT B cells (not depicted). However, an in-
creased usage of long MH regions was observed at ISR junc-
tions from Fanca/ B cells (Fig. 4 D and Fig. S1), further 
supporting our hypothesis that Fanca plays a role in align-
ment stabilization during MH-mediated joining.

Considering the similar distributions of breakpoints within 
the S regions of WT and Fanca/ mice (not depicted) as well 
as our observations regarding SHM, these data clearly sup-
port the notion that AID functions properly in the absence of 
Fanca. Consequently, the increased ISR observed in Fanca/ 
B cells was likely caused by defects in DNA end management. 
Therefore, the unstable alignment of short MH regions in the 
absence of Fanca could lead to enhanced joining of DNA 
ends within the same S region with longer MH regions.

Alternatively, as has been reported (Kottemann and 
Smogorzewska, 2013), after exposure to genotoxic drugs, 
FANC pathway deficiency may result in the inappropriate 
recruitment of NHEJ factors to DSB ends leading to (a) “over-
stability” of intervening DNA stretches from a given S region, 
thereby protecting them from degradation; (b) an increase in 
the joining of small DNA fragments at the expense of large 
chromosomal fragments; and (c) changes in chromatin structure 
at DSB ends to enhance short-range recombination. Collec-
tively, these results suggest that FANCA suppresses short-range 
joining during CSR.

Concluding remarks
Our results show that loss of Fanca function is associated with 
molecular alterations in both SHM and CSR. The observed 
alterations had a modest impact on Ig production, likely be-
cause of the intricate processes of production and selection 
that B cells must undergo before becoming fully competent. 
Although FA patients do not display severe immunological 
problems, a study has described the presence of immuno-
logical abnormalities in subsets of these patients, including 

Figure 4.  Increased ISR in Fanca/ mice. (A) A model for 
the joining of AID-generated DSBs between S regions during 
switch to IgG1. AID generates multiple DSBs within a given  
S region, and CSR joins two DSBs from two different S regions, 
producing canonical Sµ-S1 junctions. The intervening dou-
ble-stranded DNA fragments are then degraded or joined to 
form excision circles; occasionally some rejoined sequences 
exhibiting unusual junctions (e.g., Sµ-Sµ-S1 or Sµ-S1-S1) 
resulting from local rejoining or ISR are observed. (B) Fre-
quency of ISR in WT and Fanca/ B cells induced to switch to 
IgG1 by anti-CD40 and IL-4 for 4 d. ISR was examined by 
analysis of S-S1 junctions. Horizontal bars indicate the 
means (*, P < 0.05 with the two-tailed Student’s t test). (C) Bar 
graph shows the percentage of S and S1 ISR in WT and 
Fanca/ B cells from B. (D) Percentage of sequences exhibit-
ing blunt joins (0), indicated MH, or insertions at the ISR junc-
tion. Data for the ISR analysis are based on five mice per 
genotype from five independent experiments.

http://www.ncbi.nlm.nih.gov/nucleotide/NT_114985.3
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