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Abstract: During phagocytosis, tumor-associated macrophages (TAMs) can incorporate genetic
material from tumor cells. The incorporation of extra genetic material may be responsible for
advanced malignant behavior observed in some TAMs, making TAMs potentially important players
in cancer progression. More recently, similar cells were described in the blood as cancer-associated
macrophage-like cells (CAMLs). CAMLs may be equivalent to TAMs cells in the blood, and they
express macrophage markers. However, their origin is still unclear. In a previous study, we showed
for the first time the distinct telomere 3D structure of circulating tumor cells (CTCs) in melanoma
and other cancers. In the present pilot study, we investigated, comparatively, the 3D telomere
structure of CAMLs, CTCs and leucocytes from nine melanoma patients with metastatic cutaneous
melanoma stage IV. CTC capture was performed by size-based filtration followed by cytological and
immunocytological evaluation. Three-dimensional Quantitative Fluorescent in situ Hybridization
was performed to measure differences in five 3D telomere parameters. Telomere parameters, such as
number, length, telomere aggregates, nuclear volume, and a/c ratio, were compared among different
cellular types (CTCs, CAMLs, and normal leucocytes). Three telomere parameters were significantly
different between CAMLs and leucocytes. The combination of two telomere parameters (telomere
length against the number of telomeres) resulted in the identification of two CAMLs subpopulations
with different levels of genomic instability. Those populations were classified as profile 1 and 2. Profile
2, characterized by a high number of short telomeres, was observed in four of the nine melanoma
patients. To our knowledge, this is the first pilot study to investigate 3D telomere parameters as
hallmarks of nuclear architecture in CAMLs’ population in comparison to leucocytes from the same
patient. Further studies involving a larger patient sample size are necessary to validate these findings
and explore their potential prognostic value.

Keywords: tumor-associated macrophages; circulating tumor cells; cancer-associated macrophage-
like cells; telomere-related genomic instability; metastatic cutaneous melanoma stage IV

1. Introduction

Macrophages play a central role in antigen presentation and inflammation [1]. Together
with fibroblasts, vascular endothelial cells and the extracellular matrix, they form the tumor
microenvironment [1]. When macrophages infiltrate into malignant tumor tissues or are
recruited into the tumor microenvironment, they are called tumor-associated macrophages
(TAMs) [1]. TAMs are very heterogeneous and reportedly support tumor establishment,
progression, angiogenesis, invasion, and immunoregulation [2]. TAMs also express PD-
1/PD-L1-signaling programmed cell death protein (PD-1), which is an important molecule
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in immunosuppression [3]. The PD-1/L1 signaling pathway promotes tumor immune
escape by limiting the function of T effector, natural killer (NK), and dendritic cells [4].
Many studies have demonstrated pro-tumor activities of TAMs, although the correlation
between TAMs and prognosis has not been investigated for all types of tumors. A high
density of TAMs has been significantly associated with negative effects in overall survival
in gastric, breast, bladder, ovarian, oral, and thyroid cancers [5]. Interestingly, it is known
that the depletion of macrophages by clodronate liposomes revoked tumor progression in
an animal model [6–8].

Circulating tumor cells (CTCs) are derived from primary and/or metastatic tumors
and are used as a real-time minimally invasive liquid biopsy in solid tumors for the clinical
assessment of patients [9,10]. CTC studies can guide clinical decisions regarding patient
treatment, disease prognosis, response to therapy, early detection of treatment resistance
or disease recurrence, tumor progression, and design of new therapeutic approaches [9].
For the clinical use of CTCs as a prognostic and/or predictive biomarker in cancers, a
combination of enrichment (isolation), detection (identification), and characterization
strategies (such as molecular profiling), is necessary to improve our ability to identify
high-risk patients [10].

Melanoma has a high cure potential when diagnosed in early stages, otherwise it can
become a metastatic disease, with drastically reduced survival rates [11]. CTCs are detectable
in most patients with advanced melanoma [12]. Recent advances in target and immune
therapies for metastatic cutaneous melanoma have improved patient survival [13]. However,
immunotherapies are highly toxic and effective only in a small proportion of melanoma
patients [14–16]. In addition, mitogen-activated protein kinases (MAPK) inhibitors, used for
most melanoma patients, are also associated with drug resistance [17–19].

The effects of the association of CTCs with TAMs are not well understood. It seems
that CTC–leucocyte interactions can induce monocyte–macrophage differentiation with
recruitment of inflammatory cells, stroma breakdown, and invasion [20]. Interestingly,
studies have shown that TAMs, through phagocytosis, can acquire genetic material that
may transform them into tumor cells with advanced malignant behavior [21–25]. The
incorporation of this extra genetic material could create genomic instability of TAMs
that may then play major roles in cancer progression. Zang et al. (2017) demonstrated
that the integrated tumor-derived DNA not only increased migratory and proliferative
macrophages’ abilities, but also induced the expression of new proteins, such as epithelial
markers, and transformed the previous macrophage into stem-like cell [26].

Telomere repeats at chromosomal ends are of critical importance to maintain genomic
integrity and have been shown to be effective in assessing genomic instability of cancer
cells in several studies [10,27,28]. Particularly, peripheral blood leucocytes’ samples from
cutaneous melanoma patients were previously associated with short telomeres and poor
survival [29].

In the present pilot study, we isolated CTCs and cancer-associated macrophage-like
cells (CAMLs) from melanoma patients’ blood samples. CAMLs are defined as highly
differentiated giant phagocytic cells of myeloid lineage (CD14+/CD11c+) presenting large-
atypical nuclei or multiple individual nuclei, CD45+, and expressing both cytokeratin
and epithelial cell adhesion molecule (EpCAM) [30]. CAMLs are disseminated TAMs
which express phagocytic markers, capable of interacting with CTCs in peripheral blood.
CAMLs are not found in healthy individuals [31]. Since the purpose of the present study
was to compare the 3D telomere parameters of CAMLs, CTCs, and normal leucocytes,
only cells with a characteristic distinct morphology (typical CTC morphology—i.e., large
and hyperchromatic nucleus and high nucleus–cytoplasmic ratio—and CAML—i.e., large
cytoplasm and low nucleus–cytoplasmic ratio) were considered. Clusters (a cluster of two or
more CTCs) were excluded from the telomere analysis. To complete the CTCs’ and CAMLs’
characterization, we proceeded to a double immunocytochemistry (ICC) comparing results
on the patient’s microporous filter with controls using SK-Mel 28 cultured melanocytes
spiked in normal blood.
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We used three-dimensional (3D) fluorescent microscopy and quantitative imaging
to analyze potential telomeric changes. We evaluated five different telomeric parameters
including number of telomere signals, number of telomere aggregates, telomeric signal in-
tensity (telomere length), a/c ratio, and nuclear volume to identify dysfunctional telomeres.
Size-based filtration was used to isolate CTCs, CAMLs, and normal leucocytes. Leucocytes
are easy to analyze since they are often found in spaces between the randomly distributed
105 pores on the 8 mm diameter microporous filter; they served as internal patient-specific
controls. Our results identified the presence of CAMLs with 3D telomere parameters associ-
ated with changes in nuclear architecture, which were distinct from those found in normal
l leucocytes of melanoma patients. A high level of telomere dysfunction in melanoma CTCs
has been previously described in another study by our group [32].

2. Materials and Methods
2.1. Patient Samples

Ten peripheral blood samples from nine patients with melanoma stage IV from the
Department of Onco-dermatology of Saint-Louis Hospital, Paris, France, were used in this
study. They were collected under patients’ written informed consent. The study was carried
out in accordance with the Declaration of Helsinki, having the protocol approved by the
Institutional Review Board Agreement from US Department of Health and Human Services
(n◦IRB 00003835, protocol 2015/66NICB). Histopathological and clinical data are shown in
the Supplementary Materials, Table S1. The eligibility criteria for patient recruitment were:
age ≥ 18 years and diagnosis of metastatic cutaneous melanoma stage IV.

2.2. May-Grunwald Giemsa Staining, CTCs and CAMLs Isolation

CTCs and CAMLs enrichment were performed by size-based capture (ScreenCell®)
using 3 mL of patient’s peripheral blood collected in an EDTA tube [33]. CTC and CAMLs
isolation were performed within 3 h of the blood draw. The blood samples were processed
through ScreenCell® capture devices (Paris, France), according to the manufacturer’s
instructions [33]. Briefly, patient blood was incubated with the ScreenCell Cyto® buffer for
8 min. The blood was then transferred into the top of the filtration unit and vacuum filtered
through a microporous filter. After completing the filtration, the filter was stained with
standard May Grünwald–Giemsa. The ScreenCell Cyto® buffer lyses the red blood cells
and prefixes all nucleated cells present in the blood sample while preserving their nuclear
architecture and allows their fixation on the filter of the device. This technique results in an
average of 91% CTC recovery rate [33].

2.3. Cytologic Evaluation of CTCs and CAMLs

The material was selected according to 2 criteria: first, patient blood had to be sampled
less than 6 months earlier in order to be available for the 3D telomere analysis; second,
only filters containing both CTCs and CAMLs on the same membrane were selected.
Microscopic analysis of the 10 filters was performed by an experienced pathologist (JW).
All filters contained CTCs within criteria previously described in the literature [34], i.e.,
characterized by high nucleus–cytoplasmic ratio (N/C = 0.95–0.75) and hyperchromatic
nucleus with a cell diameter larger than 20 µM. Those features allowed the distinction of
CTCs from normal leucocytes. CAMLs were much larger than CTCs (up to 300 µM in
length), with multiple or lobulated nuclei, as well as larger and elongated cytoplasm. Such
morphologic features were consistent with previously described CAMLs [30]. CTC-clusters
were defined by groups of 2 or more CTCs [35].

2.4. Double Immunocytochemistry (ICC)

Before the immunocytochemistry assay, fixed cells isolated on the filters of the ScreenCell®

Cyto device were air-dried overnight at room temperature and then hydrated with tris-
buffered saline (TBS; Dakocytomation, Glostrup, Denmark) containing 0.05% Tween 20.
The antigens were retrieved with target retrieval solution pH 9 (ER1; Leica Biosystems,
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Wetzlar, Germany) at 95–99 ◦C for 20 min and rinsed with Bond Wash (Leica Biosystems).
Isolated cells were treated for 5 min at room temperature with a peroxidase block solution
(Leica Biosystems). Then, the samples were incubated for 30 min at room temperature
with mouse anti-human Melan-A (Dako). A post-primary rabbit anti-mouse was then
applied for 8 min followed by a polymer HRP anti-rabbit for an additional 8 min. A
sequential incubation step with mouse anti-human CD45 antibody (Leica Biosystems) was
applied for 30 min. Finally, a chromogenic staining using DAB-RED detection according
to Leica Biosystems protocol and a counter-staining with Hematoxylin (DS9665, Leica
Biosystems) for 10 min allowed the revelation of the antigen detection. After a final wash
with distilled water, the ScreenCell® Cyto filter was mounted on a glass slide with the
Faramount mounting medium (Agilent Technologies, Santa Clara, CA, USA), and covered
with an 8 mm diameter coverslip.

2.5. Telomere Three-Dimensional Quantitative Fluorescent in Situ Hybridization (3D-QFISH)

For 3D-QFISH [10,26,27], cells on the filters were incubated in 1× PBS for 5 min
followed by a 10 min fixation in 3.7% formaldehyde/1× PBS and 3× washes in 1× PBS
for 5 min each. Filters were dehydrated in an ethanol series (70%, 90%, and 100%) and
air-dried. Fluorochrome-coupled (Cy3) telomere-specific peptide nucleic acid (PNA) probe
(DAKO; Agilent Technologies, Santa Clara, CA, USA) was applied (5 µL probe/filter) and,
following denaturation at 80 ◦C for 3 min, hybridization was completed for 2 h at 30 ◦C.
The PNA probe is specific for the telomere repeat sequence ([CCCTAA]3–PNA) (DAKO;
Agilent Technologies, Santa Clara, CA, USA). The filters were washed in 70% deionized
formamide (Sigma-Aldrich, St. Louis, MO, USA) in 10 mM Tris pH 7.4 for 15 min, rinsed in
1× PBS and once each in 2× SSC (5 min at 55 ◦C), 0.1× SSC and 2× SSC/0.05% Tween-20
at RT. After that, the filters were 4′,6-diamidino-2-phenylindole (DAPI)- stained, mounted
with Vectashield (Vector Laboratories, Burlingame, CA, USA) with a coverslip (Fisherbrand;
Thermo Fisher Scientific, Waltham, MA, USA).

2.6. Imaging & Analysis

All CAMLs, CTCs, and normal leucocytes interphase nuclei found on the filtration
device were analyzed using an AxioImager Z2 microscope (Carl Zeiss, Toronto, ON,
Canada). An oil objective lens 63×/1.4 (Carl Zeiss Canada Ltd.) was used for image
acquisition. A Cy3 filter was used to detect Cy3 probe nuclear hybridization to telomeric
repeats at an exposure time of 400 ms for all cells and samples examined. Exposure times
for DAPI differed between slides. Forty z-stacks were acquired at a sampling distance of
x, y: 102 nm and z: 200 nm for each slice of the stack. Images were deconvolved using
the constrained iterative algorithm [36] creating three dimensional nuclear images of the
CTCs, CAMLs, and normal leucocytes on the filters. ZEN 2.3 software (Carl Zeiss Canada
Ltd.) was used for 3D image acquisition and processing [36]. Deconvolved images were
analyzed using the TeloView® v1.03 software program (Telo Genomics Corp., Toronto, ON,
Canada) [37]. TeloView® determines 6 telomeric parameters, including telomeric signal
intensity (telomere length), number of telomeric signals, number of telomere aggregates,
nuclear volume, a/c ratio, and nuclear position (relative distance of telomeres to nuclear
center/edge) [37]. The a/c ratio is defined as the nuclear space occupied by telomeres,
represented by three axes of length a, b, and c. The ratio between a and c axes, a/c ratio,
reflects the distribution of telomeres, which changes at different stages of the cell cycle.
Lower a/c ratio numbers are associated with initial stage of the cell cycle, such as G1. On
the other hand, high a/c ratio numbers are found when all telomeres align in the center
of the nucleus as cells progress into the late G2 phase. When cells are captured on the
ScreenCell filtration device, they are flattened due to the mild vacuum applied during
isolation [32]. Therefore, the nuclear volumes and a/c ratios discussed here can only be
seen in a comparative manner (CAMLs vs. leucocytes vs. CTCs) and do not represent
absolute measurements.



Biomedicines 2022, 10, 2391 5 of 16

2.7. Statistical Analysis

Telomeric parameters (number, length, telomere aggregates, nuclear volume, a/c ratio)
were compared between different cell types using a randomized block analysis of variance
followed by a least-square means multiple comparison. Each patient constitutes a block,
and the types of cells are compared within the patients. Graphical presentations indicated
the p-value for the overall test of differences across the cell types described above taking
into consideration both the effect of the patient and the cell type. Chi-square analysis
compared the percentage of interphase telomeric signals intensities at defined quartile
cut-offs. We considered p values ≤ 0.05 to be significant.

3. Results
3.1. Identification of Circulating Tumor Cells and Circulating Tumor Associated Cells

A total of 53 blood samples were collected from the 9 metastatic melanoma patients
along the 6-month duration of the study. The patients’ venous blood samples were explored
for the presence of CTCs three to five times during disease progression. They had three
blood samples of 3 mL each time. All blood samples were found to contain CTCs (single
CTCs +/− CTC-clusters). Out of the 53 samples, only 10 samples contained both CTCs
and CAMLs on the same filter. Thus, 10 blood samples from 9 melanoma patients were
processed for CTCs, CTC clusters, and CAMLs evaluation. Table 1 shows the number of
CAMLs, CTCs, and CTC-clusters captured on the filter from 3 mL of blood. Blood samples
from patient number 1 were analyzed at two different time points (entries 1 and 1.1), T0
and 1 month after. A minimum of 25 normal leucocytes were analyzed per sample. CTCs,
CAMLs, and normal leucocytes present in the melanoma patient samples were stained
using May Grünwald–Giemsa (Figure 1) and double ICC (Figure 2)

Table 1. Results of enumeration of CAMLs, CTCs, and clusters in 10 melanoma blood samples.

Patient Number Reference of Sample Blood Sample Volume CAML Nb CTC Nb CTC-Cluster Nb

1 VS-1-018 (ET3) 16AB0304 3 ml 2 56 0

1.1 VS-1-018_M1-3-17AA1313 3 ml 7 62 4

2 TM-1-019_M1- 16AB0258 3 ml 2 11 0

3 LM-1-039_CL2-17AA0828 3 ml 1 33 0

4 BJ-1-071_ET4-16AA8528 3 ml 1 22 0

5 DA-1-075_ET2-16AA7280 3 ml 3 26 0

6 GF-1-080_ET1-16AA7266 3 ml 2 32 30

7 LM-1-081_ET1-16AA7320 3 ml 2 20 2

8 AR-1-092_ET1-16AA2042 3 ml 2 19 12

9 KJ-1-084_ET1-17AA0845 3 ml 2 12 0

CTCs, circulating tumor cells; CTC-clusters (clusters of 2 or more CTCs), circulating tumor cell clusters; CAMLs,
cancer-associated macrophage-like cells; Nb, number.

The telomere 3D structure analysis of all the cells in this study showed characteristic
morphology of CTCs, CAMLs, and normal leucocytes (Figures 1 and 2), which enabled us
to proceed to the genetic profiling in order to explore the telomere cell heterogeneity.



Biomedicines 2022, 10, 2391 6 of 16
Biomedicines 2022, 10, x FOR PEER REVIEW 6 of 17 
 

 
Figure 1. Morphology of the cells identified as CTCs, CAMLs, and normal leucocytes (L) visualized 
on Screencell© filter colored by May Grunwald–Giemsa, with micropores (M) measuring 6.5 µm in 
diameter. (A) and (B) are from patient 9: (A) CTC (size = 32.5 microns) characterized by a hyper-
chromatic nucleus and a high nucleus–cytoplasmic ratio; and (B) a typical CAML (size = 48.7 mi-
crons) characterized by a low nucleus–cytoplasmic ratio and a normal leucocyte (L) (size = 11.7 mi-
crons). C and D are from patient 1: (C) 2 CTCs (size = 27.6 microns and 34 microns, respectively) 
with a large and hyperchromatic nucleus and a high nucleus–cytoplasmic ratio; and (D) representa-
tive CAMLs characterized by a large and elongated cytoplasm (size = 45.5 microns) and a low nu-
cleus–cytoplasmic ratio. 

 
Figure 2. Double ICC. (A) Control sample showing CD45+/Melan A− red-stained leucocytes and 
CD45−/Melan A+ brown-stained SK-Mel 28 cultured melanocytes; (B) Microporous filter from pa-
tient 1 showing a CD45+/Melan A− CAML with red-stained cytoplasm and blue-stained nucleus; 
(C) Microporous filter from patient 1 showing a CD45−/Melan A+ brown-stained CTC located close 
to CD45+/Melan A− red-stained leucocytes. G × obj. 40. 

Figure 1. Morphology of the cells identified as CTCs, CAMLs, and normal leucocytes (L) visualized
on Screencell© filter colored by May Grunwald–Giemsa, with micropores (M) measuring 6.5 µm in
diameter. (A) and (B) are from patient 9: (A) CTC (size = 32.5 microns) characterized by a hyperchro-
matic nucleus and a high nucleus–cytoplasmic ratio; and (B) a typical CAML (size = 48.7 microns)
characterized by a low nucleus–cytoplasmic ratio and a normal leucocyte (L) (size = 11.7 microns).
C and D are from patient 1: (C) 2 CTCs (size = 27.6 microns and 34 microns, respectively) with a
large and hyperchromatic nucleus and a high nucleus–cytoplasmic ratio; and (D) representative
CAMLs characterized by a large and elongated cytoplasm (size = 45.5 microns) and a low nucleus–
cytoplasmic ratio.
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Figure 2. Double ICC. (A) Control sample showing CD45+/Melan A− red-stained leucocytes and
CD45−/Melan A+ brown-stained SK-Mel 28 cultured melanocytes; (B) Microporous filter from
patient 1 showing a CD45+/Melan A− CAML with red-stained cytoplasm and blue-stained nucleus;
(C) Microporous filter from patient 1 showing a CD45−/Melan A+ brown-stained CTC located close
to CD45+/Melan A− red-stained leucocytes. G × obj. 40.
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3.2. 3D Telomere Profiles Identify CAML Cells with Short Telomeres

CAMLs can bind and migrate through the blood circulation attached to CTCs in 10%
of late-stage cancer patients, pointing to the possible importance of this cell-to-cell interac-
tion [38]. The molecular profiles of CTCs and CAMLs are essential in the comprehensive
biological characterization of solid tumors since the interactions between macrophages
and tumor cells lead to the development of a pro-tumor phenotype of macrophages (inte-
gration of tumor DNA into their genomes) [26]. Genomic instability is a dynamic process
where a complex set of genetic alterations creates and propagates clonal diversity [39]. To
investigate the levels of genomic instability in CTCs, CAMLs, and normal leucocytes, we
analyzed ten melanoma patient samples with 3D-QFISH telomere technology (patient 1
was analyzed at two time points). Representative nuclei were counterstained with DAPI,
shown in blue, and the telomeres are visualized as red signals (Figure 3).
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The Cy-3 labeled telomeres appear as red signals.
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The first step was to compare all five TeloView® parameters (total number of telom-
ere signals, total number of telomere aggregates, a/c ratio, telomeric signal intensity
(telomere length—total and average intensity), and nuclear volume) among the three cell
types. We found significant differences between CTCs vs. normal leucocytes and CTC vs.
macrophages among all five TeloView® parameters (Figure 4). However, just three parame-
ters were significantly different between CAMLs and normal leucocytes (a/c ratio, average
intensity (proportional to telomere length) and nuclear volume). File S1 (Supplementary
Materials) shows the individual comparisons for all patients. The p-values, included in
each graph, represent the significance of the difference in telomere architecture (TeloView®

parameters) among cell types.
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Figure 4. Differences in telomere parameters between CTCs, normal leucocytes, and CAMLs. (A) To-
tal number of telomere signals—a sum value representing the number of telomeres found in each cell
population. (B) Total number of telomere aggregates—telomeres in close proximity forming clusters
that cannot be further resolved at an optical resolution limit of 200 nm. Functionally, telomeric
aggregates are fused telomeric signals or telomeres in close illegitimate proximity able to engage in
recombination events. (C) The a/c ratio (nuclear spatial distribution of telomeres). The a/c ratio is
defined as the nuclear space occupied by telomeres, represented by three axes of length a, b, and
c. The ratio between a and c axes, a/c ratio, reflects the distribution of telomeres, which changes
at different stages of the cell cycle. A higher a/c ratio indicates cells in G2 and/or G2/M phase,
while lower a/c ratio represents cells in G0/G1 and/or S phase. (D) Total telomere signal intensity.
(E) Average intensity (proportional to telomere length. For total intensity and average intensity, the
position of each telomere is identified by using a threshold. Then, the center of gravity and the
integrated intensity of each telomere is calculated as arbitrary units based on the number of sequences
CCCTAA/probe intensity. The integrated intensity of each telomere is the appropriate parameter for
determining the length of the telomere. (F) Nuclear Volume. The x-axis assigns one box for each cell
population analyzed (results of all analyzed cells). The y-axis refers to the lower value, first quartile,
average (mean), median, and third quartile.

The second step was to investigate further the significant differences observed in
average intensity between CAMLs and leucocytes. Therefore, we graphically demonstrated
the relationship between telomere length and the number of telomeres. The total number
of telomere signals corresponds to the number of telomeres detected in the 3D preserved
nucleus of the cell. This combination differentiated two distinct profiles within the CAMLs
population (profile 1 and profile 2—Table 2). In the first one, the CAML telomere and
leucocytes’ profiles were similar (Figure 5A,B—profile 1) with a very low number of short
telomeres (telomeres with low intensity signals). In the second one, the levels of genomic
instability found in CAMLs were higher in comparison with leucocytes (Figure 5C,D—
profile 2). Profile 2 was characterized by an accumulation of telomeres with low signal
intensities (short telomeres).
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Figure 5. Representative examples of the CTCs, CAMLs, and normal leucocytes 3D telomere profile
for patients assigned to profile 1 (A,B) and profile 2 (C,D). The X-axis shows the number of telomeres
and the y-axis represents the telomere length in arbitrary units of fluorescence (a.u). CTCs, CAMLs,
and leucocytes are demarked with colors. The graphs correspond to patient 7 (A), patient 3 (B),
patient 1 (C), and patient 2 (D).
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In Figure 5, the telomere length (signal intensity, x-axis) is plotted against the number
of telomeres (y-axis) for all analyzed cells. Signals are grouped by their intensity level, and
this gives a picture of the telomere distribution in each sample. For normal leucocytes,
for example, this plot usually has small peaks between 0 and 20,000 a.u (arbitrary units
of relative fluorescence intensity), in which the number of telomeres per nucleus on the
y-axis range between 5 and 25 [10]. For leucocytes, most of the telomere signals have high
relative intensities, with signals detected up to 120,000 a.u [10]. CTCs are known to have
a high peak of shorter telomeres, and this finding was similarly described in other CTCs
studies [10,32,39]. Additionally, we found that four/five melanoma patients had CAMLs
with high levels of genomic instability (signal intensity vs. number of telomere signals)
in comparison with parental leucocytes (Figure S1, Supplementary Materials). Samples
from patient 1 were analyzed at two time points (T0 and T + 1 month). Interestingly,
patient 1 presented the same profile at the two time points analyzed (Profile 2), which
is characterized by a higher number of short telomeres in the CAMLs population in
comparison with leucocytes. Telomere length vs. number of telomeres for all patients are
shown in Figure S1 (Supplementary Materials).

Table 2. List of all patients with their corresponding telomere profile groups.

Patient Number Reference of Sample Telomere Profile

1 VS-1-018 (ET3) 16AB0304 Profile 2

1.1 VS-1-018_M1-3-17AA1313 Profile 2

2 TM-1-019_M1- 16AB0258 Profile 2

3 LM-1-039_CL2-17AA0828 Profile 1

4 BJ-1-071_ET4-16AA8528 Profile 2

5 DA-1-075_ET2-16AA7280 Profile 2

6 GF-1-080_ET1-16AA7266 Profile 1

7 LM-1-081_ET1-16AA7320 Profile 1

8 AR-1-092_ET1-16AA2042 Profile 1

9 KJ-1-084_ET1-17AA0845 Profile 1

4. Discussion

Although studies have focused on enumeration and molecular characterization of
CTCs, only CAMLs’ enumeration platforms are being used in clinical studies [31]. Adams
et al. (2016) showed that CAMLs could be differentiated in malignant disease and benign
breast lesions emphasizing that TAMs are also an important cell type to be characterized at
the molecular level [38]. TAMs can migrate with CTCs within the blood circulation, and
the CTC–CAML interaction is correlated with worse prognosis [31,35]. CAMLs could be
considered as disseminated TAMs which express phagocytic markers, capable of interacting
with CTCs in peripheral blood. TAMs were reported to be found in the tissue microenvi-
ronment. More recently, similar cells were described in the blood as CAMLs. Briefly, TAMs
are macrophages present in tissue close to the tumor, CAMLs could be regarded as the
equivalent cells in the blood, but their origin is still unclear. CAMLs are not found in healthy
individuals [30]. CAMLs may be indistinguishable from CTCs or normal leucocytes by
immunophenotyping, since CAMLs may be also CK and CD45 positive cells. In our study,
CAMLs expressed the CD45 antigen but not the Melan-A antigen. In addition, TAMs can
incorporate DNA from apoptotic bodies. The incorporation of DNA from cancer cells could
lead to genomic instability in the CAMLs’ population. Passerini et al. (2016) demonstrated
that the addition of even a single chromosome to human cells promotes genomic instability
by increasing DNA damage and sensitivity to replication stress [40]. However, colony
stimulating factor 1 (CSF-1), C-C motif ligand 2 (CCL2), vascular endothelial growth factor
A (VEGF-A), and the estimated glomerular filtration rate (EGFR) signaling pathway are the
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most well-documented macrophage stimulating protumor phenotype [41]. CSF-1 depletion
reduces macrophage density, delays tumor progression, and inhibits metastasis. CCL2 was
reported to shape macrophage polarization toward the protumor phenotype via the C-C
chemokine receptor 2 (CCR2) expressed on the surface of macrophages [41]. In addition,
VEGF-A promotes growth of tumors by inducing TAM infiltration. EGFR indirectly adjusts
the tumor microenvironment by regulating macrophage recruitment. Disrupted EGFR
signaling is correlated with better prognosis in colon cancer models [41].

In our current study, we used a size-based filtration device to isolate CAMLs from
blood samples of melanoma patients (Figures 1 and 2). Together, our results demonstrate
that CTCs and CAMLs are efficiently captured and enriched by this method to be used in
cytological analysis. A CAML cell population was detected in all patients. Other studies
had used FDA-approved CellSearch™ system to isolate CAMLs [30]. The CellSearch®

platform is an EpCAM-based capture assay based on the expression of epithelial cell
adhesion molecule (EpCAM). However, low or lack of EpCAM expression in CAMLs can
results in an underestimation of the number of CAMLs [35]. Our study showed that three
telomere parameters were able to differentiate normal leucocytes and CAMLs (Figure 3). As
expected, CTCs have a higher nuclear volume in comparison with CAMLs and leucocytes.
Interestingly, CAMLs have the highest a/c ratio among the other cell types. A higher a/c
ratio indicates cells in G2 and/or G2/M phase. Telomere length was also significantly
different between cell types. CAMLs have shorter telomeres in comparison with leucocytes,
but they are not as shorten as the telomeres found in CTCs (Figure 4). In addition, we
combined number of telomeres vs. telomere length and identified the presence of two
CAMLs subpopulations with different telomere profiles (Figure 5). Profile 2 showed a high
peak of short telomeres (in CAMLs) in comparison with control leucocytes (from the same
patient) and profile 1 showed a telomere length similar to control leucocytes.

The profile 2 was observed in almost half of the melanoma patients. These results
demonstrate the presence of two CAMLs subpopulations with low and high numbers of
short telomeres. There were no differences in CAMLs’ morphology between the two profiles.

It is important to note that the cells retained by the microporous filter have a flatter
morphology than the cells placed on a two-dimensional surface such as in a regular
microscope slide. This is due to the mild vacuum that is applied when the cells are captured
onto the device. This factor influences size measurements and, consequently, the TeloView®

parameters of nuclear volume and a/c ratio are also influenced. However, since all cell
types were subjected to the same enrichment technology, we assumed an even impact of
the mild vacuum applied during the cell isolation across all cell types, which warranted
both nuclear volume and a/c ratio appropriate as comparative elements between cell types.
Vacuum cell aspiration through the micropores can modify the cell-to-cell interaction. For
this reason, cell-to-cell interaction between CTCs and CAMLs is absent.

Interestingly, in the single patient where we compared the 3D telomere profile at T0
and one month after (patient 1 in Figure S1, Supplementary Materials), numbers of shorter
telomeres in the CAML population were unchanged at the different time points. However,
only patient 1 was analyzed at two time points. Even though the peak of short telomeres
decreased slightly in CTCs between the two time points, the CAMLs did not change.
Further validation studies, including a larger patient sample size, are necessary to confirm
these findings in order to explore the possible prognostic value of the profile number 2.
Our data provide evidence that increased levels of telomere dysfunction can be found
in CAMLs for some of the melanoma patients. Interactions between CTCs and CAMLs
could be responsible for the highly heterogeneous phenotypes found in circulating CAMLs.
Other observations from the literature showed evidence for the spontaneous fusion of
tumor cells with macrophages producing circulating hybrid cells [42]. Thus, it is possible
to suggest that those hybrid cells might be a part of the Profile 2 CAMLs subpopulation
with a high peak of short telomeres. However, the nature of the CTCs–CAMLs interaction
remains unclear, as well as whether this association has a prognostic value.
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We acknowledge that the main limitation of the present study is the small sample
size, which could interfere with a more substantiated conclusion. Our intention in putting
forward these relevant preliminary observations concerning the differences in the 3D
telomere parameters between CAMLs, leucocytes, and CTCs (from the same patient) was to
bring light to this individualized approach. Another point of consideration is that all patient
samples used in this study were after treatment (no pretreatment samples available), which
prevented a broader discussion. Considering that it is unknown what is creating genomic
instability in the CAMLs population, if the treatment were to be accounted responsible for
that, we would have seen an increased genomic instability in all patients. Although the
impact of treatment cannot be excluded, we did not observe that. For example, patients
4 and 9 received the same treatment and they fell into different profiles (profiles 2 and 1,
respectively), suggesting no association with the treatment received.

In summary, we demonstrated, for the first time, the different levels of telomere related
genomic instability on CAMLs compared to control leucocytes and CTCs from melanoma
patients. This study provided insights into the importance of molecular characterization
of both CTCs and CAMLs as a promising, minimally invasive approach to evaluate the
nature of the CTCs–CAMLs interactions. This may, in the future, allow for an assessment
of their possible combined prognostic impact.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10102391/s1, Table S1: Clinical information of all
patients included in the study; Figure S1: Representative figures of the CTCs, CAMLs, and leucocytes
profiles for all patients assigned to profile 1 (Patients 3, 6, 7, 8, and 9) and profile 2 (Patients 1 and
1.1, 2, 4, and 5). In each graph, the telomere length is shown in arbitrary units of fluorescence (AU).
The CTCs, CAMLs (macrophages) and leucocytes are demarked with colors. The telomere results for
each patient are shown in File S1.
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