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Abstract

Cell proliferation has generally been considered dispensable for anteroposterior extension

of embryonic axis during vertebrate gastrulation. Signal transducer and activator of tran-

scription 3 (Stat3), a conserved controller of cell proliferation, survival and regeneration, is

associated with human scoliosis, cancer and Hyper IgE Syndrome. Zebrafish Stat3 was pro-

posed to govern convergence and extension gastrulation movements in part by promoting

Wnt/Planar Cell Polarity (PCP) signaling, a conserved regulator of mediolaterally polarized

cell behaviors. Here, using zebrafish stat3 null mutants and pharmacological tools, we dem-

onstrate that cell proliferation contributes to anteroposterior embryonic axis extension. Zeb-

rafish embryos lacking maternal and zygotic Stat3 expression exhibit normal convergence

movements and planar cell polarity signaling, but transient axis elongation defect due to

insufficient number of cells resulting largely from reduced cell proliferation and increased

apoptosis. Pharmacologic inhibition of cell proliferation during gastrulation phenocopied

axis elongation defects. Stat3 regulates cell proliferation and axis extension in part via upre-

gulation of Cdc25a expression during oogenesis. Accordingly, restoring Cdc25a expression

in stat3 mutants partially suppressed cell proliferation and gastrulation defects. During later

development, stat3 mutant zebrafish exhibit stunted growth, scoliosis, excessive inflamma-

tion, and fail to thrive, affording a genetic tool to study Stat3 function in vertebrate develop-

ment, regeneration, and disease.

Author summary

During vertebrate embryogenesis, cell proliferation, fate specification and cell movements

are key processes that transform a fertilized egg into an embryo with head, trunk and tail.

Cell proliferation is orchestrated by maternal and zygotic functions of conserved regula-

tors including Cdc25a, and has generally been considered dispensable for embryonic axis

elongation. Stat3 transcriptional factor, a known promoter of cell proliferation, is associ-

ated with human scoliosis, inflammation and cancer. Based on morpholino-mediated

downregulation of Stat3 during zebrafish embryogenesis, Stat3 was previously proposed

to regulate convergence and extension cell movements that narrow the embryonic body
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and elongate it from head to tail partially through planar cell polarity signaling and

unknown transcriptional targets. Here, we report that zebrafish mutants lacking maternal

and zygotic Stat3 expression exhibit normal convergence movements and planar cell

polarity signaling, but transient axis elongation defect due to insufficient number of cells

resulting largely from reduced cell proliferation and increased cell death. Accordingly,

pharmacologic inhibition of cell proliferation also hinders axis elongation. Further experi-

ments indicate that Stat3 promotes head- to -tail axis elongation by stimulating cell prolif-

eration in part via upregulation of Cdc25a expression during oogenesis. During later

development, zebrafish stat3 mutants exhibit scoliosis and inflammation, potentially

affording a new tool to study related human diseases.

Introduction

Signal transducer and activator of transcription 3 (STAT3) is an essential mediator of cytokine

and growth factor signaling involved in animal development, homeostasis and disease [1, 2].

Primarily a transcription factor, STAT3 activates or inhibits expression of downstream genes

involved in cell proliferation, apoptosis, stem cell maintenance, differentiation, and migration

in normal tissues. Non-transcriptional functions of STAT3 in microtubule, mitochondria, and

chromatin regulation have also been reported [3, 4]. In tumors, constitutively active STAT3

drives cell proliferation through upregulation of cell cycle-regulators such as c-Myc and Cyclin

D, promotes pluripotency of cancer stem cells, and potentiates metastasis by modulating cyto-

skeleton and extracellular matrix [4, 5]. Further underscoring its role in human disease, domi-

nant autosomal STAT3 mutations account for numerous symptoms in Hyper-IgE syndrome

(HIES) patients such as misregulated TNFα levels and scoliosis [6–8]. Disruption of murine

Stat3 in hematopoietic cells causes Crohn’s disease-like immunodeficiency [9].

Stat3 also has essential functions in development. Firstly, STAT signaling regulates border

cell migration in the developing Drosophila egg chamber [10]. Secondly, Stat3 knockout mice

die by early gastrulation [11], implying critical but yet undefined roles of Stat3 in embryogene-

sis. Thirdly, morpholino studies in zebrafish indicated a requirement for Stat3 in planar cell

polarity (PCP) signaling and gastrulation movements [12, 13]. Later during development,

Stat3 promotes bone formation, as its deletion in mouse osteoclasts and osteoblasts decreased

bone density and volume [14, 15]. Dominant negative and morpholino-interference

approaches also implicated zebrafish Stat3 in heart and eye regeneration [16, 17].

Here, we report analyses of zebrafish stat3 mutants that lead us to propose a different

model wherein Stat3 regulates embryonic axis extension by ensuring sufficient number of cells

through its role as promoter of cell proliferation during blastula and gastrula stages and cell

survival during gastrulation. The cell cycle during zebrafish embryogenesis is complex. Early

embryos undergo rapid and synchronous cell cleavages [18] consisting of DNA synthesis (S)

and mitosis (M) phases without transcription or cell growth. After mid-blastula transition

(MBT) and activation of the zygotic genome, cell cycles slow down and become asynchronous

with the acquisition of a G2 phase but little growth [19]. Conserved from fly to mammals,

Cdc25a phosphatase is a positive regulator of cell cycle progression during embryogenesis

[20–23]. Through activation of Cyclin B/Cdk1 complexes, Cdc25a synthesized from both

maternal and zygotic transcripts propels mitotic entry [23]. But how Cdc25a is activated in

early vertebrate embryos is unclear.

MBT is followed by gastrulation, during which cells engage in large-scale migrations and

rearrangements to establish future body plan. Convergence and extension (C&E) are
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conserved gastrulation movements that narrow the germ layers mediolaterally and lengthen

them along the anteroposterior (AP) axis [24]. Under the influence of Wnt/PCP signaling,

cells become mediolaterally elongated and either migrate dorsally (convergence) or engage in

polarized intercalations that preferentially separate anterior and posterior neighbors to drive

simultaneous mediolateral (ML) convergence and AP axis extension [24, 25]. Disruption of

Wnt/PCP signaling in zebrafish mutants such as silberblick (slb)/wnt11 and trilobite (tri)/
vangl2 impairs ML cell elongation and polarized cell behaviors, consequently producing a

shorter and wider embryonic body [26, 27]. Interestingly, impaired cell elongation and ML

alignment, and consequently defective C&E were also reported in stat3 morphants, implicating

Stat3 as a regulator of PCP signaling during zebrafish C&E [12, 13].

Cell proliferation and gastrulation movements must be coordinated to achieve proper

embryogenesis. Indeed, rapid cell proliferation usually precedes gastrulation, during which

cell divisions occur infrequently [28]. Gastrulating cells divide at the expense of migration by

rounding up and abolishing their planar polarized asymmetries [29], likely because cell divi-

sion and motility utilize common cytoskeletal machineries. Limiting cell divisions is required

for normal C&E of the paraxial mesoderm in Xenopus [28] and posterior body elongation in

zebrafish [30]. Conversely, cell proliferation appears dispensable for axis elongation during

gastrulation. Complete gastrulation featuring elongated bodies occurs in the zebrafish emi
mutants in which mitosis ceases from early gastrulation, and in embryos where cell prolifera-

tion is chemically inhibited during gastrulation [31, 32]. However, without quantitative

assessment of C&E movements in these embryos, some contribution of cell proliferation to

gastrulation cannot be excluded. In addition, the relationship between cell division orientation

and axis elongation in zebrafish remains unresolved. While some studies pointed out that ori-

ented cell division under the regulation of Wnt/PCP signaling is a driving force for axis elon-

gation [33], others argued against the importance of cell division orientation in axis extension

[32].

Here, we report that Stat3 contributes to extension movements during zebrafish gastrula-

tion by ensuring sufficient number of cells through its role as a promoter of cell proliferation

and survival. Investigating null stat3 mutations generated with transcription activator-like

effector nuclease (TALEN) method, we found that neither maternal nor zygotic stat3 functions

are essential for the completion of embryogenesis. However, stat3 mutants die during juvenile

stages exhibiting scoliosis and excessive inflammation, warranting evaluation as a model for

diseases such as scoliosis, cancer, and inflammatory diseases (e.g. HIES). Strikingly, rather

than typical Wnt/PCP-based strong C&E defects, MZstat3 gastrulae manifested transient and

mild extension defects in the axial and paraxial mesoderm. As the underlying cellular mecha-

nism, we demonstrate that reduced cell number, due to decreased cell proliferation at blastula

and gastrula stages and increased cell death during late gastrulation account for stat3 mutant

extension defects. We further show that the evolutionarily conserved Stat3 function of promot-

ing cell cycle progression through upregulation of cdc25a expression is required for axis elon-

gation during gastrulation.

Results

stat3 mutants develop scoliosis, excessive inflammation, and fail to

thrive

To extend functional studies of Stat3 in zebrafish, we generated mutations in the stat3 gene

using TALEN method (Fig 1A, see also Materials and methods). The stat3stl27 and stat3stl28

alleles contain 7- and 2-base pair deletions in Exon 5, respectively, resulting in frameshift and
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Fig 1. Zebrafish stat3 mutants generated using TALEN method are strong/null alleles. (A) Design of TALEN pair targeting

zebrafish stat3 gene (yellow filled text). (B) Sequence alignments and schematics of Stat3 proteins encoded by stl27, stl28 and

sa15744 alleles. (C) Expression patterns of stat3 transcripts detected by WISH in WT and MZstat3 embryos (lateral views).

Arrowhead, nm, neuromast. (D) RT-PCR analysis of stat3 RNA levels in WT embryos at 1.3, 6, 8.3 and 24 hpf. gapdh was used as

an internal control. (E) qRT-PCR analysis of stat3 transcript levels in WT and MZstat3 embryos normalized to gapdh. (F) Western

blot detecting total Stat3 in WT, MZstat3 and MZstat3 embryos overexpressing Flag-tagged Stat3 at 6 hpf. β-actin was used as a

loading control. See also S1 Fig.

doi:10.1371/journal.pgen.1006564.g001
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premature stop codons, encoding proteins predicted to lack almost all the critical functional

domains of the Stat3 protein (Fig 1B).

Surprisingly, neither zygotic stat3stl27/stl27 nor stat3stl28/stl28 mutant embryos showed overt

gastrulation defects described in the previous morpholino studies [12], and displayed normal

morphology and notochord formation until 15 dpf (Fig 2A and 2D). During later larval

stages, stat3stl28/stl28 (Fig 2A) and stat3stl27/stl27 (Fig 2B and 2F) mutant larvae appeared signifi-

cantly smaller compared to siblings and manifested spinal curvatures in all dimensions (Fig

2E–2G). Scoliotic phenotypes could be discerned as early as 20 dpf (Fig 2E and 2N). Using

Alizarin Red staining and micro-computed tomographic (micro-CT) imaging, we further

detected three major categories of structural abnormalities in the vertebrae that contributed

to spinal curvatures in stat3 mutants (S2 Fig, S1–S3 Movies). In the first group, vertebrae

with a straight vertebral body and perpendicular end plates display either gentle or sharp

turns (S2B and S2C Fig). In the second group, abnormal vertebral morphology such as bent

vertebral body and non-perpendicular end plates were observed in stat3 mutant larvae (S2D

and S2E Fig). Lastly, in two out of ten mutant larvae, we observed fractures and extra bony

matrix (S2F–S2H Fig). Mutant animals were fragile and lethargic, and progressively died by

1.5 to 2 months of age (Fig 2C). Among progenies of stat3stl27/+ incross, mutants constituted

25% at 15 dpf; their proportion decreased over time, such that no mutants were detected at

45 dpf (Fig 2C). Micro-CT analyses revealed reduced bone mineral density (Fig 2I) and a

nearly 40% decrease in the total bone volume in stat3 juveniles (Fig 2J). Consistent with the

roles of Stat3 in immune responses [6, 8], using qRT-PCR we observed a significant upregu-

lation of transcripts encoding pro-inflammatory factors Tnfα and Interleukin (Il)-6 in

stat3stl27/stl27 larvae and juveniles at 35 dpf (Fig 2K and 2L), subsequent to the manifestation

of stunted growth and scoliotic phenotypes (Fig 2A, 2B and 2E). Given that both stl27 and

stl28 alleles are predicted to cause frame shifts and produce similarly truncated proteins (Fig

1B), and that they resulted in similar growth defects, scoliotic phenotypes, and lethality (Fig

2), we conclude that they similarly disrupt stat3 gene function. We also characterized, an

additional stat3sa15744 allele, generated by chemical mutagenesis and high throughput

sequencing, which is predicted to introduce a stop codon at amino acid 73 (Fig 1B) [34]. Fish

homozygous for this allele exhibited phenotypes similar to the TALEN created alleles, includ-

ing runting, scoliosis, gaping jaw, and larval stage lethality starting at about 19 dpf (Fig 2H).

Given the similar phenotypes of the three TALEN stat3 mutant alleles, we focused most of

our studies on the stat3stl27 allele.

One hypothesis is that the growth defect observed in stat3 homozygous mutants is due to

failure to compete for food with their heterozygous and wild-type (WT) siblings in the same

tank as a result of scoliosis and hence reduced mobility. To test this, we grew progeny of

stat3stl27/+ heterozygotes on rotifer diet to reduce food competition with WT siblings (see

Materials and methods). Larvae were fixed on 18 dpf, measured for body length, and geno-

typed. Homozygous zygotic stat3 mutant larvae appeared to be 9% shorter than their siblings

at 18 dpf (Fig 2B), indicating that growth retardation is a primary phenotype of stat3 mutants.

Interestingly, only one out of four scoliotic larvae was among the shortest; and in other experi-

ments we also observed very short larvae of all genotypes without body curvatures (S2I Fig),

arguing against a simple causal relationship between stunted growth and scoliosis phenotypes.

Together these observations reveal that zygotic stat3 function is dispensable for embryonic

and early larval development in zebrafish. At juvenile stages loss of stat3 function results in

stunted growth, scoliosis, and inflammation that are not clearly causally related, and eventually

death before sexual maturity.

Stat3 regulates cell proliferation during zebrafish gastrulation
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Fig 2. Zebrafish stat3 mutants develop late-onset scoliosis and cannot survive to adulthood. (A) Growth curve of

stat3stl28/stl28 fish and siblings. (B) Body length of stat3stl27/stl27 and stat3stl27/+ and WT siblings at 18 dpf. Different genotypes were

kept in the same tank and fed exclusively with rotifers to diminish food competition. (C) Survival rate of stat3stl27/stl27, stat3stl27/+ fish

and WT siblings. (D) Images of live animals and Alizarin stained skeletons showing WT and zygotic stat3 mutant fish at 15 dpf

(anterior to the left). Vertebral structures in the boxed region were revealed via Alizarin Red live staining and confocal imaging,

Stat3 regulates cell proliferation during zebrafish gastrulation
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Maternal zygotic stat3 gastrulae exhibit mild extension defect

independent of PCP signaling

The lack of an overt embryogenesis defects in zygotic stat3 mutants generated by heterozygous

parents was surprising given previous reports of strong gastrulation defects in stat3 morphants

[12] and whole-mount in situ hybridization (WISH) studies that detected only zygotic expres-

sion of stat3 in zebrafish embryos [35]. However, using WISH and RT-PCR we detected high

levels of maternal stat3 transcripts (Fig 1C and 1D). WISH further showed that stat3 mRNA

was expressed ubiquitously during blastula and gastrula stages and became enriched in the

head and in neuromasts at 5 dpf (Fig 1C). To test whether maternal Stat3 function contributes

to gastrulation, we generated maternal zygotic (MZ) stat3stl27/stl27 mutants by germline trans-

plantations [29]. For simplicity, hereafter we use MZstat3, Zstat3, and Mstat3 to refer to mater-

nal zygotic (MZstat3, from incrosses of WT fish harboring stat3stl27/stl27 germline), zygotic

(Zstat3, from stat3stl27/+ incrosses), and maternal (Mstat3stl27/+, from crosses of WT females

harboring stat3stl27/stl27 germline with stat3stl27/+ or stat3+/+ males) mutant, respectively, unless

indicated otherwise.

Unexpectedly, MZstat3 mutants progressed through embryogenesis and later exhibited

phenotypes described above for Zstat3 mutants with no observable changes in the onset, sever-

ity or survival (Fig 2C and 2M). Using qRT-PCR and four different primer pairs spanning

regions at, upstream of, or downstream of the stat3stl27 deletion in all three stat3 transcript

sequences annotated in the Zv9 zebrafish genome assembly, we observed significant reduction

of stat3 transcripts in MZstat3 embryos (Fig 1E, S1A–S1C Fig). In agreement, Western blotting

with an antibody against the C-terminus of zebrafish Stat3 failed to detect Stat3 protein in

MZstat3 gastrulae (Fig 1F, S1D Fig, Materials and methods). Based on these results we con-

clude that stl27 is a strong/null allele.

We first aimed to verify the scoliosis phenotype observed in zygotic stat3 mutant larvae by

growing 39 WT and 210 MZstat3 embryos in separate tanks. Whereas over 90% of WT larvae

were alive at various time points of interest, survival of MZstat3 fish declined sharply over

time, with 66% mutants alive at 20 dpf and only 7% at 43 dpf (Fig 2M). We also observed spinal

curvatures in 100% of MZstat3 mutants from as early as 20 dpf, with majority of the larvae

showing two, three, or four curves by 26 dpf (Fig 2N). Together, these results further con-

firmed that stat3 function is essential for survival and spinal development and showed that the

scoliosis phenotype and failure to thrive are completely penetrant.

Previous studies that employed antisense morpholino oligonucleotides (MO1-stat3) pro-

posed a requirement of stat3 in Wnt/PCP signaling and ML cell elongation essential for C&E

gastrulation movements [13]. However, MZstat3 gastrulae did not exhibit severe C&E defects

(Fig 3Aa and 3Ab) and showed normal AP body length by 30 hpf (Fig 3Ac and 3B). To detect

any subtle morphogenetic defects, we visualized the nascent embryonic tissues that undergo

dynamic C&E gastrulation movements using WISH [27, 36]. Whereas we failed to detect any

defects in convergence of paraxial mesoderm assessed by the ML dimension of the paraxial
protocadherin (papc)-expression domain (Fig 3C and 3D), we noticed 13.2% and 14.2%

shown in insets. (E) Images of live animals and Alizarin stained skeletons showing a WT and a zygotic stat3stl28/stl28 mutant fish with

two curves near the caudal fin (inset) at 22 dpf. Anterior to the left. (F) Images of live animals and Alizarin stained skeletons showing

a WT and a scoliotic stat3stl27/stl27 mutant fish at 46 dpf (anterior to the left). (G) μCT imaging showing body curvatures of WT

sibling and stat3stl27/stl27 mutant at 41 dpf (anterior to the left). (H) μCT imaging showing body curvatures of WT sibling and

stat3sa15744/sa15744 mutant at 43 dpf (anterior to the left, arrow denote bend in spine). (I-J) Quantification of bone mineral density (H)

and bone/tissue volume ratio (Bv/Tv, I) of stat3stl27/stl27 (G). (K-L) Transcript levels of tnfα and il6 in WT and stat3stl27/stl27 mutant

animals detected by qRT-PCR at indicated developmental stages. (M-N) Survival rate and percentage of mutant fish with various

numbers of body curves of MZ stat3stl27/stl27 mutants. *p<0.05, ***p<0.001, ****p<0.0001, error bars = SEM. See also S2 Fig.

doi:10.1371/journal.pgen.1006564.g002
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reduction compared to WT in the AP extension of the notochord marked by expression of no
tail (ntl) in Mstat3 and MZstat3 mutants, respectively (Fig 3E and 3F). Phenotypic differences

between morphants and mutants have been described for many zebrafish genes [37]. One pos-

sible mechanism involves genetic compensation, in which other genes alter their expression in

the presence of a mutation, resulting in mild or no phenotypes [38]. To test whether such

genetic compensation could explain the milder phenotypes of our MZstat3 mutants compared

to stat3 morphants [12], we injected MO1-stat3 into both WT and MZstat3 one-celled

Fig 3. MZstat3 mutants exhibit transient and mild extension defects in axial mesoderm during gastrulation. (A) Live images of

WT and MZstat3 embryos shown in lateral (a, c) and dorsal view (b). The insets in c show the part of notochord above yolk extension in

30 hpf embryos. Arrowhead, nt, notochord. (B) Morphometric analysis of AP axis extension of 30 hpf embryos shown in A(c). (C) papc in

presomitic mesoderm and dlx3b marking neuroectoderm boundary in 1-somite stage WT and MZstat3 embryos (dorsal view). (D)

Measurement of ML width of papc expression domain (pink in C). (E) Expression of ntl in notochord and tail in 1-somite stage WT, Zstat3,

Mstat3, MZstat3, and MZstat3 embryos overexpressing Stat3-F, as well as WT and MZstat3 embryos injected with 5 ng MO1-stat3

(lateral view). Phenol red was used as injection control. (F) Measurement of notochord length in embryos in E (blue lines in E).

****p<0.0001, n.s. = non-significant, error bars = SEM. See also S3 Fig.

doi:10.1371/journal.pgen.1006564.g003
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embryos. If the lack of phenotype in MZstat3 embryos were due to genetic compensation, then

they should show no additional C&E phenotypes when injected with morpholinos or even

milder phenotype than WT zygotes injected with the same morpholino dose [38]. While injec-

tion of MO1-stat3 into WT embryos resulted in dose-dependent body length reduction (S3A

Fig), MZstat3 mutants showed comparable severe C&E phenotypes compared to WT gastrulae

upon injection of the same MO1-stat3 dose (Fig 3E and 3F). These results support the notion

that the discrepancy between stat3 morpholino- and mutation-induced phenotypes is likely

due to off-target effects of MO1-stat3 rather than to genetic compensation (see Discussion)

[38].

During zebrafish gastrulation, ML intercalation of cells is the main driving force for C&E of

the axial mesoderm tissue [39]. Hence, reduced AP length of axial mesoderm tissue in MZstat3
gastrulae (Fig 3E and 3F) could result from defective ML intercalation of cells. Against this

notion, the notochord in WT, Mstat3 and MZstat3 mutant gastrulae at 1-somite stage (Fig 4A)

showed comparable ML dimension (Fig 4B), an equivalent number of cells across the noto-

chord in WT versus mutants (Fig 4C). Moreover, by mid-segmentation stage notochord in

both Mstat3 and MZstat3 mutants converged to a single-cell column as observed in WT

(S4 Fig).

We next asked whether ML cell elongation, the hallmark of Wnt/PCP signaling [25], was

affected in stat3-deficient gastrulae. Our analyses revealed that at 1-somite stage the notochord

cells in Mstat3 and MZstat3 mutants had a reduced length-to-width ratio (LWR) (2.0±0.0)

compared to WT cells with LWR of 2.5±0.0 (Fig 4A, 4D and 4F–4H). However, contrasting a

typical Wnt/PCP defect [27], the MZstat3 mutant notochord cells aligned normally their long

axes with the ML embryonic axis (Fig 4E). Moreover, we noted that Mstat3 and MZstat3
mutant cells were 11.6% and 17.3% larger compared to their WT counterparts, respectively

(Fig 4I). These results argue against Stat3 being a key regulator of Wnt/PCP signaling during

zebrafish gastrulation, but also suggest a role of Stat3 in cell shape and size (see Discussion).

To query further whether Stat3 plays any role in Wnt/PCP signaling, we asked whether phe-

notypes of mutations disrupting Wnt/PCP components such as trilobite(tri)/vangl2 [27] or sil-
berblick(slb)/wnt11 [26] could be exacerbated by simultaneous reduction of Stat3 function. A

spectrum of eye separation phenotypes from partial to complete fusion of the eyes (Fig 4J),

often associated with C&E defects, are commonly seen in both tri and slb embryos and are

exacerbated in compound PCP mutants [36, 40]. However, we found that Zstat3;Ztrivu67/vu67

and Zstat3;MZslbtz216/tz216 double mutants exhibited similar penetrance and expressivity of the

eye separation defect compared to their single mutant siblings (Fig 4K and 4L). Together, our

data provide genetic evidence for an essential role of Stat3 in normal AP axis extension during

zebrafish gastrulation. Moreover, Stat3 regulates cell size and shape during gastrulation with-

out significantly affecting Wnt/PCP signaling.

Stat3 promotes cell proliferation but does not affect cell division

orientation during early zebrafish embryogenesis

In the above morphometric analyses, the enlarged cell size in MZ/Mstat3 mutant gastrulae

stood out (Fig 4I). Consistent with reports of Stat3 promoting cell proliferation in many bio-

logical contexts [5], we detected 31.2% and 33.7% reduction in mitosis at early gastrulation (6

hpf) in Mstat3 and MZstat3 mutants compared to WT, respectively, as revealed by phosphory-

lated Histone H3 (pH3) immunostaining (Fig 5A and 5B). Total number of cells, determined

by counting DAPI-stained nuclei, was also decreased by 12.5% and 14.1% in Mstat3 and

MZstat3 mutants (Fig 5C), indicating comparable cell proliferation defects in these mutants at

early gastrulation. By late gastrulation, however, Mstat3 gastrulae exhibited similar level of cell

Stat3 regulates cell proliferation during zebrafish gastrulation
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Fig 4. MZstat3 mutants show neither obvious cell polarity defects during C&E nor interaction with zebrafish PCP

mutants. (A) Confocal image of dorsal mesoderm in WT, Mstat3, and MZstat3 1-somite stage embryos labeled with mGFP

(anterior to the top). Cell shape and orientation of notochord cells outlined in yellow were analyzed as illustrated in D. (B)

Measurement of notochord width at 1-somite stage. (C) Quantification of the number of cells across the ML notochord axis at

1-somite stage. (E) Cumulative distribution of notochord cell orientation in WT, Mstat3, and MZstat3 embryos. (F) Cell shape

Stat3 regulates cell proliferation during zebrafish gastrulation
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proliferation to that seen in WT (Fig 5D), whereas their total cell number continued to be

reduced (Fig 5E), suggesting only a partial rescue of the cell proliferation defect by zygotic

stat3 expression. By contrast, both proliferation rate and total cell number in MZstat3 embryos

remained low throughout gastrulation (Fig 5A, 5D and 5E). Together, these data indicate that

Stat3 regulates cell proliferation during zebrafish embryogenesis. Moreover, one zygotic WT

allele is not sufficient to compensate the cell number deficit caused by reduced cell prolifera-

tion in maternal stat3 mutants, revealing a crucial role of maternal Stat3.

To investigate the maternal Stat3 function in cell proliferation, we analyzed the rapid cleav-

ages prior to MBT that depend exclusively on maternally deposited proteins and RNAs [41],

via in vivo confocal time-lapse imaging of embryos with Histone2B-RFP (H2B-RFP)-labeled

nuclei (Materials and methods). Whereas WT blastomeres divided every 15.8 ~ 16.6 min from

Cycle 5 (from 16 to 32 cells) to Cycle 9 (from 256 to 512 cells) (Fig 5F, S5 Fig, S4 Movie) con-

sistent with previous reports [18], pre-MBT cycles ranged from 17.6 min to 19.2 min in

embryos lacking maternal stat3 function (Fig 5F, S5 Movie), a nearly 13% increase. Cumula-

tively, Mstat3 mutants took significantly longer to complete five pre-MBT cell cycles compared

to progeny of WT and heterozygous females (Fig 5F and 5G). Interestingly, embryos obtained

from heterozygous females exhibited normal length of the early cleavage cycles (Fig 5F), indi-

cating that one WT stat3 allele in the female germline is sufficient to ensure in the progeny

normal embryonic cleavages before the initiation of zygotic transcription.

We next asked whether Stat3 is required for post-MBT cell divisions. Our manual lineage

tracing of individual blastomeres for the duration of five post-MBT divisions (Fig 6A–6C,

Materials and methods) revealed that cell cycles gradually lengthened from MBT onward in

both WT and MZstat3 embryos, consistent with previous observations [19]. Furthermore,

cycles 10 through 13 were significantly longer in MZstat3 than in WT embryos (Fig 6D), dem-

onstrating Stat3 was required for post-MBT cell cycle progression. Together, these results

establish a key role of Stat3 in promoting cell proliferation throughout early embryogenesis.

Alignment of cell division with the AP embryonic axis during early gastrulation has been

shown to be regulated by Wnt/PCP pathway, although it remains unresolved whether polar-

ized cell division contributes to axis extension [32, 33]. Oriented cell division during late gas-

trulation and early segmentation is essential for morphogenesis such as neural rod midline

formation [32, 33]. To test Stat3’s role in cell division orientation, we analyzed time-lapse mov-

ies of WT and MZstat3 embryos at late gastrulation and early segmentation stages (1–3 somite

stage). Cell divisions of dorsal neuroectodermal cells were mediolaterally aligned in both WT

and mutant gastrulae (Fig 6E–6G). Together these results indicate a requirement for both

maternal and zygotic Stat3 function in promoting cell divisions before and after MBT, but

argue against a significant role of Stat3 in cell division orientation during early zebrafish

embryogenesis.

stat3 deficiency increases apoptosis

Stat3 suppresses apoptosis in various biological contexts through transcriptional activation of

anti-apoptotic genes [5]. During zebrafish embryogenesis, apoptosis can be detected from late

gastrulation/early segmentation stages [42]. Terminal deoxynucleotidyl transferase mediated

analysis represented by length-to-width ratio (LWR). (G-I) Long axis (length, G), short axis (width, H) and average area (I) of in

WT, Mstat3 and MZstat3 notochord cells. (J) A spectrum of eye separation phenotypes at 3 dpf with C1 representing WT eye

spacing and C5 representing the most severe phenotype, cyclopia. Ventral view, anterior to the top. (K) Penetrance and

expressivity of eye separation phenotypes of Ztri, Ztri;Zstat3stl27/+, and Ztri;Zstat3 embryos. Eye separation phenotypes were also

quantified by cyclopia index (CI) as previously described [36].(L) Penetrance and expressivity of eye separation phenotypes of

MZslb, MZslb;Zstat3stl27/+, and MZslb;Zstat3 embryos. ****p<0.0001, n.s. = non-significant, error bars = SEM. See also S4 Fig.

doi:10.1371/journal.pgen.1006564.g004

Stat3 regulates cell proliferation during zebrafish gastrulation

PLOS Genetics | DOI:10.1371/journal.pgen.1006564 February 21, 2017 11 / 32



Fig 5. Stat3 promotes cell cycle progression during zebrafish embryogenesis. (A) Immunofluorescent anti-pH3

labeling of proliferating cells (red) and DAPI labeling all nuclei (blue) in WT, Mstat3, and MZstat3 embryos at 6 hpf

(animal view) and 10 hpf (dorsal view). (B, D) Quantification of mitotic cell number at 6 and 10 hpf. (C, E) Quantification

of total cell number at 6 and 10 hpf. (F and G) Average length of each cell cycle (F) and timing of mitosis (G) from Cycle

5 to Cycle 9 in embryos from WT, stat3stl27/+, and stat3stl27/+ females. (H-K) Analyses of cell divisions from Cycle 5 to

Cycle 9 in 10 pg (H and I) and 25 pg (J and K) stat3-F injected MZstat3 embryos. *p<0.05, **p<0.01, ***p<0.001,

****p<0.0001, n.s. = non-significant, error bars = SEM. See also S5 Fig.

doi:10.1371/journal.pgen.1006564.g005
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Fig 6. Stat3 promotes post-MBT cell divisions but does not regulate cell division orientation during

zebrafish embryogenesis. (A) Experimental design for post-MBT cell cycle analyses. Embryos labeled

ubiquitously with histone2B-RFP (H2B-RFP) were mosaically injected with memCherry or mGFP + stat3-F

mRNA at 8-cell stage for lineage tracing. Labeled clones (B and C) within the same embryo were monitored

using confocal time-lapse microscopy (See also Materials and methods). (D) Analyses of cell cycle lengths for
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dUTP Nick End Labeling (TUNEL) assay did not detect apoptotic cells in WT or MZstat3
embryos at midgastrulation (60% epiboly or 6.5 hpf and 80% epiboly or 8.3hpf), but revealed a

nearly 70% increase in the number of apoptotic cells in MZstat3 embryos compared to WT at

both late gastrulation (10 hpf; S6A–S6C Fig) and early somitogenesis (11hpf; S6D–S6F Fig).

Using qRT-PCR, we further detected substantial downregulation of birc5a, the zebrafish

homolog of known anti-apoptotic target of Stat3, Survivin [43], in MZstat3 embryos (S6G Fig),

whereas expression of bcl2a was not significantly altered (S6H Fig). Together, these data indi-

cate that Stat3 suppresses apoptosis in zebrafish embryos likely through activating anti-apopto-

tic genes such as birc5a/survivin. Moreover, elevated apoptosis may further decrease the

number of cells in MZstat3 mutants at late gastrulation (Fig 5E) and thus contribute to the axis

extension defect (Figs 3E and 7).

Reduced cell proliferation impairs axis extension

During ML cell intercalation in vertebrate gastrulae cells move medially or laterally to separate

anterior and posterior neighbors and align one after another anteroposteriorly, simultaneously

producing AP extension and ML convergence [24]. Confocal imaging at 1 somite stage

revealed normal width and 2–4 rows of cells in the notochords of both MZstat3 and WT gas-

trulae (Fig 4A–4C). At the 3-somite stage, we observed two rows of ML elongated axial meso-

dermal cells in the notochords of both MZstat3 and WT gastrulae (Fig 7A–7C), arguing

against defective ML intercalation. Rather, we reasoned that a shorter notochord in MZstat3
gastrulae results from fewer cells that participate in ML intercalation, which drives the antero-

posterior extension of dorsal mesoderm, due to decreased cell proliferation (Fig 5A–5E) and

increased apoptosis (S6 Fig). To test this, we analyzed the dimensions and numbers of cells in

one optical section of the notochord and adjacent first three somites in 3-somite stage embryos

(see Materials and methods). Within each somite, flanking the notochord are the adaxial cells

that later give rise to slow muscles [44]. We found that somites were 8.9% and 14.7% shorter in

AP dimension in Mstat3 and MZstat3 mutants compared to WT, respectively (Fig 7E). Corre-

lated with the AP extension defect, somites exhibited 11.4% (Mstat3) and 16.1% (MZstat3)

fewer adaxial cells compared to WT somites, which contained 4.9 ± 0.1 adaxial cells. Likewise,

the adjacent notochord tissue contained 12.2% (Mstat3) and 21.7% (MZstat3) fewer cells than

in WT embryos, in which the corresponding notochord fragment featured 8.8 ± 0.2 cells (Fig

7F and 7G). These results support the model whereby reduction of cell number in Mstat3 and

MZstat3 mutants contributes to morphogenetic defects in extension of axial and presomitic

mesoderm (Fig 7H–7J), despite enlarged cell size (Fig 4I).

To test this model further, we asked whether chemical inhibition of cell proliferation in WT

gastrulae could phenocopy the MZstat3 axis extension defect. Inhibiting proliferation in WT

embryos with 150 μM aphidicolin and 20 mM hydroxyurea from early shield stage (5.7 hpf,

Fig 8A–8D) [31], resulted in 22% reduction of total cell number by late gastrulation (10 hpf,

Fig 8C–8E), similar to that in MZstat3 mutants (Fig 5E). Moreover, compared to DMSO-

treated controls, ntl-expressing notochord was 10% shorter in drug-treated embryos at

1-somite stage (Fig 8F–8H). At 3-somite stage, somites were 20% shorter in AP dimension and

had 27.5% fewer adaxial cells (Fig 8I–8L), with the corresponding notochord fragment

Cycle 11–13 in WT, WT overexpressing Stat3-F, MZstat3, and MZstat3 overexpressing Stat3-F embryos.

(E-G) Cell division orientation in dorsal neuroectoderm in WT (E) and MZstat3 (F) embryos during 1–3 somite

stages, with 0 degrees representing mediolaterally aligned cell divisions and 90 degrees representing

anteroposteriorly aligned cell divisions, quantified in G. *p<0.05, **p<0.01, ****p<0.0001, n.s. = non-

significant, error bars = SEM. See also S7 Fig.

doi:10.1371/journal.pgen.1006564.g006
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possessing 34.3% fewer cells (Fig 8M). Together, these results indicate that drug inhibition of

cell proliferation phenocopied both proliferation and morphogenetic defects caused by loss of

stat3 function, supporting the model whereby reduced cell number in MZstat3 embryos due to

proliferation defect could account for impaired extension. Hence, cell proliferation is required

for normal axis extension during zebrafish gastrulation.

We next asked if the altered cell shape observed in MZstat3 gastrulae was due to increased

cell size (Fig 4F–4I). Similarly to MZstat3 mutants, drug treatment increased notochord cell

size (Fig 8P, 8Q and 8V) with only slight change in their ML alignment (Fig 8R). However, the

enlarged cells in drug-treated embryos featured greater long and short axes, and their cell elon-

gation was only slightly reduced (LWR = 2.3) compared to that of cells from DMSO-treated

controls (LWR = 2.6, Fig 8S, 8T and 8U). This contrasted the cell shape defect of MZstat3
mutants, where enlarged cells showed diminished long but increased short axes, and therefore

Fig 7. Cell number reduction correlates with axis extension defects in stat3 mutant embryos. (A-D)

Confocal image of dorsal mesoderm expressing mGFP in WT (A), Mstat3 (B), MZstat3 (C) embryos, and

MZstat3 embryos overexpressing Stat3-F (D) at 11 hpf (anterior to the top). Somite boundaries are outlined in

green. Adaxial cells are outlined in orange. Green arrows show AP dimension of each somite. Adaxial cells

and notochord cells aligning along the AP axis are numbered in yellow. (E-G) Quantification of the average

somite AP dimension (E), number of notochord cells (F) and number of adaxial cells (G) between adjacent

furrows of the first two somites. (H-K) Schema of AP extension of the notochord and presomitic mesoderm. st,

somite; nt, notochord. **p<0.01, ****p<0.0001, error bars = SEM.

doi:10.1371/journal.pgen.1006564.g007
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Fig 8. Inhibition of cell proliferation using hydroxyurea and aphidicolin leads to axis extension defects

in zebrafish gastrulae. (A) Immunofluorescent anti-pH3 labeling of proliferating cells (red) and total nuclei

labeled with DAPI labeling (blue) in DMSO-treated control embryos and hydroxyurea+aphidicolin (H+A)-treated

embryos at 6 hpf (animal view) and 10 hpf (dorsal view, anterior to the top). (B-E) Quantification of pH3+ cells (B

and D) and DAPI+ cells (C and E) in A. (F and G) Expression of ntl at 1-somite stage (lateral view, anterior to the
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strongly reduced LWR (2.0±0.0, Fig 4F–4H). These results argue against the cell size increase

alone causing the cell shape defect in MZstat3 gastrulae.

Stat3 overexpression partially rescues post- but not pre-MBT cell

proliferation defect in MZstat3 mutants

We next asked whether restoring Stat3 expression could rescue proliferation and/or axis

extension phenotypes in stat3-deficient embryos by injecting into 1-celled zygotes synthetic

RNA encoding zebrafish Stat3 with FLAG tag at the C-terminus (Stat3-F). However, injec-

tion of neither 10 pg nor 25 pg stat3-F RNA altered the lengths of the cell cycles preceding

initiation of zygotic transcription in MZstat3 mutants (Fig 5H–5K). For post-MBT cell divi-

sions, we mosaically overexpressed Stat3-F in MZstat3 embryos labeled ubiquitously with

H2B-RFP (Fig 6A–6C; Materials and methods). Notably, in MZstat3 cells overexpressing

Stat3-F, Cycles 11~13 were shorter compared to those in uninjected mutant cells, but still

longer than WT cycles (Fig 6D), indicating a partial rescue of post-MBT cell division defect.

Interestingly, we did not observe significant changes of cell cycle length in WT cells overex-

pressing Stat3-F (Fig 6D). We also verified in WT and MZstat3 embryos that post-MBT cell

cycle lengths were not altered in cells injected with RNA encoding fluorescent proteins (S7A

and S7B Fig).

Although injection at 1-cell stage of 25 pg stat3-F RNA did not significantly rescue reduced

axis extension in MZstat3 mutants as assayed by ntl WISH at 1-somite stage (Fig 3E and 3F),

it partially rescued the somite AP extension and notochord cell number phenotypes and

completely normalized adaxial cell number at 3-somite stage (Fig 7D–7G and 7K). Hence,

restoring Stat3 expression in MZstat3 mutants could partially rescue phenotypes caused by

defects in post-MBT processes such as post-MBT cell divisions; but failed to rescue the deficits

caused by pre-MBT defects. These observations corroborate the critical function of maternally

contributed Stat3, and imply that the role of Stat3 in cell proliferation during zebrafish

embryogenesis is transcription-dependent.

Stat3 regulates cell proliferation and axis extension by promoting cdc25a

expression

We next wished to define the molecular mechanism through which Stat3 regulates cell prolif-

eration. Stat3 is known to regulate transcription of many cell cycle regulators [5]. Accordingly,

qRT-PCR revealed significant downregulation of cdc25a RNA in MZstat3 mutants during

cleavage and gastrula stages (Fig 9A and 9B). In addition, expression of genes encoding

Cyclins, such as ccna2, ccnb1, and ccnb2, was slightly but not statistically significantly reduced

with exception of cyclinD1 (S8A Fig).

Cdc25a has a conserved role in promoting mitotic entry in early animal development [19–

21]. Hence, we asked if restoring cdc25a expression could suppress cell cycle and axis extension

top). (H) Quantification of notochord length (blue lines in F and G). (I and J) Confocal image of dorsal mesoderm

in 3-somite stage embryos expressing mGFP with somite AP dimension illustrated with green arrow, somitic

boundaries outlined in green, adaxial cells outlined in orange, adaxial cells and notochord cells between

adjacent somitic boundaries numbered in yellow (dorsal view, anterior to the top). (K-M) Quantification of somite

AP dimension (K), numbers of adaxial cells (L) and notochord cells (M) in I and J. (N and O) Schema of AP

extension of the notochord and presomitic mesoderm. st, somite; nt, notochord. (P-V) Dorsal view showing cells

labeled with mGFP in DMSO-treated (P) and drug-treated (Q) embryos at 1-somite stage (anterior to the top).

Analyses of notochord cells’ orientation (R), shape (S), long axis (length, T), short axis (width, U) and size (V).

****p<0.0001, n.s. = non-significant, error bars = SEM.

doi:10.1371/journal.pgen.1006564.g008
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defects in MZstat3 mutants. Accordingly, we observed shortening of pre-MBT cycles (Cycle

7~9) in mutant embryos injected with 50 pg cdc25a RNA (but not with 25 pg cdc25 RNA),

with cells dividing every 17.7~17.9 min compared to 18.4~18.8 min in control MZstat3
embryos (Fig 9C). Further, injection of either 25 pg or 50 pg cdc25a RNA fully suppressed

post-MBT cell cycle phenotype (Fig 9D), and partially suppressed notochord extension defect

in MZstat3 gastrulae (Fig 9E and 9F). Notably, injection of 50 pg cdc25a RNA also resulted in

excess notochord extension in WT gastrulae (Fig 9E and 9F). Injection of 25 to 50 pg cdc25a
RNA significantly reduced size and width of the notochord cells in 1-somite stage WT gastru-

lae without affecting cell body orientation (S9A–S9H Fig). Although not statistically signifi-

cant, there appeared to be more notochord cells lined up between adjacent somitic furrows in

cdc25a-overexpressing WT embryos at 3-somite stage (S9M Fig), opposite to what we observed

in MZstat3 or cell division inhibitor-treated embryos (Figs 4 and 8). Based on these results we

propose that Stat3 regulates cell proliferation in zebrafish embryogenesis in part by regulating

cdc25a expression, and that Stat3/Cdc25a-dependent cell proliferation promotes axis extension

during gastrulation.

Fig 9. Stat3 promotes cell cycle progression during zebrafish embryogenesis via upregulation of cdc25a

expression. (A) qRT-PCT analysis of stat3 and cdc25a transcript levels at 1.5 hpf. All results shown were

normalized to gapdh. (B) qRT-PCR analysis of cdc25a transcript levels at 8.3 hpf. (C and D) Pre-MBT (C) and post-

MBT (D) cell cycle length analyses in 1-somite stage MZstat3 embryos injected with 25 or 50 pg cdc25a RNA. Phenol

Red was used as injection control. (E and F) ntl expression in 1-somite stage MZstat3 and WT gastrulae

misexpressing Cdc25a (lateral view, anterior to the top). Notochord length (blue line) was quantified in F. *p<0.05,

**p<0.01, ***p<0.001, ****p<0.0001, error bars = SEM. See also S9 Fig.

doi:10.1371/journal.pgen.1006564.g009
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Discussion

Stat3 was reported to control C&E movements during zebrafish gastrulation partly through

promoting Wnt/PCP signaling [12, 13]. Our analyses of the newly generated zebrafish stat3
null mutants do not support a requirement of Stat3 in convergence movements or in Wnt/

PCP signaling. Instead, we propose an alternative model in which maternal and zygotic Stat3

function promotes axis extension by ensuring sufficient number of cells are engaged in C&E

movements, through regulation of Cdc25a-dependent cell proliferation and cell survival (Fig

10A, S6 Fig). Further, the scoliosis phenotype of juvenile zebrafish stat3 mutants provides pos-

sible new opportunities to study scoliosis in a model organism.

The zebrafish stat3 mutations

The frame-shift mutations we generated in the zebrafish stat3 gene predicted to encode trun-

cated proteins lacking all functional domains are likely strong/null mutations as evidenced

by significant reduction of stat3 transcripts and undetectable level of Stat3 protein in the

MZstat3stl27/stl27 mutants (Fig 1C, 1E and 1F). In contrast to previous findings [35], we show

that stat3 is also maternally expressed. Nevertheless, both zygotic and MZ stat3 mutants com-

plete embryogenesis (Fig 1C), indicating that stat3 is not essential for embryonic development

in zebrafish.

Contrasting the stat3 morpholino studies [12], MZstat3 gastrulae exhibited normal

convergence and only mild and transient axis extension defects largely due to reduced cell

Fig 10. Model of Stat3/Cdc25a signaling regulating morphogenesis during zebrafish embryogenesis.

(A) Model of Stat3 regulating morphogenesis during zebrafish embryogenesis by promoting Cdc25

expression and cell proliferation. Stat3, both maternal and zygotic, upregulates Cdc25a expression to

promote cell division throughout early development of zebrafish embryos. Loss of stat3 leads to reduced

Cdc25a levels, longer cell cycle both pre- and post-MBT, and hence overall reduction of cell number.

Consequently, fewer but bigger dorsal mesoderm cells participate in cell intercalations to align along the AP

axis during gastrulation, causing extension defects. (B) Illustration of notochord cell shape in WT (blue),

MZstat3 (pink) and drug-treated (green) 1-somite stage embryos.

doi:10.1371/journal.pgen.1006564.g010
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proliferation and increased apoptosis. Post-MBT cell proliferation and axis extension defects

could be partially rescued by Stat3 overexpression, which further supports that the phenotypes

caused by stl27 and stl28 alleles are specific to loss of stat3 function (Figs 5 and 6). The elevated

apoptosis at late gastrulation and early segmentation (S6 Fig) exacerbates cell deficit in

MZstat3 mutants and likely contributes to the axis extension defect. However, cell death is

unlikely a major contributor to the axis extension defect in MZstat3 embryos, as C&E of the

axial mesodermal tissue starts as early as 7.3 hpf [39], but apoptosis only becomes detectable

from 10 hpf in both WT and MZstat3 embryos (S6 Fig). Therefore, apoptosis is less likely to

have a significant impact on axis extension at the time of our analyses (1-somite stage, or 10.3

hpf). In addition, there are nearly ca. 100 and 50 fewer cells undergoing mitosis as revealed by

pH3 staining at 6 and 10 hpf (Fig 5B and 5D), respectively, compared to only ca. 30 more cells

undergoing apoptosis in MZstat3 mutant embryos at 10 hpf (S6C Fig). Together, whereas

increased cell death likely contributes to the axial extension defect in MZstat3 gastrulae, we

consider reduced cell proliferation as the primary cellular basis for the axis extension defect in

M and MZstat3 mutants.

Neither cell proliferation defect nor apoptosis was reported for stat3 morphant gastrulae.

Injection of 10 pg stat3 morpholino as reported in Yamashita et al [12] or 5 pg morpholino as

tested in our study, led to significant developmental delay, increased apoptosis, and later

necrosis in the head region at 1 dpf; with morphants dying between 1 and 5 dpf [12]. The dis-

crepancy between the reported stat3 morphant and stat3 mutant phenotypes described here

resonates with recent reports of poor correlation between morpholino-induced and mutant

phenotypes in zebrafish [37]. There could be several causes for this phenotypic discrepancy

between stat3 morphant and mutant phenotypes. Firstly, different strategies may result in dif-

ferent degrees of functional stat3 inactivation. Whereas both MO1-stat3 [12] and mutations

were able to deplete Stat3 protein during gastrulation (Fig 1, S1 Fig), only inactivation of stat3
in the female germline (by transplanting stat3 mutant germline into WT blastulae) but not

injections of MO1-stat3 into fertilized zygotes, can inactivate stat3 function during oogenesis.

An essential function of Stat3 in the pre-MBT cleavages is underscored by the observation that

injections of RNA encoding Stat3-F into MZstat3 one-celled zygote failed to normalize pre-

MBT cell divisions (Fig 5H–5K), while being able to partially rescue the post-MBT cell division

defects (Fig 6A–6D). We propose that Stat3 promotes the transcription of cdc25a during

oogenesis to ensure normal early cleavages before MBT. This proposed mechanism can

explain why the cell proliferation defect was clear in MZstat3 mutants (Fig 5) but was not

reported in the morphants [12], as translation-blocking MO1-stat3 injected after fertilization

could not interfere with the function of stat3 during oogenesis. Secondly, a recent study

reported that phenotypic differences between zebrafish morpholino knockdown and mutants

could be explained by genetic compensation induced by deleterious mutations with transcrip-

tome being fine-tuned for adaptation [38]. For example, in the egflcase, where such genetic

compensation was observed in the mutants, egflmutants appeared less sensitive than WT to

egflmorpholino injections due to upregulation of downstream genes in the mutants compen-

sating for loss of the egfl function. However, the fact that MZstat3 mutant embryos were not

less sensitive than WT to MO1-stat3 injection argues against such genetic compensation

accounting for the mild gastrulation phenotypes observed in MZstat3 mutants (Fig 3E and 3F)

[38]. Therefore, the phenotypic discrepancy between stat3 morphants and mutants is likely

due to off-target effects of MO1-stat3. Further, the zebrafish stat3 mutants described here

afford a reliable tool to verify and investigate other proposed functions of Stat3, such as in ret-

ina regeneration [17].
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Stat3/Cdc25a axis regulates cell proliferation in development

We have established a requirement of Stat3, particularly maternal Stat3, in both pre- and post-

MBT cell proliferation during zebrafish embryogenesis. In the absence of both maternal and

zygotic Stat3 functions, cell cycles are longer (Figs 5 and 6). Moreover, stat3 mutants exhibited

severe growth defects from late larval stage (Fig 2A and 2B), suggesting a continuous require-

ment of Stat3 for cell proliferation throughout zebrafish development. Several observations

argue that the cell proliferation defects and reduced axis extension in MZstat3 mutants are not

associated with or caused by developmental delay. First, a number of key morphogenetic pro-

cesses occurred in MZstat3 mutants contemporaneously with such events in WT embryos. For

example, the dorsal embryonic shield formed on time and epiboly progression was not delayed

in MZstat3 embryos despite elongated cell cycles (Fig 3A). Convergence movements of lateral

mesodermal cells, which are initiated at midgastrulation and narrow mesoderm mediolater-

ally, occurred normally in MZstat3 mutants (Fig 3C and 3D). In addition, segmentation is con-

sidered a key staging index in zebrafish and other vertebrates, and MZstat3 mutants exhibited

the same number of somites as time-matched WT embryos (Figs 3Ab and 7A–7C). Second,

tissue-specific gene expression occurred at equivalent times in MZstat3 mutants compared to

time-matched WT embryos. For example, zygotic gene expression of bozozok/dharma at 4 hpf

and floatinghead at 6 hpf occurred on time in MZstat3 embryos (S10 Fig) [45]. Further the

mediolateral dimension of the floating head expression domain, which is shaped by dynamic

anterior migration and convergence movements was not significantly different than in control

WT embryos. In addition, MZstat3 mutants at 10.3 hpf exhibited equivalent to WT expression

of papc presomitic and dlx3b ectodermal marker genes (Fig 3C). All these lines of evidence

indicate that the axial extension defects of MZstat3 mutant gastrulae do not reflect develop-

mental delay, but rather a specific morphogenetic defect.

Therefore, our studies support the notion that when the cell cycle length and consequently

cell division number are uncoupled from the normal developmental schedule, this leads to

morphogenetic defects like axis shortening. Such morphogenetic defects, even if transient, can

impact inductive interactions between tissues. For example, we previously reported that C&E

movements regulate the number of adaxial cells, slow muscle fiber precursors that are specified

during gastrulation, by determining the size of the interface between the inductive axial and

target presomitic tissues [46]. Given that MZstat3 mutants exhibit smaller number of larger

adaxial cells during segmentation (Fig 7C and 7F), it will be interesting to investigate develop-

ment of slow muscle fibers in these mutants.

Cell cycle control is a conserved role of Stat3 in animal development and cancer [5]. Our

data support a model whereby Stat3 promotes cell divisions during zebrafish embryogenesis in

part through transcriptional activation of Cdc25a, as in MZstat3 embryos cdc25a transcripts

were significantly downregulated (Fig 9A and 9B). Moreover, ectopic cdc25a RNA suppressed

both pre-MBT and post-MBT cell cycle phenotypes (Fig 9C and 9D) while providing ectopic

stat3 RNA from 1-cell stage rescued only post-MBT but not pre-MBT cell cycle defect in

MZstat3 mutants (Figs 5 and 6). A key regulator of G1-S and G2-M transitions, CDC25a is

overexpressed in human cancers driving abnormal cell proliferation downstream of multiple

signaling pathways including STAT3 [47]. In HepG2 carcinoma cells, for example, STAT3

binds directly to CDC25a promoter and activates its expression [48]. Cdc25a is also a con-

served regulator of cell divisions during embryogenesis from Drosophila to Xenopus, where

pre-MBT mitotic entry is propelled by Cdc25a synthesized from maternal RNAs through acti-

vation of Cyclin B/Cdk1 complexes [20–23]. Cdc25a activity is continuously required after

MBT, as cells are arrested in G2 in the Drosophila cdc25/string mutant [49] and zebrafish

cdc25a/standstill mutant [50]. Whereas it was unclear how cdc25a expression is activated in
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these early embryos, our studies point to Stat3 as a regulator of cdc25a during zebrafish devel-

opment, paralleling this role in cancer [48]. Furthermore, Stat3/Cdc25a pathway may be con-

served in mammalian embryogenesis. First, Stat3 and Cdc25a knockout mice both die by early

gastrulation; when cultured, both Stat3-/- and Cdc25a-/- mouse blastocysts exhibit growth

defects [11, 51]. Second, STAT3 mutant homozygotes have never been reported in human,

while spontaneous dominant-negative STAT3 mutations have been linked to autosomal domi-

nant HIES [6], suggesting that STAT3 inactivation causes embryonic lethality in humans.

Hence, the Stat3/Cdc25a pathway may serve as a universal mechanism regulating cell prolifer-

ation during animal embryogenesis.

However, our results imply other players downstream of Stat3 are involved. First, we

detected downregulation of other cell cycle-regulating genes in MZstat3 embryos including

ccnd1 encoding Cyclin D1 (S8A Fig). Second, Stat3 overexpression failed to normalize cdc25a
transcript level in whole MZstat3 gastrulae (S8B Fig). Given the tissue-specific requirement of

Stat3 we observed (Fig 7), Stat3-dependent cdc25a activation may only occur within certain tis-

sues and would be difficult to detect in the context of a whole embryo.

Cell proliferation promotes axis extension

Cell proliferation has been generally considered dispensable or even prohibitive for gastrula-

tion movements and morphogenesis. For example, cell shape changes and ventral furrow for-

mation in Drosophila require the inhibition of ventral cell proliferation through String/Cdc25

inhibitors Tribbles and Frühstart [52]. In Xenopus, increased cell proliferation induced by

inhibition of Wee2, a Cdk negative regulator, impaired C&E in the paraxial mesoderm [28].

Conversely, zebrafish gastrulae still achieved relatively normal AP axis extension when mitosis

was chemically inhibited [32], although morphometric analyses have not been carried out.

Indeed, a mathematical modeling of zebrafish gastrulation indicated that directed cell migra-

tion and polarized cell intercalation, the motile cell behaviors mediated by Wnt/PCP pathway,

are largely sufficient to account for the morphogenesis of paraxial mesoderm given that cell

divisions are very infrequent in the course of this process, although a minor role of cell prolif-

eration could not be excluded [53].

We present evidence in support of a small but significant contribution of cell proliferation

to zebrafish gastrulation by showing that cell proliferation during blastula and/or gastrula

stages promotes and is required for AP extension of both the axial and paraxial mesoderm.

The most compelling corroboration of our MZstat3 mutant analyses comes from pharmaco-

logical experiments where we inhibited mitosis in WT zebrafish embryos during gastrulation

with hydroxyurea and aphidicolin [32]. Drug treatment during gastrulation recapitulated both

proliferation and morphogenetic defects seen in MZstat3 gastrulae, as manifested by a shorter

AP axis, as well as reduced AP dimensions of both axial and paraxial mesoderm cells, albeit

larger in size, along the AP axis in these tissues (Fig 8). Moreover, cell intercalation seemed

normal in MZstat3 embryos as evidenced by normal notochord width and the number of cells

across the notochord at early segmentation (Fig 4B and 4C), as well as a single-cell column

notochord formed subsequently in both WT and stat3 mutant (S4 Fig). Therefore, we con-

clude that Stat3-mediated cell proliferation during blastula and gastrula stages promotes exten-

sion during zebrafish gastrulation, most likely by providing sufficient building blocks

necessary for the ML intercalation-based AP extension (Fig 10A).

Consistent with this model, loss of cdc25a function in the zebrafish standstill mutant led to

a bent and shorter body at 1 dpf [50]. We observed that ectopic cdc25a expression partially

suppressed the extension phenotype in MZstat3 mutants and produced excess extension in

WT gastrulae (Fig 9E and 9F). However, although trending, notochord AP dimension and
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number of notochord cells along AP axis were not significantly increased in WT embryos

injected with cdc25a RNA. We attribute this to large variation between injections, suggesting

that the axis elongation is sensitive to the dose of ectopic cdc25a. Whereas overexpression of

Stat3 in MZstat3 could only rescue somite AP dimension and notochord cell number defects

to Mstat3 level (the zygotic portion), reduction in adaxial cell number was fully normalized

(Fig 7), suggesting a tissue-specific requirement of Stat3-dependent cell proliferation during

morphogenesis.

The significance and novelty of the role cell proliferation plays during vertebrate gastrula-

tion is further underscored by a recent publication providing evidence that cell division cou-

pled with intercalations powers morphogenesis of chick epiblast before primitive streak

formation [54]. Our studies in zebrafish demonstrate a key role of cell proliferation in produc-

ing sufficient number of cells needed for cell intercalations of mesenchymal cells that drive

axial extension (Fig 10A).

Stat3 is not required for planar cell polarity signaling during gastrulation

We gathered several lines of evidence arguing against Stat3 regulating C&E by promoting

Wnt/PCP signaling and ML cell orientation [13]. First, the enlarged MZstat3 notochord cells,

although rounder, exhibited normal ML orientation (Fig 4A and 4D–4H). Second, MZstat3
mutants displayed normal convergence of axial and paraxial tissues (Figs 4B, 4C, 3C and 3D).

Third, we failed to detect any enhancement of cyclopia or axis extension phenotypes when

zygotic stat3 function was inactivated in Wnt/PCP pathway components mutants (Fig 4K and

4L), with a caveat that maternal stat3 function was not removed in these experiments. In addi-

tion, cell division orientation of neuroectodermal cells shown to be regulated by Wnt/PCP sig-

naling appeared normal in MZstat3 gastrulae (Fig 6E–6G).

However, our morphometric analyses implicate Stat3 in regulation of cell shape as MZstat3
notochord cells were rounder compared to WT with a bigger AP and a shorter ML dimension

(Fig 4G and 4H, Fig 10B). One possibility is that the slightly reduced LWR is due to increased

cell size. However, our observations support an alternative model where Stat3 plays a more

direct role of Stat3 in cell shape regulation, as the enlarged cells resulting from the chemical

inhibition of cell division increased in both AP and ML cell dimensions compared to WT cells

(Fig 8J and 8K, Fig 10B). Indeed, in mouse keratinocytes and fibroblasts cytoplasmic Stat3 reg-

ulates microtubule and actin cytoskeleton through its interaction with Stathmin, a microtu-

bule-destabilizing protein, and small Rho-GTPases, respectively [3, 55]. Given that inhibition

of other regulators of Rho such as Rho kinase [56] and Gα12/13 heterotrimeric G proteins [57]

impairs cell elongation during C&E, it will be interesting to investigate whether Stat3 utilizes

similar mechanisms to shape gastrulating zebrafish cells.

Stat3 loss-of-function as a tool to study scoliosis

We describe the first vertebrate stat3 mutant being capable of surviving beyond embryonic

stages, opening new avenues for functional studies of Stat3 in later developmental processes

and disease. Before they perished as juveniles, stat3 mutants exhibited scoliosis and excessive

inflammation (Fig 2 and S2 Fig). Work from our and other laboratories linked early notochord

malformations at embryonic and larval stages with scoliosis in juveniles and adults [58, 59].

However, stat3 mutants showed normal notochord morphology during embryogenesis (Figs

4A, 3C and S4 Fig). Moreover, Alizarin Red staining at 15 dpf failed to reveal any structural

abnormalities in stat3 mutants in the notochord or differentiating vertebrae (between the

swim bladder and the cloaca) (Fig 2D), indicating that the scoliosis phenotype in stat3 mutant

fish is likely not of congenital but of idiopathic type. As a key regulator of immune responses,

Stat3 regulates cell proliferation during zebrafish gastrulation

PLOS Genetics | DOI:10.1371/journal.pgen.1006564 February 21, 2017 23 / 32



abnormal Stat3 activity has been associated with immunodeficiency such as HIES in human

[6] and Crohn’s disease-like conditions in mouse Stat3 CKO [9]. With a global disruption of

the stat3 gene, our stat3 mutant zebrafish warrants further characterization as a new candidate

tool for studies of Stat3-related diseases in human.

In summary, we generated and characterized a valuable vertebrate stat3 genetic model for

further studies of development and disease. Our work provides direct evidence that cell prolif-

eration promotes zebrafish axis extension, and clarifies the role of Stat3 in zebrafish C&E gas-

trulation movements as proliferation regulator, in part through Cdc25a activation. Further

studies will verify whether cell cycle regulation function of Stat3 is conserved in larval and

juvenile stages, and address the mechanisms underlying scoliosis and other phenotypes associ-

ated with stat3 zebrafish mutations.

Materials and methods

Zebrafish strains and staging

Zebrafish are housed and handled under protocols approved by the Washington University

Animal Studies Committee. AB� or AB�/Tubingen WT, trivu67, stat3sa15744, and slbtz216 mutant

zebrafish (Danio rerio) lines were used. Fish were normally fed with rotifers during larval

stages followed by a mixture of rotifers and artemia during juvenile stages and adulthood.

Some fish (as indicated in text) were fed exclusively with rotifers at all times to diminish food

competition. Embryos were collected from natural matings, maintained in 28.5˚C, and staged

according to [18].

Generation of stat3 indel mutant lines

A TALEN pair was designed to target the boundary of Intron 4 and Exon 5 of the zebrafish

stat3 gene. The targeting sequences for the TALEN arms were 5’- TAACCTCTTACTCATCCT

CCA -3’ and 5’-AAGAGGTTGTAGAAGTAGA-3’, respectively. An NlaIII restriction site

within the 15-base pair long spacer between the two TALEN arms was used for assaying dis-

ruption of this sequence in genomic DNA (Fig 1A). TALEN constructs were assembled using

the Golden Gate method [60] and used to generate indels in stat3 target sequences as described

[61]. Two alleles, stl27 and stl28, containing a 7-base pair and a 2-base pair deletion in Exon 5,

respectively, were originally confirmed by sequencing and identified using PCR-based geno-

typing (forward primer 5’-AGCTATTGCTTGGGTATAACCTCTTACTC-3’, reverse primer

5’-GCAGTCATACCTCCAGCACTC-3’, followed by NlaIII digestion). However, this geno-

typing method is not recommended to identify stat3 mutation carriers as biased amplification

of the mutant DNA possibly due to allelic competition during PCR may confound genotyping.

Instead, we used allele-specific PCR amplification to identify stl27 heterozygous and homozy-

gous fish (shared forward primer 5’-CCACCTGTGACCATATGACTGAA-3’, WT allele

reverse primer 5’-CTCCAACATCTTCATCTTCTGCTCCA-3’, stl27 allele reverse primer 5’-

CTCCAACATCTTCATCTTCTGTCCTG-3’). stl27 and stl28 alleles are predicted to encode

truncated proteins of 158 and 168 amino acids, respectively.

Plasmid construction, RNA synthesis and injection

Full-length coding sequence of zebrafish stat3 was subcloned from the previously published

stat3 construct [35] into pCS2 plasmid and FLAG-tagged at the C-terminus. Full length cod-

ing sequence of zebrafish cdc25a was subcloned from cdc25 Tol2 construct [30] into pCS2

plasmid. Capped RNAs were synthesized using mMessage mMachine kit (Ambion), and

injected at 1- or 8-cell stage with doses specified in Results. 5 ng of stat3 morpholino (MO1-
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stat3, http://zfin.org/action/marker/view/ZDB-MRPHLNO-051004-1) was injected at 1-cell

stage as previously described [12].

Whole-mount in situ hybridization and immunostaining

Embryos were fixed in 4% paraformaldehyde (PFA) in PBS. In situ hybridization was carried

out as described [62]. Images were acquired and morphometric measurements were carried

out manually with Fiji software.

Immunostaining was performed using a standard protocol. The following antibodies were

used: anti-phospho-Histone H3 antibody (1:3,000, rabbit, Upstate, 06–570), and Alexa Fluor

488 or 568 goat anti-rabbit (1:500, Invitrogen). Embryos were counterstained with 4’,6-diami-

dino-2-phenylindole (DAPI, 0.1 μg/mL, Invitrogen), mounted in 0.75% low melting tempera-

ture agarose (Lonza) in 0.3% Danieau’s solution (LMTD agarose), and imaged with the

Quorum spinning disk confocal microscope (SDCM) using a 10x objective lens (10x). A Z-

stack of over 200 μm was acquired at a step size of 3 μm and projected in Fiji. The number of

nuclei was quantified using Analyze Particles plugin in Fiji.

Western blotting

Five to six embryos (6 hpf) were deyolked and homogenized in a modified RIPA buffer [16].

Proteins were resolved in 4–12% NuPage Bis-Tris gels (Invitrogen) and transferred to PVDF

membrane blocked with 10% milk in Phosphate Buffered Saline with Tween (PBS-T). Primary

antibodies used were: anti-Stat3 (1:250, AnaSpec, 55861), anti-FLAG (1:1,000, Sigma-Aldrich,

F1804), and anti-β-actin (1:1,000, Sigma-Aldrich, A5441). Secondary antibodies used were:

donkey anti-mouse HRP (1:5,000, Fisher Scientific, SA1100) and goat anti-rabbit horseradish

peroxidase (HRP) (1:5,000, Fisher Scientific, PR-W4011). Signals were detected with an

enhanced chemiluminescence (ECL) kit (Perkin Elmer) and imaged using film.

Quantitative Real-Time (qRT) PCR

Total RNA was isolated from 30–50 embryos with Trizol (Ambion) and treated with DNase

(Zymo Research). For larvae and juveniles, the whole animals were subjected to snap freezing

in liquid nitrogen and homogenized using a mortar and pestle. cDNA was synthesized using

iScript kit (Bio-Rad). qRT-PCR was performed using CFX Connect Real-Time system and

SYBR green (Bio-Rad), with at least three independent biological samples for each experiment.

Primers are listed in S1 Table).

Pharmacological treatment

WT embryos were dechorionated in 0.3x Danieau solution and incubated with 20 mM

hydroxyurea (Sigma-Aldrich) and 150 μM aphidicolin (Sigma-Aldrich) in 4% dimethyl sulfox-

ide (DMSO, Sigma-Aldrich) from 5.7 hpf until desired stages [31]. Incubation in 4% DMSO

was used as control.

Morphometric analyses of live embryos

Embryos were injected with 200 pg membraneEGFP (mEGFP) RNA at 1-cell stage, mounted in

0.5% LMTD agarose at desired stages and imaged on Quorum SDCM with a 40x objective (N.

A. 0.75). For cell body alignment and shape, image stacks were acquired and the top layer of

the notochord cells were analyzed in Fiji [27]. To measure the AP dimension of the somite,

five lines parallel to the notochord were drawn randomly in Fiji between two adjacent somitic

furrows.
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Cell cycle imaging and analyses

For pre-MBT cell divisions, zygotes were injected within 20 minutes post-fertilization (mpf)

with 70 pg H2B-RFP RNA and mounted in 0.3% LMTD agarose at 4–8 cell stage. Time-lapse

movies were taken at 28.5˚C with Quorum SDCM using a 10x objective lens. A z stack cover-

ing 200 μm at a 3–4 μm step distance was acquired every 1–2 min for at least 4 hours. Cell divi-

sions were manually tracked in Fiji by quantifying the length from telophase to telophase. As

H2B-RFP signal became clearly visible only from 8–16 cell stage, Cycles 5 (16 cells to 32 cells)

to 9 (256 cells to 512 cells) were recorded and analyzed.

Post-MBT cell division experimental design was adapted with modifications from Dalle

Nogare et al. [19]. To minimize inter-individual and experimental variability, we performed a

combination of global and mosaic labeling, which allowed us to compare experiment and con-

trol lineages within the same embryo. At 1 cell stage, embryos were injected with H2B-RFP
RNA. At 8-cell stage, one blastomere was injected with 18.8 pg (a dose equivalent to 150 pg at

1-cell stage) membraneCherry (mCherry) as control. An adjacent blastomere was injected with

18.8 pg mEGFP with or without 3.1 pg (a dose equivalent to 25 pg at 1-cell stage) stat3-FLAG
(stat3-F) or cdc25a RNA. Time-lapse movies were recorded separately for mEGFP- (Fig 5B,

see also S6 Movie) or mCherry- (Fig 5C, see also S7 Movie) clones of each embryo with Quo-

rum SDCM and a 40x objective at 2-minute interval for the duration of 5–6 post-MBT cycles.

At each time point, a z stack spanning 100 μm was acquired at a step size of 4 μm. Movies were

converted to hyperstacks in Fiji. Cell divisions were manually tracked using MtrackJ plugin in

Fiji.

Cell division orientation analyses

The orientation of cell division of dorsal neuroectodermal cells was determined as previously

described [63].

Bone analyses

Juvenile fish were fixed in 4% PFA, bleached in 3% hydrogen peroxide/1% KOH, and stained

with 1 mg/mL Alizarin Red in 1% KOH overnight for whole-mount bone staining. Soft tissues

were cleared with 1% trypsin in 2% borax for up to a week. Larval vertebrae were stained in
vivo by Alizarin Red (1 mg/mL) for 2 hours before imaging live on Quorum SDCM. Micro-

computed tomography (Scanco uCT40) was used for 3D reconstruction and analyses of bone

parameters (threshold set as ~150) of the juvenile vertebrae.

Statistical analyses

WISH and immunostaining quantification, and morphometric analysis were performed

blindly, followed by genotyping for the stat3stl27 allele. Data were collected in Excel (Micro-

soft), analyzed and graphed with GraphPad Prism (GraphPad Software). Student’s t test was

applied to determine statistical significance (p<0.05) between two datasets. Kolmogorov-Smir-

nov test was used to compare angle distributions. All results are shown as Mean ± Standard

Error of the Mean (SEM).

Supporting information

S1 Table. Nucleotide sequences of RT primers. � Four pairs of primers were used to detect

stat3 transcript. stat3_RT spans the deletion site in both stl27 and stl28 alleles; stat3-RT1 ampli-

fies a coding region upstream of the deletion site in all three splicing variants; stat3_RT3 only

amplifies a coding region downstream of the deletion site in the full length splicing variant;
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and stat3-RT2 spans an alternative splicing site downstream of the deletion site, and detects

two longer splicing variants. �� Two pairs of primers were used to detect cdc25a transcript in

zebrafish embryos.

(DOCX)

S1 Fig. Adult zebrafish stat3 mutants develop late-onset scoliosis. (A-C) qRT-PCR showing

stat3 transcript levels using primers detecting various regions of stat3 cDNA sequence in WT

and MZstat3 embryos normalized to gapdh. (D) Western blot detecting total Stat3 in WT,

MZstat3 and MZstat3 embryos overexpressing Stat3-F (50 pg RNA) at 6 hpf. �p<0.05,
���p<0.001, ����p<0.0001, error bars = SEM.

(TIF)

S2 Fig. Various vertebral abnormalities contribute to the scoliosis phenotype in stat3 ani-

mals. (A) Vertebrae of a WT larva at 29 dpf; anterior to the left. (B-H) Images of Alizarin

stained skeletons showing various vertebral abnormalities. B and C, normal vertebral body

and end plates, tilted intervertebral discs; D and E, bent vertebral body and non-perpendicular

end plates; F-H, fractures and extra bony matrix. (I) Variations in larvae body length of stat3
mutant and siblings at 22 dpf.

(TIF)

S3 Fig. Injection of stat3 morpholino results in dose-dependent axis extension defect. (A)

ntl WISH in the notochord tissue in stage-matched control and stat3 morphant embryos at

2-somite stage injected with various doses of MO1-stat3 at one cell stage (lateral view, dorsal

to the right, anterior to the top).

(TIF)

S4 Fig. Convergence of the notochord into a single-cell wide column is not affected in M

and MZstat3 embryos. (A-C) Confocal microscope image of 5-somite stage embryos in dorsal

view, in which cell membranes are labeled with mGFP: WT (A), Mstat3 (B), and MZstat3 (C)

(anterior to the top).

(TIF)

S5 Fig. Pre-MBT cell divisions are lengthened in MZstat3 mutant embryos compared to

WT. Depicted are confocal microscope snap-shots from a full pre-MBT cell cycle (Cycle 6,

32-cell stage to 64-cell stage) in WT and MZstat3 embryos from S phase to S phase.

(TIF)

S6 Fig. Stat3 limits apoptosis during embryogenesis. (A-E) Apoptosis in WT (A, D) and

MZstat3 (B, E) embryos at 10 hpf (A, B) and 11 hpf (D, E) detected by TUNEL labeling (dorsal

view, anterior to the top). Number of TUNEL-positive cells are quantified in C and F. (G, H)

birc5a/survivin (G) and bcl2a (H) transcript levels in WT and MZstat3 embryos at 1.5 hpf and

8.3 hpf determined by qRT-PCR. �p<0.05, ��p<0.01, n.s. = non-significant, error bars = SEM.

(TIF)

S7 Fig. Control experiments for post-MBT cell cycle analyses. (A) Experimental design for

control post-MBT cell cycle analyses. Embryos labeled ubiquitously with H2B-RFP were mosa-

ically injected with memCherry or mGFP mRNA at 8-cell stage for lineage tracing as described

above. (B) Analyses of cell cycle lengths for Cycle 11–13 in WT embryos overexpressing

mRNA or memCherry. Error bars = SEM.

(TIF)

S8 Fig. Stat3 may regulate cell proliferation via transcriptional activation of other cell

cycle regulators. (A) Maternal expression levels of cell cycle-regulating genes encoding
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zebrafish Cyclin A2, B1, B2, D1 and E in 16-cell stage WT and MZstat3 embryos detected by

qRT-PCR. (B) cdc25a transcript level in mid-gastrula stage (8.3 hpf) MZstat3 and MZstat3
embryos injected with 25 pg of stat3-F RNA. ��p<0.01, ����p<0.0001, n.s. = non-significant,

error bars = SEM.

(TIF)

S9 Fig. Effect of cdc25a overexpression in WT on notochord cell size and morphogenesis.

(A and B) Dorsal view of 1-somite stage embryos showing cells labeled with mGFP: control

embryos (A) and embryos injected with 25 pg to 50 pg cdc25a mRNA (B) (anterior to the top).

(C-H) Analyses of notochord cells’ orientation (D), shape (E), long axis (length, F), short axis

(width, G) and size (H) in A and B. (I and J) Confocal image of dorsal mesoderm in 3-somite

stage control and cdc25a-overexpressing embryos labeled with mGFP with somite AP dimen-

sion illustrated with green arrow and somitic boundaries outlined in green (dorsal view, ante-

rior to the top). (K-M) Quantification of somite AP dimension (K), numbers of adaxial cells

(L) and notochord cells (M) in I and J. ����p<0.0001, error bars = SEM.

(TIF)

S10 Fig. Onset of zygotic gene expression in MZstat3 and WT embryos. (A) Expression of

bozozok/dharma (boz), a zygotic target of β-catenin, in WT (top, animal and lateral view, AP,

animal pole) and MZstat3 embryos (bottom) at 4 hpf. Yellow arrows denote boz expression

domain. (B) Expression of floatinghead (flh), an early zygotic gene whose expression domain

rapidly changes shape with convergence and extension of the axial mesoderm, in WT and

MZstat3 gastrulae in dorsal view and animal pole towards the top at 6 hpf. Yellow line indicates

width of expression domain. (C) The mediolateral dimension of the flh expression domain at 6

hpf is not significantly different between WT and MZstat3 embryos. n.s. = non-significant.

(TIF)

S1 Movie. 3D rotation showing scoliotic spine in zygotic stat3 larvae. Larvae were collected

at stained with Alizarin Red. Z stacks were acquired on confocal microscope with a 10x objec-

tive. Images were processed with Fiji/ImageJ.

(AVI)

S2 Movie. 3D rotation showing vertebrae with extra bony matrix in zygotic stat3 larvae.

Larvae were collected at stained with Alizarin Red. Z stacks were acquired on confocal micro-

scope with a 10x objective. Images were processed with Fiji/ImageJ.

(AVI)

S3 Movie. 3D rotation showing vertebral fracture in zygotic stat3 larvae. Larvae were col-

lected at stained with Alizarin Red. Z stacks were acquired on confocal microscope with a 10x

objective. Images were processed with Fiji/ImageJ.

(AVI)

S4 Movie. Confocal time-lapse movie of pre-MBT cell divisions (Cycles 5~9) in a WT

embryo. Still images are displayed in S4 Fig. The embryo was ubiquitously labeled with

H2B-RFP. Image of each time frame derives from z projection of a z stack covering 200 μm

(animal view). Images were adjusted for level and contrast.

(AVI)

S5 Movie. Confocal time-lapse movie of pre-MBT cell divisions (Cycles 5~9) in an MZstat3
embryo. Still images are displayed in S4 Fig. Images were acquired and processed as S1 Movie.

(AVI)
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S6 Movie. Confocal time-lapse movie showing post-MBT cell divisions of mEGFP-labeled

lineage. Embryos were ubiquitously labeled with H2B-RFP and mosaically labeled with

mEGFP. Illustrated in the movie is one z plane of the 100 μm confocal z stack captured at each

time point.

(AVI)

S7 Movie. Confocal time-lapse movie showing post-MBT cell divisions of mCherry-labeled

lineage. Embryos were ubiquitously labeled with H2B-RFP and mosaically labeled with

mCherry. Illustrated in the movie is one z plane of the 100 μm confocal z stack captured at

each time point.

(AVI)

Acknowledgments

We thank Drs. Andrew Oates for stat3 plasmid, David Kimelman for cdc25a Tol2 plasmid;

Drs. John Rawls, Margot Williams, Ryan Gray, and Ms. Terin Budine for comments on the

manuscript; and the LSK lab members for advice. We thank Chris Rowland and Farshid Gui-

lak for microcomputer tomography of the stat3sa15744/sa15744 mutants and WT siblings.

Author Contributions

Conceptualization: LSK YL.

Data curation: YL DSS.

Formal analysis: LSK YL DSS.

Funding acquisition: LSK.

Investigation: YL DSS.

Methodology: LSK YL DSS.

Project administration: LSK YL.

Resources: LSK.

Supervision: LSK YL.

Validation: YL DSS.

Visualization: YL DSS.

Writing – original draft: YL LSK.

Writing – review & editing: YL LSK DSS.

References
1. Darnell JE Jr., Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to

IFNs and other extracellular signaling proteins. Science. 1994; 264(5164):1415–21. PMID: 8197455

2. Levy DE, Darnell JE Jr., Stats: transcriptional control and biological impact. Nature reviews Molecular

cell biology. 2002; 3(9):651–62. doi: 10.1038/nrm909 PMID: 12209125

3. Ng DC, Lin BH, Lim CP, Huang G, Zhang T, Poli V, et al. Stat3 regulates microtubules by antagonizing

the depolymerization activity of stathmin. The Journal of cell biology. 2006; 172(2):245–57. doi: 10.

1083/jcb.200503021 PMID: 16401721

Stat3 regulates cell proliferation during zebrafish gastrulation

PLOS Genetics | DOI:10.1371/journal.pgen.1006564 February 21, 2017 29 / 32

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006564.s017
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1006564.s018
http://www.ncbi.nlm.nih.gov/pubmed/8197455
http://dx.doi.org/10.1038/nrm909
http://www.ncbi.nlm.nih.gov/pubmed/12209125
http://dx.doi.org/10.1083/jcb.200503021
http://dx.doi.org/10.1083/jcb.200503021
http://www.ncbi.nlm.nih.gov/pubmed/16401721


4. Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 signalling in cancer: new and unex-

pected biological functions. Nature reviews Cancer. 2014; 14(11):736–46. doi: 10.1038/nrc3818 PMID:

25342631

5. Carpenter RL, Lo HW. STAT3 Target Genes Relevant to Human Cancers. Cancers. 2014; 6(2):897–

925. doi: 10.3390/cancers6020897 PMID: 24743777

6. Holland SM, DeLeo FR, Elloumi HZ, Hsu AP, Uzel G, Brodsky N, et al. STAT3 mutations in the hyper-

IgE syndrome. The New England journal of medicine. 2007; 357(16):1608–19. doi: 10.1056/

NEJMoa073687 PMID: 17881745

7. Paulson ML, Freeman AF, Holland SM. Hyper IgE syndrome: an update on clinical aspects and the role

of signal transducer and activator of transcription 3. Current opinion in allergy and clinical immunology.

2008; 8(6):527–33. doi: 10.1097/ACI.0b013e3283184210 PMID: 18978467

8. Steward-Tharp SM, Laurence A, Kanno Y, Kotlyar A, Villarino AV, Sciume G, et al. A mouse model of

HIES reveals pro- and anti-inflammatory functions of STAT3. Blood. 2014; 123(19):2978–87. doi: 10.

1182/blood-2013-09-523167 PMID: 24632714

9. Welte T, Zhang SS, Wang T, Zhang Z, Hesslein DG, Yin Z, et al. STAT3 deletion during hematopoiesis

causes Crohn’s disease-like pathogenesis and lethality: a critical role of STAT3 in innate immunity. Pro-

ceedings of the National Academy of Sciences of the United States of America. 2003; 100(4):1879–84.

doi: 10.1073/pnas.0237137100 PMID: 12571365

10. Silver DL, Montell DJ. Paracrine signaling through the JAK/STAT pathway activates invasive behavior

of ovarian epithelial cells in Drosophila. Cell. 2001; 107(7):831–41. PMID: 11779460

11. Takeda K, Noguchi K, Shi W, Tanaka T, Matsumoto M, Yoshida N, et al. Targeted disruption of the

mouse Stat3 gene leads to early embryonic lethality. Proceedings of the National Academy of Sciences

of the United States of America. 1997; 94(8):3801–4. PMID: 9108058

12. Yamashita S, Miyagi C, Carmany-Rampey A, Shimizu T, Fujii R, Schier AF, et al. Stat3 Controls Cell

Movements during Zebrafish Gastrulation. Developmental cell. 2002; 2(3):363–75. PMID: 11879641

13. Miyagi C, Yamashita S, Ohba Y, Yoshizaki H, Matsuda M, Hirano T. STAT3 noncell-autonomously con-

trols planar cell polarity during zebrafish convergence and extension. The Journal of cell biology. 2004;

166(7):975–81. doi: 10.1083/jcb.200403110 PMID: 15452141

14. Zhang Z, Welte T, Troiano N, Maher SE, Fu XY, Bothwell AL. Osteoporosis with increased osteoclasto-

genesis in hematopoietic cell-specific STAT3-deficient mice. Biochemical and biophysical research

communications. 2005; 328(3):800–7. doi: 10.1016/j.bbrc.2005.01.019 PMID: 15694417

15. Itoh S, Udagawa N, Takahashi N, Yoshitake F, Narita H, Ebisu S, et al. A critical role for interleukin-6

family-mediated Stat3 activation in osteoblast differentiation and bone formation. Bone. 2006; 39

(3):505–12. doi: 10.1016/j.bone.2006.02.074 PMID: 16679075

16. Fang Y, Gupta V, Karra R, Holdway JE, Kikuchi K, Poss KD. Translational profiling of cardiomyocytes

identifies an early Jak1/Stat3 injury response required for zebrafish heart regeneration. Proceedings of

the National Academy of Sciences of the United States of America. 2013; 110(33):13416–21. doi: 10.

1073/pnas.1309810110 PMID: 23901114

17. Nelson CM, Gorsuch RA, Bailey TJ, Ackerman KM, Kassen SC, Hyde DR. Stat3 defines three popula-

tions of Muller glia and is required for initiating maximal muller glia proliferation in the regenerating zeb-

rafish retina. The Journal of comparative neurology. 2012; 520(18):4294–311. doi: 10.1002/cne.23213

PMID: 22886421

18. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the

zebrafish. Developmental dynamics: an official publication of the American Association of Anatomists.

1995; 203(3):253–310.

19. Dalle Nogare DE, Pauerstein PT, Lane ME. G2 acquisition by transcription-independent mechanism at

the zebrafish midblastula transition. Developmental biology. 2009; 326(1):131–42. doi: 10.1016/j.ydbio.

2008.11.002 PMID: 19063878

20. Edgar BA, Datar SA. Zygotic degradation of two maternal Cdc25 mRNAs terminates Drosophila’s early

cell cycle program. Genes & development. 1996; 10(15):1966–77.

21. Kim SH, Li C, Maller JL. A maternal form of the phosphatase Cdc25A regulates early embryonic cell

cycles in Xenopus laevis. Developmental biology. 1999; 212(2):381–91. doi: 10.1006/dbio.1999.9361

PMID: 10433828

22. Tsai TY, Theriot JA, Ferrell JE Jr., Changes in oscillatory dynamics in the cell cycle of early Xenopus

laevis embryos. PLoS biology. 2014; 12(2):e1001788. doi: 10.1371/journal.pbio.1001788 PMID:

24523664

23. Bouldin CM, Kimelman D. Cdc25 and the importance of G2 control: insights from developmental biol-

ogy. Cell cycle. 2014; 13(14):2165–71. doi: 10.4161/cc.29537 PMID: 24914680

Stat3 regulates cell proliferation during zebrafish gastrulation

PLOS Genetics | DOI:10.1371/journal.pgen.1006564 February 21, 2017 30 / 32

http://dx.doi.org/10.1038/nrc3818
http://www.ncbi.nlm.nih.gov/pubmed/25342631
http://dx.doi.org/10.3390/cancers6020897
http://www.ncbi.nlm.nih.gov/pubmed/24743777
http://dx.doi.org/10.1056/NEJMoa073687
http://dx.doi.org/10.1056/NEJMoa073687
http://www.ncbi.nlm.nih.gov/pubmed/17881745
http://dx.doi.org/10.1097/ACI.0b013e3283184210
http://www.ncbi.nlm.nih.gov/pubmed/18978467
http://dx.doi.org/10.1182/blood-2013-09-523167
http://dx.doi.org/10.1182/blood-2013-09-523167
http://www.ncbi.nlm.nih.gov/pubmed/24632714
http://dx.doi.org/10.1073/pnas.0237137100
http://www.ncbi.nlm.nih.gov/pubmed/12571365
http://www.ncbi.nlm.nih.gov/pubmed/11779460
http://www.ncbi.nlm.nih.gov/pubmed/9108058
http://www.ncbi.nlm.nih.gov/pubmed/11879641
http://dx.doi.org/10.1083/jcb.200403110
http://www.ncbi.nlm.nih.gov/pubmed/15452141
http://dx.doi.org/10.1016/j.bbrc.2005.01.019
http://www.ncbi.nlm.nih.gov/pubmed/15694417
http://dx.doi.org/10.1016/j.bone.2006.02.074
http://www.ncbi.nlm.nih.gov/pubmed/16679075
http://dx.doi.org/10.1073/pnas.1309810110
http://dx.doi.org/10.1073/pnas.1309810110
http://www.ncbi.nlm.nih.gov/pubmed/23901114
http://dx.doi.org/10.1002/cne.23213
http://www.ncbi.nlm.nih.gov/pubmed/22886421
http://dx.doi.org/10.1016/j.ydbio.2008.11.002
http://dx.doi.org/10.1016/j.ydbio.2008.11.002
http://www.ncbi.nlm.nih.gov/pubmed/19063878
http://dx.doi.org/10.1006/dbio.1999.9361
http://www.ncbi.nlm.nih.gov/pubmed/10433828
http://dx.doi.org/10.1371/journal.pbio.1001788
http://www.ncbi.nlm.nih.gov/pubmed/24523664
http://dx.doi.org/10.4161/cc.29537
http://www.ncbi.nlm.nih.gov/pubmed/24914680


24. Keller R. Shaping the vertebrate body plan by polarized embryonic cell movements. Science. 2002; 298

(5600):1950–4. doi: 10.1126/science.1079478 PMID: 12471247

25. Gray RS, Roszko I, Solnica-Krezel L. Planar cell polarity: coordinating morphogenetic cell behaviors

with embryonic polarity. Developmental cell. 2011; 21(1):120–33. doi: 10.1016/j.devcel.2011.06.011

PMID: 21763613

26. Heisenberg CP, Tada M, Rauch GJ, Saude L, Concha ML, Geisler R, et al. Silberblick/Wnt11 mediates

convergent extension movements during zebrafish gastrulation. Nature. 2000; 405(6782):76–81. doi:

10.1038/35011068 PMID: 10811221

27. Jessen JR, Topczewski J, Bingham S, Sepich DS, Marlow F, Chandrasekhar A, et al. Zebrafish trilobite

identifies new roles for Strabismus in gastrulation and neuronal movements. Nature cell biology. 2002;

4(8):610–5. doi: 10.1038/ncb828 PMID: 12105418

28. Leise WF 3rd., Mueller PR. Inhibition of the cell cycle is required for convergent extension of the paraxial

mesoderm during Xenopus neurulation. Development. 2004; 131(8):1703–15. doi: 10.1242/dev.01054

PMID: 15084456

29. Ciruna B, Jenny A, Lee D, Mlodzik M, Schier AF. Planar cell polarity signalling couples cell division and

morphogenesis during neurulation. Nature. 2006; 439(7073):220–4. doi: 10.1038/nature04375 PMID:

16407953

30. Bouldin CM, Snelson CD, Farr GH 3rd., Kimelman D. Restricted expression of cdc25a in the tailbud is

essential for formation of the zebrafish posterior body. Genes & development. 2014; 28(4):384–95.

31. Zhang L, Kendrick C, Julich D, Holley SA. Cell cycle progression is required for zebrafish somite mor-

phogenesis but not segmentation clock function. Development. 2008; 135(12):2065–70. doi: 10.1242/

dev.022673 PMID: 18480162

32. Quesada-Hernandez E, Caneparo L, Schneider S, Winkler S, Liebling M, Fraser SE, et al. Stereotypical

cell division orientation controls neural rod midline formation in zebrafish. Current biology: CB. 2010; 20

(21):1966–72. doi: 10.1016/j.cub.2010.10.009 PMID: 20970340

33. Gong Y, Mo C, Fraser SE. Planar cell polarity signalling controls cell division orientation during zebrafish

gastrulation. Nature. 2004; 430(7000):689–93. doi: 10.1038/nature02796 PMID: 15254551

34. Kettleborough RN, Busch-Nentwich EM, Harvey SA, Dooley CM, de Bruijn E, van Eeden F, et al. A sys-

tematic genome-wide analysis of zebrafish protein-coding gene function. Nature. 2013; 496

(7446):494–7. doi: 10.1038/nature11992 PMID: 23594742

35. Oates AC, Wollberg P, Pratt SJ, Paw BH, Johnson SL, Ho RK, et al. Zebrafish stat3 is expressed in

restricted tissues during embryogenesis and stat1 rescues cytokine signaling in a STAT1-deficient

human cell line. Developmental dynamics: an official publication of the American Association of Anato-

mists. 1999; 215(4):352–70.

36. Marlow F, Zwartkruis F, Malicki J, Neuhauss SC, Abbas L, Weaver M, et al. Functional interactions of

genes mediating convergent extension, knypek and trilobite, during the partitioning of the eye primor-

dium in zebrafish. Developmental biology. 1998; 203(2):382–99. doi: 10.1006/dbio.1998.9032 PMID:

9808788

37. Kok FO, Shin M, Ni CW, Gupta A, Grosse AS, van Impel A, et al. Reverse genetic screening reveals

poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Developmental cell.

2015; 32(1):97–108. doi: 10.1016/j.devcel.2014.11.018 PMID: 25533206

38. Rossi A, Kontarakis Z, Gerri C, Nolte H, Holper S, Kruger M, et al. Genetic compensation induced by

deleterious mutations but not gene knockdowns. Nature. 2015.

39. Glickman NS, Kimmel CB, Jones MA, Adams RJ. Shaping the zebrafish notochord. Development.

2003; 130(5):873–87. PMID: 12538515

40. Heisenberg CP, Nüsslein-Volhard C. The function of silberblick in the positioning of the eye anlage in

the zebrafish embryo. Developmental biology. 1997; 184(1):85–94. doi: 10.1006/dbio.1997.8511 PMID:

9142986

41. Harvey SA, Sealy I, Kettleborough R, Fenyes F, White R, Stemple D, et al. Identification of the zebrafish

maternal and paternal transcriptomes. Development. 2013; 140(13):2703–10. doi: 10.1242/dev.095091

PMID: 23720042

42. Cole LK, Ross LS. Apoptosis in the developing zebrafish embryo. Developmental biology. 2001; 240

(1):123–42. doi: 10.1006/dbio.2001.0432 PMID: 11784051

43. Delvaeye M, De Vriese A, Zwerts F, Betz I, Moons M, Autiero M, et al. Role of the 2 zebrafish survivin

genes in vasculo-angiogenesis, neurogenesis, cardiogenesis and hematopoiesis. BMC developmental

biology. 2009; 9:25. doi: 10.1186/1471-213X-9-25 PMID: 19323830

44. Thisse C, Thisse B, Schilling TF, Postlethwait JH. Structure of the zebrafish snail1 gene and its expres-

sion in wild-type, spadetail and no tail mutant embryos. Development. 1993; 119(4):1203–15. PMID:

8306883

Stat3 regulates cell proliferation during zebrafish gastrulation

PLOS Genetics | DOI:10.1371/journal.pgen.1006564 February 21, 2017 31 / 32

http://dx.doi.org/10.1126/science.1079478
http://www.ncbi.nlm.nih.gov/pubmed/12471247
http://dx.doi.org/10.1016/j.devcel.2011.06.011
http://www.ncbi.nlm.nih.gov/pubmed/21763613
http://dx.doi.org/10.1038/35011068
http://www.ncbi.nlm.nih.gov/pubmed/10811221
http://dx.doi.org/10.1038/ncb828
http://www.ncbi.nlm.nih.gov/pubmed/12105418
http://dx.doi.org/10.1242/dev.01054
http://www.ncbi.nlm.nih.gov/pubmed/15084456
http://dx.doi.org/10.1038/nature04375
http://www.ncbi.nlm.nih.gov/pubmed/16407953
http://dx.doi.org/10.1242/dev.022673
http://dx.doi.org/10.1242/dev.022673
http://www.ncbi.nlm.nih.gov/pubmed/18480162
http://dx.doi.org/10.1016/j.cub.2010.10.009
http://www.ncbi.nlm.nih.gov/pubmed/20970340
http://dx.doi.org/10.1038/nature02796
http://www.ncbi.nlm.nih.gov/pubmed/15254551
http://dx.doi.org/10.1038/nature11992
http://www.ncbi.nlm.nih.gov/pubmed/23594742
http://dx.doi.org/10.1006/dbio.1998.9032
http://www.ncbi.nlm.nih.gov/pubmed/9808788
http://dx.doi.org/10.1016/j.devcel.2014.11.018
http://www.ncbi.nlm.nih.gov/pubmed/25533206
http://www.ncbi.nlm.nih.gov/pubmed/12538515
http://dx.doi.org/10.1006/dbio.1997.8511
http://www.ncbi.nlm.nih.gov/pubmed/9142986
http://dx.doi.org/10.1242/dev.095091
http://www.ncbi.nlm.nih.gov/pubmed/23720042
http://dx.doi.org/10.1006/dbio.2001.0432
http://www.ncbi.nlm.nih.gov/pubmed/11784051
http://dx.doi.org/10.1186/1471-213X-9-25
http://www.ncbi.nlm.nih.gov/pubmed/19323830
http://www.ncbi.nlm.nih.gov/pubmed/8306883


45. Ryu SL, Fujii R, Yamanaka Y, Shimizu T, Yabe T, Hirata T, et al. Regulation of dharma/bozozok by the

Wnt pathway. Developmental biology. 2001; 231(2):397–409. doi: 10.1006/dbio.2000.0150 PMID:

11237468

46. Yin C, Solnica-Krezel L. Convergence and extension movements affect dynamic notochord-somite

interactions essential for zebrafish slow muscle morphogenesis. Developmental dynamics: an official

publication of the American Association of Anatomists. 2007; 236(10):2742–56.

47. Boutros R, Lobjois V, Ducommun B. CDC25 phosphatases in cancer cells: key players? Good targets?

Nature reviews Cancer. 2007; 7(7):495–507. doi: 10.1038/nrc2169 PMID: 17568790

48. Barre B, Vigneron A, Coqueret O. The STAT3 transcription factor is a target for the Myc and riboblas-

toma proteins on the Cdc25A promoter. The Journal of biological chemistry. 2005; 280(16):15673–81.

doi: 10.1074/jbc.M413203200 PMID: 15677471

49. Edgar BA, O’Farrell PH. The three postblastoderm cell cycles of Drosophila embryogenesis are regu-

lated in G2 by string. Cell. 1990; 62(3):469–80. PMID: 2199063

50. Verduzco D, Dovey JS, Shukla AA, Kodym E, Skaug BA, Amatruda JF. Multiple isoforms of CDC25

oppose ATM activity to maintain cell proliferation during vertebrate development. Molecular cancer

research: MCR. 2012; 10(11):1451–61. doi: 10.1158/1541-7786.MCR-12-0072 PMID: 22986406

51. Lee G, White LS, Hurov KE, Stappenbeck TS, Piwnica-Worms H. Response of small intestinal epithelial

cells to acute disruption of cell division through CDC25 deletion. Proceedings of the National Academy

of Sciences of the United States of America. 2009; 106(12):4701–6. doi: 10.1073/pnas.0900751106

PMID: 19273838

52. Grosshans J, Wieschaus E. A genetic link between morphogenesis and cell division during formation of

the ventral furrow in Drosophila. Cell. 2000; 101(5):523–31. PMID: 10850494

53. Yin C, Kiskowski M, Pouille PA, Farge E, Solnica-Krezel L. Cooperation of polarized cell intercalations

drives convergence and extension of presomitic mesoderm during zebrafish gastrulation. The Journal

of cell biology. 2008; 180(1):221–32. doi: 10.1083/jcb.200704150 PMID: 18195109

54. Firmino J, Rocancourt D, Saadaoui M, Moreau C, Gros J. Cell Division Drives Epithelial Cell Rearrange-

ments during Gastrulation in Chick. Developmental cell. 2016; 36(3):249–61. doi: 10.1016/j.devcel.

2016.01.007 PMID: 26859350

55. Teng TS, Lin B, Manser E, Ng DC, Cao X. Stat3 promotes directional cell migration by regulating Rac1

activity via its activator betaPIX. Journal of cell science. 2009; 122(Pt 22):4150–9. doi: 10.1242/jcs.

057109 PMID: 19861492

56. Marlow F, Topczewski J, Sepich D, Solnica-Krezel L. Zebrafish Rho kinase 2 acts downstream of

Wnt11 to mediate cell polarity and effective convergence and extension movements. Current biology:

CB. 2002; 12(11):876–84. PMID: 12062050

57. Lin F, Sepich DS, Chen S, Topczewski J, Yin C, Solnica-Krezel L, et al. Essential roles of G{alpha}12/

13 signaling in distinct cell behaviors driving zebrafish convergence and extension gastrulation move-

ments. The Journal of cell biology. 2005; 169(5):777–87. doi: 10.1083/jcb.200501104 PMID: 15928205

58. Ellis K, Bagwell J, Bagnat M. Notochord vacuoles are lysosome-related organelles that function in axis

and spine morphogenesis. The Journal of cell biology. 2013; 200(5):667–79. doi: 10.1083/jcb.

201212095 PMID: 23460678

59. Gray RS, Wilm TP, Smith J, Bagnat M, Dale RM, Topczewski J, et al. Loss of col8a1a function during

zebrafish embryogenesis results in congenital vertebral malformations. Developmental biology. 2014;

386(1):72–85. doi: 10.1016/j.ydbio.2013.11.028 PMID: 24333517

60. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, et al. Efficient design and assembly of

custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic acids research.

2011; 39(12):e82. doi: 10.1093/nar/gkr218 PMID: 21493687

61. Shin J, Chen J, Solnica-Krezel L. Efficient homologous recombination-mediated genome engineering in

zebrafish using TALE nucleases. Development. 2014; 141(19):3807–18. doi: 10.1242/dev.108019

PMID: 25249466

62. Thisse C, Thisse B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nature pro-

tocols. 2008; 3(1):59–69. doi: 10.1038/nprot.2007.514 PMID: 18193022

63. Concha ML, Adams RJ. Oriented cell divisions and cellular morphogenesis in the zebrafish gastrula

and neurula: a time-lapse analysis. Development. 1998; 125(6):983–94. PMID: 9463345

Stat3 regulates cell proliferation during zebrafish gastrulation

PLOS Genetics | DOI:10.1371/journal.pgen.1006564 February 21, 2017 32 / 32

http://dx.doi.org/10.1006/dbio.2000.0150
http://www.ncbi.nlm.nih.gov/pubmed/11237468
http://dx.doi.org/10.1038/nrc2169
http://www.ncbi.nlm.nih.gov/pubmed/17568790
http://dx.doi.org/10.1074/jbc.M413203200
http://www.ncbi.nlm.nih.gov/pubmed/15677471
http://www.ncbi.nlm.nih.gov/pubmed/2199063
http://dx.doi.org/10.1158/1541-7786.MCR-12-0072
http://www.ncbi.nlm.nih.gov/pubmed/22986406
http://dx.doi.org/10.1073/pnas.0900751106
http://www.ncbi.nlm.nih.gov/pubmed/19273838
http://www.ncbi.nlm.nih.gov/pubmed/10850494
http://dx.doi.org/10.1083/jcb.200704150
http://www.ncbi.nlm.nih.gov/pubmed/18195109
http://dx.doi.org/10.1016/j.devcel.2016.01.007
http://dx.doi.org/10.1016/j.devcel.2016.01.007
http://www.ncbi.nlm.nih.gov/pubmed/26859350
http://dx.doi.org/10.1242/jcs.057109
http://dx.doi.org/10.1242/jcs.057109
http://www.ncbi.nlm.nih.gov/pubmed/19861492
http://www.ncbi.nlm.nih.gov/pubmed/12062050
http://dx.doi.org/10.1083/jcb.200501104
http://www.ncbi.nlm.nih.gov/pubmed/15928205
http://dx.doi.org/10.1083/jcb.201212095
http://dx.doi.org/10.1083/jcb.201212095
http://www.ncbi.nlm.nih.gov/pubmed/23460678
http://dx.doi.org/10.1016/j.ydbio.2013.11.028
http://www.ncbi.nlm.nih.gov/pubmed/24333517
http://dx.doi.org/10.1093/nar/gkr218
http://www.ncbi.nlm.nih.gov/pubmed/21493687
http://dx.doi.org/10.1242/dev.108019
http://www.ncbi.nlm.nih.gov/pubmed/25249466
http://dx.doi.org/10.1038/nprot.2007.514
http://www.ncbi.nlm.nih.gov/pubmed/18193022
http://www.ncbi.nlm.nih.gov/pubmed/9463345

