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Summary

Binding prediction tools are commonly used to identify peptides pre-

sented on MHC class II molecules. Recently, a wealth of data in the form

of naturally eluted ligands has become available and discrepancies

between ligand elution data and binding predictions have been reported.

Quantitative metrics for such comparisons are currently lacking. In this

study, we assessed how efficiently MHC class II binding predictions can

identify naturally eluted peptides, and investigated instances with discrep-

ancies between the two methods in detail. We found that, in general,

MHC class II eluted ligands are predicted to bind to their reported

restriction element with high affinity. But, for several studies reporting an

increased number of ligands that were not predicted to bind, we found

that the reported MHC restriction was ambiguous. Additional analyses

determined that most of the ligands predicted to not bind, are predicted

to bind other co-expressed MHC class II molecules. For selected alleles,

we addressed discrepancies between elution data and binding predictions

by experimental measurements and found that predicted and measured

affinities correlate well. For DQA1*05:01/DQB1*02:01 (DQ2.5) however,

binding predictions did miss several peptides that were determined experi-

mentally to be binders. For these peptides and several known DQ2.5 bin-

ders, we determined key residues for conferring DQ2.5 binding capacity,

which revealed that DQ2.5 utilizes two different binding motifs, of which

only one is predicted effectively. These findings have important implica-

tions for the interpretation of ligand elution data and for the improve-

ment of MHC class II binding predictions.
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INTRODUCTION

Major histocompatibility complex (MHC) class II mole-

cules are expressed on professional antigen-presenting

cells and present antigenic peptides to CD4+ T cells,

which play an important role in regulating immune

responses.1 MHC class II, called human leucocyte antigen

(HLA) class II in humans, and CD4+ T-cell responses are

of major significance for autoimmunity and antitumor

immunity. It is known, for example, that coeliac disease

is driven by CD4+ T-cell responses to gluten proteins pre-

sented by certain HLA class II molecules.2 More recently,

it has been shown that neoantigens presented on HLA

class II elicit potent antitumor responses in patients and

that CD4+ T cells are required for successful anticancer

immunotherapy.3-5 Given these developments, there is an

Abbreviations: DQ2.5, DQA1*05:01/DQB1*02:01; EBV, epstein-barr virus; HLA, human leucocyte antigen; IEDB, immune epi-
tope database; Kd, equilibrium dissociation constant; mAb, monoclonal antibody; MHC, major histocompatibility complex; MS,
mass spectrometry; nM, nanomolar; P1, P2, P3, P4, P6, P7, P8, P9, binding pockets 1-9 in MHC binding groove; PDB, protein
database; TCR, T cell receptor
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increased interest in developing efficient approaches for

identifying epitopes presented by MHC class II. As exper-

imental identification of epitopes remains time consum-

ing and costly, and subject to several technical challenges,

MHC class II binding prediction tools are now commonly

used.6

Most MHC binding prediction tools are based on

machine learning algorithms trained on data sets of

known peptide–MHC binding affinities. With an increas-

ing amount of data available for training, prediction algo-

rithms have been able to achieve high accuracy. It is

however generally accepted that predicting binding to

MHC class II is a more challenging problem when com-

pared to predicting binding to MHC class I due to a

number of reasons. MHC class II molecules consist of

heterodimers of alpha and beta chains. These chains are

encoded by genes in the HLA-DP, HLA-DQ or HLA-DR

region of chromosome 6 in humans and are highly poly-

morphic in the general population.7 Most of the poly-

morphism is associated with residues forming the MHC’s

peptide-binding region, which accounts in large part for

the high degree of variation in binding specificity

observed between different alleles. The presence of two

potentially polymorphic chains makes the assignment of

MHC restriction harder for class II, compared to class I

molecules, which consist of a variable alpha chain and

the monomorphic beta-2-microglobulin molecule.

The main energy of interaction for peptide binding to

MHC class I and II is conferred by a peptide core of

approximately 9 residues. However, in contrast to MHC

class I, the binding groove of MHC class II is open on

both ends, allowing peptides of variable length to bind.

The presence of amino acids flanking the peptide core is

also necessary for efficient binding to MHC class II. As a

result, MHC class II has a preferred minimal length of

about 13 residues for binding peptides. The presence of

such over-hanging residues, plus the fact that the open

ends of the binding groove afford multiple different pep-

tide frames, means that machine learning algorithms for

MHC class II binding have to consider multiple possible

peptide cores.

The specificity of an MHC molecule can be described

as a ‘motif’. Crystallographic analyses of MHC–peptide
complexes have shown that different MHC molecules

have different pockets within their binding groove. When

a peptide is bound, the amino acid side chains of so-

called anchor residues in the peptide specifically insert

into these pockets within the MHC binding groove. Both

the position and specificity of these anchor residues are

similar for different peptides binding the same MHC

molecule and together describe the peptide-binding motif

of a given MHC molecule. For MHC class I binding pep-

tides, the anchor residues are located at or near the N-

and C-termini of the peptide, usually P2 and P9 in the

case of 9-mer peptides. For MHC class I binding peptides

anchor residues can be at various distances from the ends

of the peptide and at various positions of the binding

core. For DRB1*01:01 and DRB1*15:01, for example, the

prototypical anchor positions are at P1, P4, P6, P7 and

P9. But other molecules, such as DRB1*11:01 and

DQA1*03:01/DQB1*03:01, appear to have slightly differ-

ent anchor spacing, with the second anchor at P3 instead

of P4, or an anchor at P5.8 While for many MHC class I

and class II molecules distinct binding motifs could be

defined, there are also instances of MHC molecules that

are suggested to carry multiple binding motifs, such as

HLA-DRB1*03:01.9

Recent advances in mass spectroscopy (MS)-based tech-

niques have enabled the development of high-throughput

ligand elution assays, which allow the identification of

thousands of natural ligands with a single experiment.10,11

As eluted ligands undergo the natural processing and

MHC loading cascade, the resulting elution data will

inherently contain valuable biological information that is

not available when only peptide binding is considered.6

Given these advantages, ligand elution experiments have

become quite popular, leading to a wealth of data in the

form of eluted ligands from both MHC class I and class

II molecules.

As eluted ligands were isolated from MHC molecules

that presented them on the cell surface, their capacity

to bind MHC is inherently supported. With the

increasing amount of ligand elution data, discrepancies

between MHC class II ligand elution and binding pre-

dictions have been reported and the efficiency of bind-

ing predictions has been put into doubt.12-15 However,

quantitative metrics for such comparisons are currently

lacking. In this study, we wanted to systematically

investigate how well HLA class II binding predictions

and ligand elution data agree with each other. To

achieve that, we assembled HLA class II ligand elution

data reported in literature and performed multiple

comparative analyses between elution data and binding

predictions: (i) we analysed how many of the eluted

ligands were predicted to bind their reported restricting

MHC; (ii) for several MHC class II alleles, a significant

fraction of reported ligands were not predicted to bind

and we investigated these in detail; (iii) we then chose

four representative HLA class II alleles and specifically

selected peptides for which ligand elution data and

binding predictions disagreed and experimentally mea-

sured binding affinity to determine which method was

correct; and (iv) we found that the correlation between

predicted and measured binding is lowest for

DQA1*05:01/DQB1*02:01 (DQ2.5). We therefore inves-

tigated this allele in detail and performed experiments

to the determine key residues for binding. We found

that DQ2.5 can bind peptides using alternate binding

modes and that, currently, only one of these is being

predicted accurately.
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MATERIAL AND METHODS

Data assembly

The Immune Epitope Database (IEDB)16 catalogs experi-

mental data on antibody and T-cell epitopes as well as

MHC ligands. The IEDB was queried to retrieve ligand

elution data for MHC class II using the following criteria:

‘Positive Assays Only, Epitope Structure: Linear Sequence,

No T cell assays, No B cell assays, MHC ligand assays:

MHC ligand elution assay, MHC Restriction Type: Class

II’. The collected data included ligand sequence, the

MHC class II allele from which the ligand was eluted

from, details of the source protein from which the ligands

originated from and PubMed identifiers (PMIDs) of the

studies that reported the ligand.

We further refined this set to only include peptides that

were eluted from HLA molecules typed with 4-digit reso-

lution, resulting in a set of 24,601 peptides from 27 dif-

ferent HLA class II molecules. The length of the ligands

in this set ranged from 3 to 43 residues; based on previ-

ous analyses,17 we only retained peptides of 15–20 amino

acids in length. After this step, the data set contained

12,506 peptides from 27 different HLA class II molecules.

We then further filtered the set by considering only alleles

for which at least 10 ligands were reported. The resulting

final data set used for analysis included 12,449 sequences,

eluted from 16 different HLA class II molecules. This data

set is provided as Table S1.

HLA binding predictions

We performed binding predictions using the standalone

version of NetMHCIIpan (version 3.1), as this tool

provides predictions for most HLA class II alleles.18,19

HLA class II binding predictions were performed for all

12,449 sequences and their reported HLA class II

restriction element. Peptides with predicted percentile

ranks of >20% were considered predicted non-binders.

This threshold was selected based on previous studies

analysing the binding affinity of HLA class II-restricted

T-cell epitopes.20-23

To analyse contamination of ligand elution data, we

also performed binding predictions for all peptides to

common DR and DQ alleles:20 HLA-DRB1*01:01, HLA-

DRB1*03:01, HLA-DRB1*04:01, HLA-DRB1*04:05, HLA-

DRB1*07:01, HLA-DRB1*08:02, HLA-DRB1*09:01, HLA-

DRB1*11:01, HLA-DRB1*12:01, HLA-DRB1*13:02, HLA-

DRB1*15:01, HLA-DRB3*01:01, HLA-DRB3*02:02, HLA-

DRB4*01:01, HLA-DRB5*01:01, HLA-DQA1*05:01/
DQB1*02:01, HLA-DQA1*05:01/DQB1*03:01, HLA-

DQA1*03:01/DQB1*03:02, HLA-DQA1*04:01/DQB1*
04:02, HLA-DQA1*01:01/DQB1*05:01, HLA-DQA1*01:
02/DQB1*06:02.

Selection of a peptide set with discrepancies

We selected 4 alleles to further investigate peptides with

discrepancies between ligand elution data and binding pre-

dictions: HLA-DQA1*05:01/DQB1*02:01, DRB1*04:01,
DRB1*15:01 and DRB1*01:01. These representative alleles

were selected considering the number of reported eluted

ligands, frequency of the allele in the general human popu-

lation and whether an in-house quantitative binding

assay24 was available. In total, 3,443 eluted peptides were

available for the 4 selected HLA class II alleles, of which

1,611 had predicted %ranks >20. Accordingly, these were

considered as ‘predicted non-binder’. The composition of

the data set after each filtering step is described in detail in

Table 1.

Analysis of sequence similarity

Many of the eluted peptides are very similar to each

other as they contain the same MHC class II binding

core with varying flanking residues of different lengths.

When selecting peptides for experimental testing, we

wanted to avoid testing the same MHC class II binding

core multiple times. Thus, to reduce redundancy, we

removed sequences with >80% sequence similarity. We

Table 1. Composition of eluted ligand dataset after each filtering step and the number of peptides selected to be tested experimentally for the

four alleles selected for detailed investigation

Allele

Peptides in

ligand

elution dataset

downloaded

from IEDB

Peptides with

length 15–20

Peptides with

predicted

%rank>20

Predicted

non-binder

redundant peptides

removed

Predicted

non-binders

selected for

testing

Predicted

binders

selected for

testing

HLA-DQA1*05:01/DQB1*02:01 2245 2056 1097 811 30 20

HLA-DRB1*01:01 638 594 114 97 20 15

HLA-DRB1*04:01 555 463 222 176 30 20

HLA-DRB1*15:01 388 330 178 132 17 18

4 selected HLA combined 3,826 3,443 1,611 1,216 97 73
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used the IEDB clustering tool,25 which groups the set of

input peptides into clusters based on sequence identity.

Here, a cluster is defined as a group of sequences that

have a similarity greater than the specified minimum

sequence identity threshold (80% in our case). We used

all 1611 eluted peptides that were not predicted to bind

for the 4 selected alleles as input, and from each cluster,

we randomly selected one peptide. As a result, 1216 pep-

tides that had <80% sequence similarity remained in the

data set, from which peptides were selected for experi-

mental testing.

HLA binding measurements

Purification of MHC molecules by affinity chromatogra-

phy was performed as detailed elsewhere.24 Briefly,

Epstein-Barr virus (EBV) transformed homozygous cell

lines or single MHC allele transfected RM3 or fibroblast

lines were utilized as sources of HLA class II MHC mole-

cules. MHC class II molecules were purified from cell pel-

let lysates by repeated passage over Protein A Sepharose

beads, conjugated with the monoclonal antibodies

(mAbs) LB3.1 (anti-HLA-DR), SPV-L3 (anti-HLA-DQ)

and B7/21 (anti-HLA-DP). Protein purity, concentration

and the effectiveness of depletion steps were monitored

by SDS-PAGE and BCA assay.

Classical competition assays to quantitatively measure

peptide binding to MHC class II molecules were per-

formed as detailed elsewhere.24 These assays are based

on inhibition of binding of high-affinity radiolabeled

peptides to purified MHC molecules. Briefly, 0�1–1 nM

of radiolabeled peptide was co-incubated at room tem-

perature or 37°C with purified MHC in the presence of

a cocktail of protease inhibitors. Following a two- to

four-day incubation, MHC bound radioactivity was

determined by capturing MHC/peptide complexes on

MHC locus specific mAb-coated Lumitrac 600 plates

(Greiner Bio-one, Frickenhausen, Germany). We then

measured bound counts per minute (cpm) using the

TopCount (Packard Instrument Co., Meriden, CT, USA)

microscintillation counter. The concentration of peptide

yielding 50% inhibition of binding of the radiolabeled

peptide was calculated. Under the conditions utilized,

where the concentration of the radiolabeled peptide is

less than the concentration of MHC, and the affinity of

the peptide (IC50 nM) is greater than or equal to the

concentration of MHC (or more formally, [la-

bel] < [MHC] and IC50 ≥ [MHC]) measured IC50 val-

ues are reasonable approximations of true equilibrium

dissociation constants (Kd).26,27 Each competitor peptide

was tested at six different concentrations covering a

100,000-fold range, and in three or more independent

experiments. As a positive control, the unlabelled version

of the radiolabeled probe was also tested in each experi-

ment.

Transforming measured IC50 values to percentile
ranks

To compare the measured affinities to the predicted per-

centile ranks, we converted the measured IC50 values to

percentile ranks as well. The percentile rank in this con-

text describes the rank of a given IC50 value in a larger

reference set of measured IC50 values. We obtained vari-

ous data sets from the IEDB that contained binding mea-

surements of overlapping 15mers for the four HLA class

II alleles of interest:28-31 HLA-DQA1*05:01/DQB1*02:01
(n = 537), DRB1*04:01 (n = 610), DRB1*15:01
(n = 537) and DRB1*01:01 (n = 1,277). Each measured

IC50 value was then converted to a percentile rank by

calculating its rank in the allele-specific reference set.

RESULTS

HLA class II reported eluted ligands are, in general,
predicted to bind to their restriction element

We first addressed whether ligands eluted from a specific

HLA would also be predicted to bind that allele. We uti-

lized a percentile rank threshold of 20% to classify peptides

into binders and non-binders. This threshold is a rather

comprehensive; however, as we wanted to assess the bind-

ing capacity of reported eluted ligands, a comprehensive

threshold was suitable. In a setting where the rationale is to

use binding predictions to select the best binders for exper-

imental testing, another strategy would be recommended,

such as selecting the top 10% of predicted binders.

To address the extent to which HLA class II eluted

peptides are predicted by the 20%-rank threshold, we

used the Immune Epitope Database (IEDB) and down-

loaded all peptides reported as eluted from HLA class II-

expressing cells. We retained peptides of 15–20 amino

acids in length and eluted from HLA molecules typed to

the 4-digit resolution level. We only further considered

alleles for which at least 10 ligands were reported. The

resulting data set included 12,449 sequences eluted from

16 different HLA class II molecules.

Next, for each of these 16 HLA class II molecules and

their associated ligands, we performed predictions using

the NetMHCIIpan algorithm.18,19 As was the case with T-

cell epitopes,17 significant variation in prediction perfor-

mance across alleles was noted. On average, 57% �17%

SD (Table 2) of eluted peptides was predicted to bind the

corresponding allele at the 20% rank threshold.

Thus, while the majority of eluted peptides could be

effectively predicted by existing algorithms, the overall

prediction efficiency was lower than what has been

reported for known T-cell epitopes. Further, the data also

revealed significant inter-allele variability and identified

several alleles for which less than 60% of reported eluted

ligands were predicted to bind below 20% rank (Table 2).
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Most non-predicted ligands are predicted to bind
other HLA molecules

We addressed whether the 556 DRB1*04:01, DRB1*03:01,
DRB1*04:02 and DRB1*13:02 ligands that were reported

in these studies could have been eluted from associated

and co-expressed DRB3/4/5 molecules, or other contami-

nant HLA class II. Out of these 556 reported ligands 277

(50%) were not predicted to bind the reported DRB1 at

the 20% rank. Of the 277 peptides not predicted to bind

the reported DRB1, 30 (10%) were predicted to bind

other representative DRB3/4/5 molecules (i.e.

DRB3*01:01, DRB3*02:02, DRB4*01:01 and

DRB5*01:01). We additionally found that out of the 279

peptides predicted to bind the reported DRB1, 119 pep-

tides (43%) were also predicted to bind other representa-

tive DRB3/4/5 molecules (Table S2).

Next, in light of the observation that several papers had

isolated ligands from heterozygous DR samples, we exam-

ined whether the 247 ligands that were not predicted to

bind, neither the reported DRB1 nor other representative

DRB3/4/5 molecules, may be predicted to bind other

common DRB1 or DQ alleles.20 We found that 60%

(148/247) of the non-predicted DRB1-reported eluted

ligands were, in fact, predicted to bind other common

DR or DQ alleles. Conducting the same analysis for the

279 peptides that were predicted to the reported DRB1

molecule, we found that 99% (275/279) of them were

also predicted to bind other common DRB1 or DQ

alleles.

Taken together, of the 277 ligands that were not pre-

dicted to bind the reported HLA at the 20% rank thresh-

old, 64% were predicted to bind other HLA molecules,

suggesting that a wrong HLA might have been assigned

to these ligands. Our results additionally suggest that

ligands that were predicted to bind the reported DRB1

molecule could also be promiscuous binders with the

capacity to bind multiple different HLA alleles.

Addressing discrepancies between elution data and
binding predictions by experimental affinity
determinations

Next, we chose representative HLA class II alleles from

the set described above, considering the number of

reported eluted ligands, frequency of the allele in the gen-

eral human population and whether an in-house quanti-

tative binding assay24 was available. Specifically, we

selected HLA-DQA1*05:01/DQB1*02:01, DRB1*04:01
and DRB1*15:01 for further study, all alleles for which

less than 55% of ligands were predicted to bind at the

20% rank threshold. As a control, we selected

DRB1*01:01, an allele for which over 80% of ligands were

predicted to bind with affinities over the 20% rank.

For these four selected alleles, 3,443 eluted peptides

with lengths of 15–20 amino acids were available, of

which 1611 (47%) were not predicted to bind at the 20%

rank threshold (Table 1). We excluded sequences with

>80% sequence similarity to reduce redundancy, resulting

in a set of 1,216 peptides. From this set, we selected

between 17 and 30 peptides each for HLA (Table 2). This

resulted in a total of 97 eluted peptide sequences that

were not predicted to bind at 20%-rank. As a control, we

selected between 15 and 20 eluted peptides per allele that

were predicted to bind with %-rank of 10 or better. Bind-

ing affinities for the 97 peptides predicted not to bind

and 73 predicted binders were measured using standard

competitive binding assays,24 as described in the Methods

section.

To compare the measured affinities to the predicted

percentile ranks, we converted the measured IC50 values

to percentile ranks as well. The percentile rank in this

context describes the rank of a given IC50 value in a lar-

ger reference set of measured IC50 values. We obtained

various data sets from the IEDB that contained binding

measurements of overlapping 15mers for the four HLA

class II alleles of interest28-31 and combined the data to

be used as the reference data set of measured IC50 values.

Each measured IC50 value was then converted to a per-

centile rank by calculating its rank in this allele-specific

reference set.

Table S3 lists all tested peptides together with predicted

and measured IC50 and %-rank values.

Overall (Table 3), 67 of the 73 predicted binders (92%)

bound the corresponding HLA molecule when tested

experimentally (shown as squares in Figure 1), consistent

with previous data,17 and as summarized above. Similarly,

79 of the 97 eluted peptides (81%) predicted not to bind

(Table 3) indeed did not bind when tested experimentally

Table 2. Ligand elution data and associated prediction efficacy

Allele ligands

%recovered

at 20%

HLA-DRB5*01:01 131 75%

HLA-DRB3*02:02 10 80%

HLA-DRB1*15:01 330 46%

HLA-DRB1*13:02 17 35%

HLA-DRB1*11:01 50 62%

HLA-DRB1*04:05 1206 59%

HLA-DRB1*04:04 35 69%

HLA-DRB1*04:02 29 31%

HLA-DRB1*04:01 463 52%

HLA-DRB1*03:01 79 49%

HLA-DRB1*01:01 594 81%

HLA-DQA1*05:05/DQB1*03:01 3908 58%

HLA-DQA1*05:01/DQB1*02:01 2055 47%

HLA-DQA1*02:01/DQB1*02:02 3492 36%

HLA-DQA1*01:02/DQB1*06:02 27 85%

HLA-DQA1*01:01/DQB1*05:01 23 52%
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(shown as circles in Figure 1). Thus, these results con-

firmed the general efficacy of the binding predictions, as

applied to the experimentally determined binding capacity

of reported eluted ligands.

Importantly, for some alleles a relatively large fraction

of eluted peptides did not, in fact, bind the reported cor-

responding allele when measured experimentally. In light

of the complexity and limitations of eluted ligand

determinations, it appears likely that at least some of

these reported ligands have an incorrectly assigned HLA

molecule, or are otherwise contaminants.

Correlation between predicted and measured binding
is lowest for DQA1*05:01/DQB1*02:01

Comparison of the NetMHCIIpan predicted %-ranks to

the measured %-ranks revealed good correlation overall

(r = 0�8, Pearson’s correlation). However, this analysis

also identified some inter-allele variability and we found

that the correlation between predicted and measured %-

ranks is lowest for DQA1*05:01/DQB1*02:01 (r = 0�743,
Pearson’s correlation). We additionally observed several

cases with substantial disagreement between predicted

and measured binding. In particular, the analysis identi-

fied 8 peptides (outlined in red in Figure 1) that were not

predicted to bind and had %-ranks of >30% but mea-

sured %-ranks were all <10%. This suggests that these

peptides are likely real ligands whose binding capacity

was missed by the predictions. Further inspection of the

affected peptide-HLA pairs showed that the majority of
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Figure 1. Measured percentile ranks are plotted against predicted ones. Colors indicate different alleles, squares predicted binders, and circles

predicted non-binders. A red outline depicts cases with large discrepancies between measured and predicted affinities, that is measured rank <

10% and predicted rank > 30%.

Table 3. Composition of peptide set and associated binding results

HLA allele

Pred. non-

binders

selected

Pred. non-

binders that

don’t bind

Pred.

binders

selected

Pred.

binders

that

bound

DQA1*05:01/

DQB1*02:01

30 22 (73%) 20 18 (90%)

DRB1*01:01 20 17 (85%) 15 14 (93%)

DRB1*04:01 30 28 (93%) 20 17 (85%)

DRB1*15:01 17 12 (71%) 18 18 (100%)

Total 97 79 (81%) 73 67 (92%)
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these peptides (5 of 8) were associated with DQA1*05:01/
DQB1*02:01 (Table 4).

Accordingly, we next sought to characterize the respec-

tive modes of binding of the 5 ‘discordant’ peptides to

DQA1*05:01/DQB1*02:01 (hereafter DQ2.5). As controls,

we also included 2 peptides eluted from DQ2.5 that were

predicted to bind. We also included one peptide (aTIP

430) previously reported as a DQ2.5-restricted T-cell epi-

tope32 and predicted to bind DQ2.5, and another (DQA

16) previously identified as an endogenously bound DQ2.5

ligand,33 but not predicted to bind DQ2.5. The DQ2.5

binding capacity of both aTIP 430 and DQA 16 was previ-

ously characterized using purified HLA21,34 and confirmed

in the present study. Table 4 shows the 9 peptides included

in the single amino acid substitution experiments. Table 3

lists the 8 peptides with greatest discrepancy between pre-

dicted and measured affinity, where an enrichment for

DQ2.5 was noted (5/8). Some peptides are listed in both

Tables, as they are relevant in both contexts.

Determining key residues for DQ2.5 binding within
the eluted ligands

For each of the ligands in Table 4, we experimentally

determined the residues crucial for conferring DQ2.5

binding capacity. We used a previously described single

amino acid substitution approach,35 scanning each pep-

tide sequence by introducing non-conservative substitu-

tions at each position. Lysine (K) was selected as the

basis for the analysis as it is non-conservative with all

amino acids except those with a positive charge (i.e. R, H

and K). In cases where the native residue carried a posi-

tive charge, a glutamic acid (E) substitution was utilized.

Each single substitution analog, and the original unmodi-

fied peptide, was tested for its capacity to bind DQ2.5.

All peptides together with the measured IC50 values and

ranks are detailed in Table S4.

All of the original unmodified peptides bound with

IC50 values <1000 nM and %-ranks <20%. However, sev-

eral of the single substitution analogs did not bind at all,

or bound with considerably lower affinity when compared

to the corresponding unmodified peptide. The measured

binding affinity of each analog was compared to the

unmodified peptide, and a relative binding capacity was

calculated as the fold change in IC50 between the peptide

and its analog (Figure 2). Positions associated with a

fourfold or greater reduction in binding capacity (high-

lighted by green shading in Figure 2) were defined as

potential MHC contacts. These decreases in affinity allow

mapping potential MHC contact residues for each ligand.

The analysis revealed that on average 5�8 residues/ligand

were identified as important for DQ2.5 binding, with a

range from 2 to 9 residues. No clear, simple, common

pattern was readily apparent across ligands.

DQA1*05:01/DQB1*02:01 Motif 2 peptides are not
effectively predicted

Previous studies indicated that DQ2.5 may be associated

with at least two different binding motifs. One motif is

characterized by a preference for aromatic or hydropho-

bic aliphatic residues in position 1 (P1),21,33,36 acidic resi-

dues in positions 4, 6 and/or 7 (P4, P6 and/or P7), and

hydrophobic or aromatic residues at position 9 (P9). An

independent study33 also identified a preference for acidic

residues in P4 and P6, and large hydrophobic residues in

P9, but with no specificity in P1. Collectively, we hereby

refer to these preferences as ‘Motif 1’. Other reported pat-

terns37,38 associate proline or polar residues with P1,

acidic or polar residues at various other positions, and a

hydrophobic or polar residue in P9 (‘Motif 2’).

We divided all DQ2.5 ligands into three groups accord-

ing to whether they fit Motif 1, Motif 2 or no motif fol-

lowing the patterns outlined above: Motif1 with aromatic

or hydrophobic aliphatic residues (i.e. Phenylalanine,

Tryptophan, Tyrosine, Leucine, Isoleucine, Valine or

Methionine) in positions P1 and/or P9, and acidic resi-

dues (i.e. Aspartate or Glutamate) in positions P4, P6

and/or P7; Motif 2 with Proline or polar residues (i.e.

Glutamine, Asparagine, Serine, Threonine, Lysine or Argi-

nine) in P1, hydrophobic or polar residue (i.e. Glutamine,

Asparagine, Aspartate, Glutamate, Phenylalanine, Trypto-

phan, Tyrosine, Leucine, Isoleucine, Valine, Methionine)

in P9, acidic residues (i.e. Aspartate or Glutamate) in

Table 4. Peptides showing greatest discrepancy between predicted and measured affinity

Sequence HLA allele Measured %-Rank Predicted %-Rank

APDTRFFVPEPGGRGAAP HLA-DRB1*01:01 2.19 34.31

WISKQEYDESGPSIVHRK HLA-DRB1*15:01 7.26 79.28

SPTEPKNYGSYSTQA HLA-DRB1*15:01 2.61 86.56

GEPDYVNGEVAATEA HLA-DQA1*05:01/DQB1*02:01 2.98 30.02

GDSDLQLDRISVYYNEA HLA-DQA1*05:01/DQB1*02:01 6.7 31.25

RQEEPEYENVVPISRPP HLA-DQA1*05:01/DQB1*02:01 3.54 40.81

KPPTADLFTGVLPNGYNPP HLA-DQA1*05:01/DQB1*02:01 3.91 43.8

LPGRENYSSVDANGIQ HLA-DQA1*05:01/DQB1*02:01 2.23 55.87
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positions P6 and/or P7 and/or acidic or polar residues

(i.e. Aspartate, Glutamate, Glutamine, Asparagine) in

position P4. Using the peptides fitting Motif 1, Motif 2

or no motif, we generated three different sequence logos

using the Seq2Logo tool39 (Figure 3A).

Upon closer inspection of the data shown in Figure 2,

we were able to classify five ligands as fitting either Motif

1 or Motif 2 (Figure 3B). Specifically, three peptides

appear to fit Motif 1, to include PI-a 70 with Isoleucine

at peptide position 8 (I8) as its P1 anchor, and Aspartate

at position 11 (D11) and Glutamate at position 13 (E13)

as P4 and P7 anchors, respectively. Motif 1 also describes

the binding of the TMA 266 ligand, with Glutamate at

peptide position 8 (E8) and Leucine at position 13 (L13)

as the P4 and P9 anchors, and aTIP 430, with Valine at

position 3 (V3), Aspartate at position 9 (D9) and Leucine

at position 11 (L11) as P1, P7 and P9 anchors, respec-

tively.

Two other peptides appear to fit Motif 2 (Figure 3B).

These are the DQA 16 peptide, for which the single substi-

tution analysis indicated the Proline in position 6 of the

peptide (P6) as the P1 anchor and Phenylalanine at posi-

tion 14 (F14) as the P9 anchor, and the SR 812 ligand

where the Proline in position 5 (P5) is the P1 anchor and

Isoleucine at position 13 (I13) is the P9 anchor.

The four remaining peptides did not fit either motif.

These include the LAM 246 and Cochlin 160 peptides,

which have aromatic/hydrophobic residues that fit as P1

and P9 anchors, but do not have acidic residues in the

P4, P6 or P7 positions as described by Motif 1; mean-

while, aromatic residues in P1 render the LAM 246 and

Cochlin 160 peptides incompatible with Motif 2. For the

remaining two peptides (LAT2 21 and Tubulin 38), the

single amino acid substitution scan also revealed binding

modes not compatible with either Motif 1 or Motif 2.

Interestingly, when we examined the motif groups with

respect to predicted binding, it was found that all three

peptides fitting Motif 1 were also predicted by the

NetMHCIIpan algorithm to bind DQ2.5 with %-ranks of

20 or better (Table 5). Conversely, none of the peptides

associated with Motif 2 or with no motif were predicted

by the NetMHCIIpan algorithm. In conclusion, while 3/3

Motif 1-positive peptides were predicted, 0/6 peptides

that did not carry this motif were predicted (P = 0�019,
Fisher’s exact test).

To validate that the differential predictability of DQ2.5

ligands was associated with the presence of Motif 1, we

assembled all described DQ2.5 eluted ligands and evalu-

ated whether those predicted to bind DQ2.5 were

enriched for the presence of Motif 1, compared to
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Figure 2. The fold change in IC50 between the unmodified peptide and the corresponding analog with substitutions at each position scanning

the length of the respective peptide is shown. The dashed line indicated a 10-fold reduction in binding. Residues for which substitutions resulted

in a greater than 10-fold reduction in binding were defined as anchor residues and are highlighted in green here.
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ligands that were not predicted to bind. Indeed, 20%

(196/958) of the ligands predicted to bind did carry

Motif 1. By contrast, only 5% (47/958) of ligands pre-

dicted to bind carried Motif 2 (P < 0�0001, chi-square

test). The remaining 75% of the ligands predicted to

bind DQ2.5 did not conform to any known motif. The

neural network architecture utilized by NetMHCIIpan

theoretically has the capacity to learn and predict multi-

ple binding motifs for an allele. Our results, however,

suggest that the algorithm in practice does not efficiently

predict Motif 2.

Taken together, these data highlight that DQ2.5 can

bind peptides promiscuously using alternate modes.

Further analysis of more peptides is necessary to fully

understand what defines the way peptides bind or do not

bind this molecule and to improve binding predictions.

DISCUSSION

In this study, we assessed how well MHC class II binding

predictions and ligand elution data agree with each other.

We found that the majority of experimentally identified

MHC class II eluted ligands were predicted to bind to

their reported restriction element. For HLA-DR ligands

that showed discrepancies, most of the ligands that were

not predicted to bind were actually predicted to bind just
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Figure 3. (A) All DQ2.5 ligands were divided into three groups according to whether they fit Motif 1, Motif 2, or no motif and sequence logos

were generated. (B) The analyzed 9 DQ2.5 binding peptides are grouped according to the motif they conform to. Residues that were identified as

anchor residues in single amino acid substitution experiments are highlighted in green. The red boxes highlight residues that explicitly match the

position and specificity of Motif 1 or Motif 2. A + in the column prediction indicates that the peptide was predicted to bind DQ2.5 with a per-

centile rank of < 20%.

Table 5. Peptides selected for DQ2.5 single amino acid substitution scan to determine the residues crucial for DQ2.5 binding

Protein Pos Sequence Set Measured %-Rank Predcited %-Rank

PI-a 70 NPTVFFDIAVDGEPL Eluted 0.2 0.8

TMA 266 LAKTAFDEAIAELDT Eluted 0.9 0.5

aTIP 430 EEVDMTPADALDDFD Epitope 1.5 1.0

DQA 16 YQSYGPSGQYTHEFD Eluted 10.6 55.0

SR 812 RQEEPEYENVVPISRPP Eluted 2.2 40.8

LAM 246 KPPTADLFTGVLPNGYNPP Eluted 5.6 43.8

Cochlin 160 LPGRENYSSVDANGIQ Eluted 14.7 55.9

LAT2 21 GEPDYVNGEVAATEA Eluted 2.1 30.0

Tubulin 38 GDSDLQLDRISVYYNEA Eluted 6.9 31.3
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below the threshold utilized, or were predicted to bind to

other co-expressed MHC class II molecules.

In contrast to the DR molecules studied, we found that

for HLA-DQA1*05:01/DQB1*02:01 (DQ 2.5) binding

predictions did miss several peptides that were deter-

mined experimentally to be binders. By determining key

residues for DQ2.5 binding in several peptides, we could

trace discrepancies back to the existence of two binding

motifs, only one of which was effectively predicted.

Our finding that the majority of eluted ligands were

predicted to bind their restricting allele supports the use

of these prediction tools that are commonly used.40,41

This use had been put into doubt by reports that the pre-

dicted binding affinity of peptides to MHC class II corre-

lates poorly with MHC antigen presentation12,13 and

peptide immunogenicity.14,15 We have reported previously

that in the case of HLA class II-restricted T-cell epitopes

binding predictions do perform well, as we found that

83�3% of epitopes are predicted to bind their correspond-

ing restricting allele with an affinity of 1000 nM or bet-

ter.17

In the present study, we investigated how efficiently

binding predictions can predict eluted ligands, and found

that, on average, 57% of eluted peptides are predicted to

bind their corresponding allele below the 20%-rank

threshold. These data prove that the majority of eluted

ligands can also be effectively predicted, although the per-

centage is lower than it is in the case for HLA class II-re-

stricted T-cell epitopes. It was already shown in the case

of HLA class I-restricted T-cell epitopes that alleles can

vary in terms of the affinity threshold associated with

immunogenicity.42 This may indeed be the case as well

for HLA class II ligands and T-cell epitopes, and needs to

be further investigated.

When we scrutinized experimental procedures of the

ligand elution studies, we found that the assigned restric-

tions for several MHC class II ligands are likely incorrect.

This reflects experimental challenges of ligand elution

assays. The first steps in a typical MHC class II ligand

elution assay are lysing the antigen-presenting cells, puri-

fying the MHC molecules via immunoprecipitation and

chromatographically eluting the MHC ligands.43 Here, the

main drawback is that natural ligandomes are multi-al-

lelic. Different MHC molecules are expressed in the inter-

rogated cell and the eluted ligands can correspond to any

one of those MHC molecules. This makes it difficult to

unambiguously annotate the ligands to the MHC mole-

cule they were presumed to be eluted from.

Of the eleven DR molecules we studied, 5 (DRB1*04:01,
DRB1*03:01, DRB1*04:02, DRB1*13:02 and DRB1*15:01)
were associated with lower prediction efficiency. We sus-

pected that the poor-performing DR alleles may have

resulted from an imprecise HLA assignment of the eluted

ligands. To further explore this issue, we scrutinized papers

that reported the eluted ligands associated with those DR

molecules. HLA-DR loci encompass a monomorphic alpha

chain (DRA), which pairs with beta chains expressed by

two different loci: DRB1 and DRB3/4/5. These two loci are

in strong linkage disequilibrium and are co-expressed

in vivo. The only exceptions to this are the DR1, DR8 and

DR10 haplotypes, for which there is no associated DRB3/4/

5 locus. Thus, in heterozygous individuals, up to four dif-

ferent DR molecules (two with DRB1- and two with

DRB3/4/5 beta chains) may be expressed, and even in

homozygous humans, two different DR molecules may be

co-expressed. Importantly, all anti-DR antibodies (L243,

LB3.1 and others) commonly used to purify DR molecules

and isolate eluted ligands are directed against the DR alpha

chain, and thereby do not distinguish between DRB1 from

DRB3/4/5 molecules. Thus, unless HLA mono-allelic lines

are used, both DRB1 and the DRB3/4/5 gene products will

be co-purified, and the pool of eluted ligands may contain

a mixture of two different HLA class II molecules. All stud-

ies pertaining to those DR alleles associated with ‘lower

efficiency of binding predictions’ suffered from the afore-

mentioned issues. This included studies using the L243 or

L227 monoclonal antibodies, both anti-DRA, with EBV

transformed homozygous44-48 or heterozygous49-51 cell

lines. Other studies52,53 similarly purified DR molecules

from heterozygous patient material, yielding a mixture of

DRB1 and DRB3 or DRB4 eluted peptides, as well as other

undefined DR molecules expressed because of patient

heterozygosity. While most authors do not mention issues

pertaining to co-expression, others acknowledge the prob-

lem. Koning et al.54 state that ‘affinity purification. . .

resulted in the isolation of a mixture of the HLA-DRB1

and the HLA-DRB4-locus product DR53’. Similarly, Hill

et al.55 recognize that DRB1 and DRB4 molecules are

tightly linked, but conclude that DRB4 is likely to represent

a minor fraction of DR molecules, and is therefore ‘un-

likely to influence results’.

This issue can be addressed, for example, by using

genetically engineered mono-allelic cell lines. This

approach, however, is not feasible when patient samples

are used, which will almost always be multi-allelic. To

overcome this, there are currently significant efforts to

develop computational methods that can accurately anno-

tate multi-allelic ligands to their respective MHC.56-58

However, such methods will still rely on the identification

of shared motifs of the eluted peptides.

Once ligands are eluted from MHC molecules, they are

sequenced by tandem mass spectrometry (MS/MS). A key

step is the identification of peptides by matching acquired

MS/MS spectra against a customized protein sequence

database. This step has an inherent trade-off between sen-

sitivity and specificity, which leads to a certain number of

false spectrum identifications.59,60 It is thus expected that

some ligands identified by these methodologies are not

correct. Given that we explicitly focused on peptides that

were not predicted to bind, we might have enriched for
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such peptides that fall into the known false discovery rate

of peptide elution experiments.

On the other hand, specifically focusing on these out-

liers might have enabled us to discover patterns that

would have otherwise been missed. When we compared

predicted and measured affinities, we identified several

peptides that were not predicted to bind their associated

allele but were experimentally determined to actually

bind. This, therefore, indicates that these peptides are

likely real ligands, but were missed by the predictions. As

5 out of 8 of these instances were associated with HLA-

DQA1*05:01/DQB1*02:01 (DQ2.5), we performed a

detailed investigation of binding modes to DQ2.5. We

performed single amino acid substitutions for these 5 dis-

cordant DQ2.5 associated peptides and an additional 4

peptides that are known DQ2.5 binders. Two distinct

binding motifs have been described for this allele in the

literature, and 5 out of the 9 analysed peptides were

determined to fit either of these two motifs, while 4 pep-

tides did not fit any motif.

It might be that these peptides that did not fit any known

motif bind DQ2.5 in a mode engaging pockets in the bind-

ing groove in a not readily apparent alternate mode. But, as

suggested by several elegant thermodynamic studies,61-64 it

is also possible that the primary energy of binding in these

cases is driven by MHC backbone-peptide side chain inter-

actions. However, without additional data, this remains

speculation in the present case.

Crystallography studies of DQ2.5 with bound peptides

conforming to Motif 1, Motif 2 and no motif would

enable the detailed characterization of the interactions in

the different binding modes. Nine crystal structures of

DQ2.5 are available in the Protein Database (PDB). How-

ever, as DQ2.5 is mainly studied in the context of coeliac

disease, in 7 of these studies various deamidated gliadin

peptides are reported, which all conform to Motif 2.65-67

The remaining 2 crystal structures report CLIP1 and

CLIP2 peptides, which do not conform to any motif.68

Crystal structures of DQ2.5 with bound gliadin pep-

tides or mimics of these peptides in complex with T-cell

receptors (TCRs) showed that the TCR-peptide contacts

are at positions P2, P5, P6 and P8 of the MHC binding

core.66,69 Both Motif 1 and Motif 2 do not identify a

preference for specific amino acids at positions P2, P5

and P8, and have the same preference for acidic residues

at positions P6 and P7. It is hence theoretically possible

that peptides conforming to Motif 1 or Motif 2 could be

recognized as epitopes. Again, crystal structures of DQ2.5

with bound peptides conforming to Motif 1, ideally in

complex with a TCR, would help to clarify the specific

interactions of the different binding motifs.

Interestingly, peptides conforming to Motif 2 or no

motif were not predicted correctly, indicating that predic-

tion performance might depend on the motif of the pep-

tide in question. We hypothesized that this might be due

to a skewed Motif 1 to Motif 2 ratio in the DQ2.5 data

set used to train NetMHCIIpan. We investigated the

number of peptides in the training data set conforming

to each motif and found that the majority of peptides did

not fit any motif (53%) and there were less motif 1 pep-

tides than motif 2 peptides (20% and 28%, respectively).

The distribution of the different motifs in the training

data set does hence not explain prediction efficacy of the

different motifs.

While the neural network architecture utilized here

hypothetically has the capacity to learn that multiple

binding motifs are possible for a single allele, the algo-

rithm in practice does not seem to pick this up. We used

the most recent version of NetMHCIIpan (version 4.0) to

investigate whether this issue persist in the updated

implementation. The NetMHCIIpan 4.0 eluted ligand

likelihood prediction (Rank_EL) was trained using eluted

ligand data. As that includes all peptides we analysed in

this study, the predictions will be overfitted and are not

helpful in this context. The NetMHCIIpan 4.0 binding

affinity prediction (Rank_BA) in contrast was trained

using an extended data set of peptide-MHC binding

affinity data. Considering these updated predictions, all of

the three tested Motif 1 peptides were predicted good

binders with %-ranks <1%. The predicted %-ranks for

two Motif 2 peptides in contrast are much weaker: while

one peptide could be considered a weak binder with a %-

rank of 17%, the second peptide with a %-rank of 48%

was clearly not predicted to bind. While NetMHCIIpan

3.1 did not predict any of the 4 peptides that did not

conform with any motif as binding, NetMHCIIpan 4.0

predicted two of them as binding with %-ranks <20
(Table S5). While this analysis confirms our results

regarding Motif 1, it also indicates that the updated neu-

ral network also has issues in predicting half of the pep-

tides that do not conform with Motif 1.

There is already an example in the literature of an allele

having two alternative motifs.70 Interestingly, this is HLA-

DRB1*03:01, which was also found in our study to be

associated with lower prediction performance, with only

49% of peptides binding below 20%-rank. It is possible

that alternative binding motifs are a general problem with

HLA class II molecules and that currently only peptides

conforming to one of the associated motifs are predicted

well. Conversely, peptides with other motifs are missed by

predictions. This needs to be investigated in more detail

by extending the analysis to additional alleles and pep-

tides. The resulting data set from our study will be valu-

able for training machine learning methods to specifically

detect cases with multiple binding motifs and improve

prediction performance.

Our study utilizes experimentally eluted MHC ligand

data as a set of ‘positive data points’, and examines which

of these ligands is not identified with prediction methods,

thus focusing on ‘false-negative predictions’. Examining
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the flip-side, namely ‘false-positive predictions’, requires

ligand elution data sets that exhaustively search for all pos-

sible MHC ligands in a set of antigens so that a set of ‘nega-

tive data points’ that with certainty are not presented by

MHC can be identified. The data sets used in this study do

not meet these criteria, and generating them in sufficiently

large scale is challenging. For MHC class I, a comprehen-

sive data set of eluted ligands derived from vaccinia virus

infected murine cells that were further tested for T-cell

recognition has been published, revealing 83 major epi-

topes.71 Benchmarking revealed that the best prediction

methods were able to capture more than 50% of these epi-

topes in the top N = 277 predictions within the set of

N = 767,788 possible peptides.72 This means the false-posi-

tive rate, defined as the fraction of negatives that is incor-

rectly predicted to be a positive is only 0�03%. While this

seems close to perfect, when evaluating this performance

based on precision, defined as the fraction of positive pre-

dictions made that is actually positive, is only 15%. This

highlights that metrics of prediction performance have to

be considered in the context of the problem considered,

and identifying MHC ligands and/or T-cell epitopes in a

complex antigen is a ‘needle-in-the-haystack’ problem. It

also has to be pointed out that the prediction methods

were asked to identify ligands based on the peptide

sequence alone, and other factors that can lead to lack of

presentation of a ligand, such as low expression level of the

source protein, were not included in this comparison.

Incorporating such additional factors should reduce the

false-positive rate. Similar data sets and benchmark com-

parisons should also to be generated for MHC class II.
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