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ABSTRACT

Understanding the functional impact of cancer so-
matic mutations represents a critical knowledge
gap for implementing precision oncology. It has
been increasingly appreciated that the interaction
profile mediated by a genomic mutation provides
a fundamental link between genotype and pheno-
type. However, specific effects on biological sig-
naling networks for the majority of mutations are
largely unknown by experimental approaches. To re-
solve this challenge, we developed e-MutPath (ed-
getic Mutation-mediated Pathway perturbations), a
network-based computational method to identify
candidate ‘edgetic’ mutations that perturb functional
pathways. e-MutPath identifies informative paths that
could be used to distinguish disease risk factors
from neutral elements and to stratify disease sub-
types with clinical relevance. The predicted tar-
gets are enriched in cancer vulnerability genes,
known drug targets but depleted for proteins asso-
ciated with side effects, demonstrating the power

of network-based strategies to investigate the func-
tional impact and perturbation profiles of genomic
mutations. Together, e-MutPath represents a robust
computational tool to systematically assign func-
tions to genetic mutations, especially in the context
of their specific pathway perturbation effect.

INTRODUCTION

Genome sequencing and genome-wide association efforts
have identified thousands of genetic variants across can-
cer types (1). Although mutations are traditionally thought
to disrupt the entire gene function, it has become clear
that many mutations (especially missense mutations) have a
unique effect on signaling pathway perturbation (2,3), and
they are therefore termed as ‘edgetic’ or ‘neomorphic’ (4—
7). This leads to an exciting field of ‘functional variomics’,
to study the functional effects of genomic mutations on spe-
cific molecular interactions, signaling pathways or cellular
processes (2). These mutations have been observed to exert
different functional effects, including oncogenic activation
and tumor suppression (6). However, the functional path-
ways by which genetic variants lead to diverse phenotypic
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consequences remain largely unresolved (8). Classical gene
knockout or knockdown approaches have been performed
to characterize the function of genes but not mutations (9—
11). Indeed, it is difficult to create, express and character-
ize large numbers of specific mutants due to the enormous
amount of time and cost involved.

Although experimental methods are critical to under-
stand the function of individual genetic variants, it is in-
creasingly appreciated that biological systems are formed
by a large number of interacting genes or proteins (12). In-
teractome networks or signaling pathways exhibit distinct
properties that cannot be understood by single gene-based
analyses (3,13). Many mutations are believed to be edgetic,
rewiring signal transduction pathways to alter cellular phe-
notypes (4-6). Identification of network or pathway pertur-
bations and the consequences of such perturbations is cru-
cial for understanding complex pleiotropic mutational ef-
fects and providing novel insights into genotype—phenotype
relationships in disease (14).

While a number of computational methods have been
developed to identify candidate driver mutations (15,16),
the majority of these methods focus on the ‘nodes’ in the
networks or pathways. The molecular interactions in the
context of signal transduction networks are often neglected
in these algorithms. To overcome this challenge, integra-
tion of available omics data from genome-scale projects
is necessary, and could greatly facilitate the identification
of candidate edgetic mutations and the perturbed path-
ways in disease (5,17). Thus, we proposed a novel com-
putational method named e-MutPath (edgetic Mutation-
mediated Pathway perturbations), to decode the function
of mutations from the pathway perturbation perspective.
We applied our network-based approach to 33 cancer types
and uncovered both well-known and new cancer-associated
genes and candidate driver mutations. Our results also
demonstrate that e-MutPath is superior to previous meth-
ods in its unique network features, and more importantly, it
systematically assigns functions to large numbers of genetic
mutations, especially in the context of their specific pathway
perturbation effect.

MATERIALS AND METHODS

Genome-wide genetic variants and gene expression profiles in
cancer

Genome-wide somatic mutations and gene expression pro-
file data of hepatocellular carcinoma (HCC) patients were
downloaded from The Cancer Genome Atlas (TCGA)
project (18). The expression of genes was measured by frag-
ments per kilobase million (19), and genes not expressed
in more than 30% patients were excluded in our analy-
sis. In addition, another set of gene expression profile data
for HCC was downloaded from the International Cancer
Genome Consortium (ICGC) project (20). The normalized
read count for each gene was used in our analysis. The gene
expression profiles for another 32 types of cancer were also
downloaded from the TCGA project (21) and processed in
the same way as the HCC data.
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Protein—protein interaction network and signaling pathways

A systematic map of ~16,000 high-quality human binary
protein—protein interaction (PPI) network, which was iden-
tified by yeast two-hybrid (Y2H) assay, was used in our
analysis (22,23). The homodimer interactions were removed
and there were 15,957 interactions among 4,743 genes for
further analysis. Human signaling pathways were obtained
from (24).

e-MutPath algorithm

The network-based method (e-MutPath) integrates
genome-wide somatic mutation profiles with gene ex-
pression and a protein interaction network to identify
candidate driver mutations that perturb molecular in-
teractions (Figure 1). Briefly, the method includes three
steps: first, perturbed gene interactions were identified
in cancer based on gene expression correlation analysis;
second, patient-specific interaction perturbation profiles
were constructed; and finally, candidate driver mutations in
each cancer patient that mediated interaction perturbations
were identified by integration of interaction perturbation
profiles with mutation profiles.

Identifying perturbed interactions by edgetic mutations

It has been demonstrated that perturbed molecular inter-
actions can be identified by integration of protein or gene
expression profile with molecular networks (25,26). How-
ever, there are limited protein expression profiles avail-
able to use in complex diseases (27,28). Here, we inte-
grated genome-wide gene expression profiles with interac-
tion networks to identify patient-specific molecular inter-
action perturbations in cancer. The interaction networks
could be defined as un-directed graph G = (V, E), where
V = (vi,V2,V3,...,Vj, ..., Vp)is the set of genes repre-
sented as n nodes and E = (e1,e2,¢€3,...,¢€j,...,€m), the
set of m interactions represented as edges. For each edge
ej formed by gene v, and vy in the network, we evaluated
whether this edge was perturbed in patient k by calculating
the distance di of this patient to other patients in the 2D
space. The expression profiles of gene v, and vy in patient k
were defined as Ex = (e, eyx). The distance was calculated
based on gene expression profiles as follows:

d () = /(B — )1 (Ex — )

Where 1 is the average expression and S is the covari-
ance matrix of all patients. When we obtained the distance
of each patient, the Grubbs’ test was used to determine
whether there are outliers in the distribution of the dis-
tances. Specifically, the Grubbs’ test statistic is defined as:

G _ max (dy — d)
s

Where d and s represent the mean and standard deviation
of distance, respectively. We used the two-sided test, the hy-
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based on gene expression correlation analysis. Second, identification of edgetic biomarkers based on discriminative scores. Third, identification of candidate

edgetic driver mutations based on the number of overlapping patients with both mutations and interaction perturbations.

pothesis of no outliers was rejected fif,

(N-1) (ta/cn, N—2)2
>

G
VN N =2 + (tajn), N—2)2

With ty/0on) n—2 denoting the critical value of the t-
distribution with (N-2) degrees of freedom and a signif-
icance level of «/(2N), and N is the number of patients.
We detected all the outliers in the distribution, and defined
these samples as exhibiting interaction perturbation in can-
cer. After repeating this process for all edges in the inter-
action networks, we identified all the perturbed molecular
interactions in specific patients.

Patient-specific molecular interaction perturbation profiles

Based on the above steps, we identified all the perturbed
molecular interactions in specific patients. Next, we con-
structed the molecular interaction perturbation profiles.
Each patient was represented as a profile of binary (1, 0)
states on interaction edges, where rows represented the net-
work edges and columns corresponded to patients. The cle-

ment M;; in the matrix was defined as follow:

17
Mij = {0’

In our analysis, if there were normal samples in the gene
expression profiles, we required the interaction was per-
turbed both when comparing with normal versus cancer
and among cancer patients.

if edge 1 1s perturbed in patient j
if edge i is not perturbed in patient j

Identifying driver mutation-mediated molecular interaction
perturbations

To identify candidate driver mutations that mediated
molecular interaction perturbations, we firstly constructed
somatic mutation profiles of all patients. The somatic muta-
tions for each patient are represented as a binary profile, in
which a ‘1” indicates a specific mutation has occurred in the
tumor. Based on the mutation profiles and molecular inter-
action perturbation profiles, we hypothesized that if a spe-
cific mutation and interaction perturbation co-occurred in
more samples, the interaction perturbations were likely to
be caused by the somatic mutation. Here, we required the
mutations to occur in the genes of the patient who showed
the perturbed interactions. Next, Monte Carlo simulation
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was used to evaluate whether a specific mutation and a
perturbed interaction significantly co-occurred in the same
cancer patients. This process was repeated 1000 times and
the P-value was defined as follows:

p= #(Nrand > Nreal)
n

Where N,,,q 1s the number of patients with both the muta-
tion and the specific perturbed interaction in random condi-
tions, Ny, 18 the number of patients with both the mutation
and the perturbed interaction observed, and n is the num-
ber of randomizations. Finally, we defined the functional
‘impact score’ for each mutation as ‘1 - P-value’.

Identification of informative molecular interactions for clas-
sification

To identify the discriminative edgetic biomarkers for classi-
fication of cancer and normal samples, we defined the dis-
criminative score (S) for each edge in the interaction net-
works. Let a represent a vector of perturbation profiles for
a specific edge over the tumor and normal samples, and let
¢ represent the corresponding vector of class labels (normal
or cancer). The discriminative score was defined as the mu-
tual information MI between a and ¢:
p(x,y)

S=MI (a,c) = ,y)log————

Where p(x,y) is the joint probability density function of a
and ¢, and p(x) and p(y) are the marginal probability density
function of @ and ¢. x and y enumerate values of @ and ¢, re-
spectively. Next, we tested whether the mutual information
with the disease class is stronger than that obtained with
random assignment of the labels to patients. This process
was repeated 100 times, yielding a null distribution of MI
scores. The real score of each edge was indexed on the null
distribution to get the significant level. Network edges with
Benjamini-Hochberg adjusted P-value < 0.01 were identi-
fied as candidate edgetic biomarkers.

Validation of informative molecular interaction perturbations

To validate the discriminative power of identified edgetic
biomarkers for classification of normal and cancer sam-
ples, we trained three classifiers (logistic regression (logR),
random forest (RF) and support vector machine (SVM))
based on edge-specific features. To measure unbiased clas-
sification performance, we used the 10-fold cross-validation
method. All the samples were divided into ten subsets of
equal size. Nine subsets were used as the training set to build
these classifiers using the edge-specific features identified by
MI score, and one subset was used as the validation set. The
performance of each classifier was reported as the area un-
der ROC curve (AUC). In addition, we constructed the clas-
sifiers based on liver cancer dataset from TCGA project and
used another liver cancer dataset from ICGC as indepen-
dent validation.

Cancer subtyping analysis

Based on the interaction network perturbation profiles of
liver cancer samples, consensus non-negative matrix factor-
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ization clustering was performed (29). To identify the sub-
types, we clustered the patients by increasing k = 2 to k =
7 and the average silhouette width was calculated for se-
lecting robust clusters. The clinical data for liver cancer pa-
tients were downloaded from the TCGA project and log-
rank tests were performed to evaluate the survival difference
among patients with different cancer subtypes. Moreover,
we defined the severity score of each patient as the propor-
tion of interactions perturbed by mutations.

Functional analysis of informative gene mutations

To analyze the functions of the informative gene mutations
with interaction perturbations, we used a hypergeometric
test to determine whether these genes were enriched in spe-
cific pathways. The P-value was calculated as:

P =1— F(Nxy — I|N, Nx, Ny)

Lo (G

N
Ny

t=0

where N is the number of all genes (default background dis-
tribution), Nx and Ny represent the total number of infor-
mative genes and genes in specific pathways, respectively,
and Nxy is the number of overlapping genes that formed
the informative edges in specific function, which had to be
at least three. Kyoto Encyclopedia of Genes and Genomes
pathways with adjusted P-values < 0.01 and including at
least two genes were considered.

Evaluation of the performance

To explore whether e-MutPath could retrieve cancer-related
genes, we firstly obtained 602 well-known cancer-associated
genes in Cancer Gene Census (30). Moreover, we down-
loaded the cancer-related genes from the CancerMine re-
source (31), a text-mined and routinely updated database
of drivers, oncogenes and tumor suppressors. The propor-
tions of cancer-related genes, oncogenes, tumor suppressors
and drivers were calculated separately for e-MutPath. In ad-
dition, we compared the proportions to four widely used
computational methods: SIFT (32), Polyphen-2 (16), Mu-
tationTaster (15) and MutationAssessor (33). For each mu-
tation, we calculated these four scores and the deleterious
mutations predicted by these four methods were obtained.
In SIFT, mutations were predicted as deleterious based on
SIFT scores (<0.05). For Polyphen-2, ‘probably damaging’
was called if the score was between 0.909 and 1. In Mu-
tationTaster, mutations predicted as ‘D’ (‘disease_causing’)
were considered as driver mutations, and in MutationAsses-
sor, mutations predicted as functional (H, M) were consid-
ered disease-relevant. All these mutations were mapped to
genes and the proportion of cancer-related genes was calcu-
lated.

Moreover, we compared e-MutPath to a network-based
method NetSig (34). First, we obtained single-gene MutSig
suite Q values with the mutations as input (35). The output
of MutSig and the PPI network were subjected to NetSig
and the Q values were aggregated into P-values. Genes with
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P-values < 0.05 were considered as cancer relevant genes.
The proportions of cancer-related genes were compared.

Experimental validation of mutation-perturbed PPIs

We implemented a site-directed mutagenesis pipeline to
generate specific mutations as in our previous studies (5,36).
The mutation clones were sequenced by GENEWIZ and the
sequences were confirmed based on the Basic Local Align-
ment Search Tool programs. We first checked whether the
sequences were mapped to the exact genes of interest and
then verified whether desired base mutations were success-
fully cloned into the correct position of each gene. We next
used the Y2H assay to interrogate mutation-induced PPT al-
terations based on our previous pipeline (5,36). All protein
interaction assays were performed twice independently.

RESULTS
Overview of e-MutPath

To identify the mutations that might perturb signaling path-
ways, we reasoned that gene—gene relationships would show
perturbations in patients with specific driver mutations. We
therefore developed e-MutPath as an open-source R pack-
age to identify candidate driver mutations that perturb
functional pathways. Three types of omics datasets were
integrated, including gene expression, somatic mutations
and functional networks or pathways (Figure 1A). The out-
put would provide prioritized mutations as well as the per-
turbed edges in signaling pathways or networks.

Specifically, three steps were performed in this compu-
tational method in the context of cancer. First, perturbed
functional interactions were identified in each cancer pa-
tient based on a correlation perturbation analysis of RNA
expression (Figure 1B, top panel). We hypothesized that
cells might adapt to change in the expression pattern of
the interacting proteins to respond to cellular perturbations,
such as genetic mutations. All the patients were mapped to
a 2D plane based on the expression levels of two interact-
ing genes. Thus, an outlier (distant from the population) on
this 2D plane might be an indicator of interaction perturba-
tion. If a patient showed a significant deviation from a nor-
mal gene-gene relationship distribution, the patient would
be an outlier in the regression line modeled by all the pa-
tients. We used Grubb’s test for detecting the outliers (see
‘Materials and Methods’ section). Second, sample-specific
interaction perturbation profiles were constructed; if gene
expression data in normal samples were present, we also
identified the perturbed functional subnetworks or path-
ways that could distinguish cancer from normal samples
(Figure 1B, middle panel). Finally, candidate driver muta-
tions in each cancer sample that mediated interaction per-
turbations were identified by integration of interaction per-
turbation patterns with mutational profiles (Figure 1B, bot-
tom panel). We used Monte Carlo simulation to evaluate
whether the patients with specific mutations were signifi-
cantly overlapped with those showing gene-gene relation-
ship perturbations (see ‘Materials and Methods’ section).
The mutations with P-value < 0.05 were identified as can-
didate driver edgetic mutations.

Nucleic Acids Research, 2021, Vol. 49, No. 1 e2

e-MutPath identifies informative paths to distinguish disease

As a proof of principle, we applied the proposed method
to HCC data obtained from TCGA project (18), which in-
cluded 374 cancer and 50 normal samples. Based on the
human PPI networks, we identified 477 interactions among
486 genes perturbed in HCC (Supplementary Figure S1A).
We found that the majority of these interactions involved
genes that had been demonstrated to play critical roles in
cancer, such as TRIP13, MDFI, SPRY2 and MEOX2. Par-
ticularly, TRIP13 was found to promote cell proliferation,
invasion and migration in cancer (37). In addition, MEOX?2
was identified as a target gene of the TGF-beta/Smad path-
way and was known to regulate cell proliferation (38). To
systematically understand the function of the perturbed
PPIs, we performed functional enrichment analysis based
on the genes involved. Functional enrichment analysis re-
vealed that the perturbed functional subnetworks were en-
riched in HCC-related functions, such as insulin signaling
pathway (39) (P = 2.29E-5) and FoxO signaling pathway
(40) (P = 0.001, Supplementary Figure S1B).

Next, we investigated whether the perturbed PPI profil-
ing could provide information for cancer subtype classifica-
tion. We found that based on sample-specific functional per-
turbation profiles, cancer and normal samples were effec-
tively distinguished from each other (Supplementary Figure
S1C). We next trained three types of machine learning meth-
ods (SVM, logR and RF) based on the perturbation profil-
ing of patients and normal controls. Based on 10-fold cross-
validation, we found that these classifiers exhibited the AUC
(area under the receiver operating characteristic curve) >
0.9 (Figure 2A, AUC = 0.937-0.997). Moreover, these per-
turbed functional profiles were validated in another inde-
pendent HCC dataset obtained from ICGC (Figure 2A,
AUC = 0.814-0.942). These results suggest that e-MutPath
can identify the informative functional paths to distinguish
disease from normal controls, which is helpful for cancer
early diagnosis.

e-MutPath stratifies cancer subtypes with clinical relevance

After identifying the perturbed PPIs in cancer, we found
that some patients were clustered together (Supplementary
Figure S1C), suggesting that there were several subtypes in
HCC. We thus used the interaction perturbing profiles for
in-depth characterization of HCC subtypes. We stratified
the HCC patients based on the similarity of their perturba-
tion profiles by consensus clustering. Based on the k-values
from 2 to 7, we identified an optimum number of five HCC
subtypes (Figure 2B and Supplementary Figure S2A), each
consisting of 109, 67, 66, 59 and 73 patients. These subtypes
were henceforth termed C1-C5. We found that there were
no stage differences among these subtypes (Supplementary
Figure S2B, P = 0.06).

Furthermore, we calculated the proportion of perturbed
PPIs for each patient and defined this as a severity score
(Figure 2C). We hypothesized that if the patients had higher
severity scores, they would exhibit a higher risk of cancer.
We found that the patients in C4 and C5 showed signif-
icantly higher severity scores (Figure 2C, P < 0.001). To
evaluate if a high proportion of perturbed PPIs could reflect
disease severity in patients harboring specific mutations,
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Figure 2. Identification of informative signaling perturbation paths based on e-MutPath in cancer. (A) ROC curves of different e-MutPath predictions
for classifying normal and cancer patients. The solid lines are for TCGA dataset and dash lines for ICGC dataset. Lines with different colors represent
three machine learning algorithms. (B) Heat map shows the similarity of HCC patients. Five subtypes are identified based on consensus clustering. (C) The
proportion of perturbed PPIs in five subtypes. (D) Kaplan-Meier curve for overall survival in subtypes of HCC.

we next examined the survival rates of patients. We found
indeed it was the case. Patients with mutations that per-
turbed a higher proportion of interactions tended to corre-
late with a significantly shorter survival time, indicating the
deleterious nature of these mutations (Figure 2D, log-rank
P = 3.88E-5). In addition, we analyzed cancer risks in pa-
tients by assessing their response to immunotherapy, which
represents an alternative treatment approach that has been
successful in many different cancer types (41). We found
that the patients in C3 had higher immune scores, MHC
scores and cytolytic activity than other subtypes (Supple-
mentary Figure S2C). These results suggest that these pa-
tients are likely to respond to immunotherapy. Together, our
approach is able to stratify cancer patients with distinct clin-
ical outcomes.

e-MutPath outperforms other methods in prioritizing cancer
genes

Having shown in previous sections e-MutPath could iden-
tify mutation-perturbed signaling pathways, we next evalu-
ated its performance in uncovering cancer-related genes in
33 cancer types. We first considered the genes from Can-

cer Gene Census (CGC) (42) and found that our top pre-
dictions included a high fraction of CGC genes (Figure
3A). To illustrate the power of e-MutPath, we compared its
performance with four widely used approaches-SIFT (32),
Polyphen-2 (16), MutationTaster (15) and MutationAsses-
sor (33). For the majority of cancer types, e-MutPath con-
sistently prioritized a larger fraction of CGC genes than
other methods (Figure 3A and Supplementary Table S1),
demonstrating the advantage of network integration. We
found that while e-MutPath predicted a smaller number of
targets, they comprised larger fractions of ‘gold standard’
cancer genes by CGC (Figure 3B).

In addition, we obtained known cancer genes from Can-
cerMine (31), which is a text-mined and routinely updated
database of drivers, oncogenes and tumor suppressors. We
found that the overall results were consistent for all genes
(Figure 3C and Supplementary Figure S3A), oncogenes, tu-
mor suppressors and driver genes (Figure 3D and Supple-
mentary Figure S3B-D). Recently, a number of large-scale
screens for cancer vulnerability genes using CRISPR-Cas9
and RNAIi systems have been conducted (43,44). Using
these datasets, we found that the predictions by e-MutPath
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in CancerMine identified in HCC by different methods. (E) The proportion of proteins associated with side-effects identified by different methods.

were more enriched for essential genes than other meth-
ods in the majority of cancer types (Supplementary Fig-
ure S4A). Particularly, the predicted genes by e-MutPath in
LUSC, BLCA and LIHC showed significantly lower essen-
tiality scores than predictions by other methods (Supple-
mentary Figure S4B-G).

Finally, to evaluate potential targetable and side effects
of the predicted genes, we used a list of 151 clinically
actionable genes (45) and 237 proteins that are reported
to be associated with side effects (46). We found that e-
MutPath predictions exhibited similar fractions of action-
able genes (Supplementary Figure S5) but were depleted
of side effect-causing proteins across cancer types (Figure
3E). As methods that integrate network information could
complement gene-based methods to identify new cancer
genes, we then compared e-MutPath to NetSig that inte-
grates protein interaction networks (34). e-MutPath exhib-

ited a similar power in identifying cancer-related genes as
NetSig in the majority of cancer types (Supplementary Fig-
ure S6). However, it seems much more robust across cancers
than NetSig (Supplementary Figure S6), suggesting that e-
MutPath represents a novel network-based method to ex-
pand drug target discovery from cancer genomes. Taken to-
gether, these results demonstrate significant improvement of
e-MutPath over previous state-of-the-art methods in iden-
tifying cancer-related genes.

Application of e-MutPath in pan-cancer

In order to better understand mutation-perturbed signal-
ing pathways in cancer, we applied e-MutPath to 33 cancer
types. We identified a connected network perturbed by mu-
tations (Figure 4A and Supplementary Table S2), includ-
ing a number of genes (such as MED4, TCF4 and EWSR1)
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known to be involved in cancer. Cancer genes often func-
tion as network hub proteins which are involved in many
cellular processes (47). We next investigated the topological
features of the prioritized genes with mutations and found
that they showed significantly higher degrees, betweenness
and closeness (Figure 4A, P-values < 0.001). Moreover, we
performed functional enrichment analysis and found that
these genes were likely to be involved in cancer hallmark
pathways (Figure 4B).

Particularly, we found that a candidate gene KEAP1 and
the interacting partner DPP3 were highly expressed in HCC
compared to normal tissues (Figure SA). Moreover, we in-
vestigated the correlation of gene expression with patients’
survival time. We found that high expression levels of the
interacting partner gene were slightly associated with poor
prognosis in HCC (Figure 5B). However, we found that
the combined KEAP1-DPP3 signature could significantly
distinguish the patients with different survival (Figure 5B,
P = 0.02). e-MutPath identified one missense mutation in
KEAPI (G379V) that perturbed the interaction between
KEAPI1 and DPP3 in HCC. This perturbation prediction
between KEAPI and DPP3 was further validated by Y2H
experiment. Lines of evidence have implied that the p62-
Keap1-Nrf2 axis plays an important role in tumorigenesis
(48,49). Collectively, our results suggest that these muta-
tions likely play roles in cancer by perturbing the interac-
tions involved in cancer-related pathways.

Signaling pathway perturbations in cancer

To further assess if the perturbed pathways by edgetic mu-
tations were functionally relevant in specific disease con-
text, we next integrated mutational profiles, gene expression
patterns and signaling pathways to identify the perturbed
pathways in HCC. Based on e-MutPath, we identified the

top ranked HCC mutations which were mostly enriched in
centrosomal genes (CEP70, CEP76 and CEP135), JAKI,
EGFR and HNF1A (Figure 6A). JAK1 encodes a cytoplas-
mic tyrosine kinase that is associated with a variety of cy-
tokine receptors and plays a critical role in cell prolifera-
tion, survival and differentiation (50). The mutated forms
of JAK1 might alter the activation of JAK/STAT path-
ways, and thus contribute to cancer development and pro-
gression. Moreover, we identified the hotspot in-frame mu-
tation EGFR A767_V769dup, which perturbed the EGFR
receptor tyrosine kinase signaling pathway in HCC (Fig-
ure 6B). The EGFR signaling pathway had been shown to
play a key role in chronic liver damage, as well as in cirrho-
sis and HCC (51). Our results highlighted the importance
of EGFR mutations in the development of liver diseases.
Moreover, we identified five mutations in HNF1A ranked
in the top 50 hits, which perturbed the protein interactions
among HNF1A, MAPKS, PPARD and IGFBP1 (Figure
6B). The dysregulation of the HNF1A and PPARD signal-
ing had been demonstrated to play fundamental roles in
HCC (52). In summary, e-MutPath not only identifies crit-
ical mutations in cancer, but also provides a systems-level
mechanistic view to illustrate the functions of large num-
bers of candidate driver mutations.

DISCUSSION

In this study, we introduced a network-based method, e-
MutPath, for decoding the functional consequences of mu-
tations by network or pathway perturbations. This method
incorporates individual mutational profiles with interaction
networks or signaling pathways, which is a powerful ap-
proach for uncovering cancer-related genes. Our method
is based on the ‘edgotype’ concept proposed recently and
therefore complements existing frequency-based or node
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(protein)-based methods (53,54). We have demonstrated by
the wide application of e-MutPath to 33 cancer types that,
functional mutations disrupt interactions involving genes
previously implicated in the development and progression
of cancer, providing complementary evidence for their func-
tional impact. The identified genes are also depleted in pro-
teins that are associated with side-effect. Even more inter-
estingly, we found that e-MutPath could identify the per-
turbed pathways to stratify patients into different cancer
subtypes. Network-based stratification (NBS) is another
method to integrate somatic tumor genomes with gene net-
works (55). However, we found that there were no survival
differences among the patients in different subtypes identi-
fied by NBS (Supplementary Figure S7). These results sug-
gest that e-MutPath is a versatile tool that provides an effec-
tive framework for functional characterization of mutations
in cancer and with immediate clinical relevance.

It is important for identifying edgetic perturbations by
analyzing deviations in the gene expression correlation pro-
files of cancer patients. We thus evaluated the robustness
of e-MutPath by using different proportions of samples
in the gene expression profiles. We found that there were
high consistencies among perturbed interactions when us-
ing different proportions of patients (Supplementary Fig-
ure S8). These results suggest that e-MutPath is robust to
noise in the gene expression dataset. Moreover, we applied
e-MutPath to pan-cancer and identified a connected net-
work perturbed by mutations. Although increasing num-
bers of methods have been developed to identify the mu-
tated subnetworks, such as HotNet2 (56), e-MutPath is con-
ceptually distinguished from these methods. In brief, Hot-
Net2 uses a new heat diffusion kernel analogous to random
walk with restart that better captures the local topology of
interaction networks. However, we are still lack of knowl-
edge whether the interactions among genes were perturbed
by mutations. In the contrast, e-MutPath addresses this is-
sue by integrating mutation data and gene expression pro-
files.

In the future, e-MutPath can be extended in a number
of ways. For example, while it currently analyzes only mu-
tations within genes, other alterations are also observed
in cancer. Alterative splicing and gene-fusions have been
found to perturb signaling pathways (57,58), considering
both types of alterations will increase the power of our ap-
proach. Second, e-MutPath may also benefit from incorpo-
rating the development of sample-specific network. While
we currently consider the interaction networks or signaling
pathways, considering the context specificity of these net-
works or pathways may be derived from recently published
methods (59). Moreover, we have demonstrated e-MutPath
to identify the perturbed PPIs and signaling pathways. It
can also extend to other regulatory networks, such as RNA
binding protein regulatory networks, miRNA-gene regula-
tory networks (13,60). We have applied e-MutPath across
33 cancer types and have shown that it is broadly effec-
tive in identifying cancer-related genes. However, cancers
of the same tissue can often be grouped into distinct sub-
types based on molecular features (18). With the develop-
ment of high-throughput sequencing technology or single
cell sequencing (61), e-MutPath could be used to study how
different cancer subtypes yield different network or path-
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way perturbations and decode the function of mutations in
the subtype context. As it becomes feasible to obtain the
DNA-seq and RNA-seq data from single cell sequencing,
e-MutPath can be potentially extended to these datasets.

Collectively, e-MutPath could systematically uncover
and stratify the functional consequences of myriad genetic
mutations identified in distinct patients stricken by a va-
riety of human diseases. Our new method identifies spe-
cific candidate driver mutations as well as their perturbed
functional networks or pathways by integrating functional
omics datasets at the systems level. We anticipate the pro-
posed computational method will facilitate improved bio-
logical understanding of the function of disease variants to-
ward personalized precision medicine.
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