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The accumulation of immune cells is among the earliest responses that manifest in 
the cardiac tissue after injury. Both innate and adaptive immunity coordinate distinct 
and mutually non-exclusive events governing cardiac repair, including elimination of 
the cellular debris, compensatory growth of the remaining cardiac tissue, activation of 
resident or circulating precursor cells, quantitative and qualitative modifications of the 
vascular network, and formation of a fibrotic scar. The present review summarizes the 
mounting evidence suggesting that the inflammatory response also guides the regener-
ative process following cardiac damage. In particular, recent literature has reinforced the 
central role of monocytes/macrophages in poising the refreshment of cardiomyocytes 
in myocardial infarction- or apical resection-induced cardiac insult. Macrophages dictate 
cardiac myocyte renewal through stimulation of preexisting cardiomyocyte proliferation 
and/or neovascularization. Nevertheless, substantial efforts are required to identify the 
nature of these macrophage-derived factors as well as the molecular mechanisms 
engendered by the distinct subsets of macrophages pertaining in the cardiac tissue. 
Among the growing inflammatory intermediaries that have been recognized as essential 
player in heart regeneration, we will focus on the role of interleukin (IL)-6 and IL-13. 
Finally, it is likely that within the mayhem of the injured cardiac tissue, additional types 
of inflammatory cells, such as neutrophils, will enter the dance to ignite and refresh 
the broken heart. However, the protective and detrimental inflammatory pathways have 
been mainly deciphered in animal models. Future research should be focused on under-
standing the cellular effectors and molecular signals regulating inflammation in human 
heart to pave the way for the development of factual therapies targeting the inflammatory 
compartment in cardiac diseases.

Keywords: cardiovascular diseases, myocardial infarction, inflammation, myocytes, cardiac, regeneration, 
remodeling pathways

Shortly after birth, mammalian cardiac myocytes escape the cellular cycle, and heart growth is 
mainly mediated by hypertrophy of preexisting cardiomyocytes. However, over the last decade, the 
classical dogma stamping that adult mammalian heart displays no cell renewal/replication capability 
has been challenged. Indeed, recent studies unravel that cardio-myogenesis, i.e., the formation of 
new cardiomyocytes, also occurs during adult life, including in human (1, 2). However, the intrinsic 
capacity of the adult mammalian heart to regenerate after injury, such as myocardial infarction 
(MI), is derisory to swap the loss of functional myocardium. In this view, it has been valued that 
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after MI, a patient loses on average around 1 billion cardiomyo-
cytes, a massive amount that the cardiac tissue cannot substitute 
by itself (3). As cardiac damage typically guides fibrotic scar 
formation and contractile dysfunction, cardiomyocyte loss after 
injury, aside from the failure of the human heart to regenerate, 
is a fundamental cause of heart failure and death worldwide. In 
addition, it is likely that a variety of issues, including age and 
cardiovascular risk factors, also fuel the deleterious micro- and 
macro-environments that dampen bona fide cardio-myogenesis 
as well as efficient tissue repair in patients with cardiac diseases.

Precisely orchestrated process of cardiac regeneration rees-
tablishes tissue organization through a coordinated sequence 
of cellular proliferation, differentiation, dedifferentiation, and 
morphogenic redisposition (4, 5). Complete understanding of 
how cardiac tissue can regenerate could pave the way to factual 
therapeutic strategies of regenerative medicine for cardiac dis-
eases. Multiple different approaches have been initiated to pro-
mote cardiomyocyte regeneration/proliferation in experimental 
models of heart injury, including transplantation of non-cardiac/
cardiac somatic stem cells, injection of cultured cardiovascular 
progenitor or cardiomyocytes, direct in  vivo reprograming of 
differentiated cells into cardiomyocytes, stimulation of dedif-
ferentiation/proliferation of preexisting cardiomyocytes, and 
activation of endogenous cardiac progenitor cell populations. 
These therapeutic approaches are categorized as either cell-based 
or cell-free, and some of them are currently being tested for 
their cardiac regenerative ability, safety, and feasibility of clinical 
application. However, the mixed results obtained in a variety of 
clinical trials performed to date, especially for cardiogenic stem 
cell-based therapy, do not conclusively prove the reality of cardiac 
myocyte refreshment and the efficiency of these strategies, so far.

inFLAMMATiOn AnD CARDiAC RePAiR

Mammals respond to heart damage, such as MI, through distinct 
and mutually non-exclusive events, including elimination of the 
cellular debris, compensatory growth of the remaining myocar-
dium, activation of resident or circulating precursor cells, quan-
titative and qualitative modifications of the vascular network, and 
formation of a fibrotic scar.

inflammation and Mechanisms  
of Cardiac Repair
Remarkably, immune cell stimulation is among the earliest 
responses detectable at the infarcted site after MI and plays 
an instrumental role in the coordination of multiple processes 
governing cardiac repair namely survival of resident cells, 
removal of dying cells fibrosis, infarct size, and revasculariza-
tion (Figure 1). Indeed, the early inflammatory phase depicted 
by an intense sterile inflammation and immune cell infiltration 
serve to digest and clear damaged cells and extracellular matrix 
tissue and is followed by a reparative phase with resolution of 
inflammation, (myo)fibroblast proliferation, scar formation, and 
neovascularization over the next several days (6, 7). An appropri-
ate equilibrium between these 2 phases is mandatory for optimal 
repair. In particular, suitable, timely confinement and resolution 

of inflammation are key elements of the quality of cardiac heal-
ing. Consistent with this, deregulation of molecular mechanisms 
involved in inflammation resolution, such as deficiency for the 
decoy receptor D6, exacerbates inflammatory cell infiltration, and 
adverse ventricular remodeling (8). Similarly, improper clearance 
of dying cells by activated neighboring phagocytes delays and 
hampers the reparative phase worsening cardiac healing (9, 10). 
Inflammation also directly shapes cardiomyocyte hypertrophy. 
In particular, neutrophils and T lymphocytes are involved in 
the modulation of cardiomyocytes size in experimental model 
of cardiac hypertrophy (11, 12). Macrophages have been shown 
to release prohypertrophic factors (13) and antibody against 
IL-6 hampers cardiomyocyte hypertrophy in mice with MI (14). 
Finally, cardiomyocyte homeostasis determines the nature and 
intensity of the inflammatory reaction. Release of the cytokine 
oncostatin M by infiltrating neutrophils and macrophages 
prompts a positive feedback loop in which oncostatin M gal-
vanizes cardiomyocytes to produce REG3β that in turn attracts 
additional macrophages to the damaged heart (15). Mechanical 
strain through mitogen-activated protein kinase dependent path-
ways has also been shown to expand the macrophage population 
in the remote non-infarcted myocardium of the failing heart (16).

Overall, the net effect of the various actors of the inflamma-
tory component is determined by their number, activation, and 
differentiation states. In addition, the local environment and the 
different stimulated pathways also balance the resultant influence 
of each inflammatory entity. For example, whereas interleukin 
(IL)-10 displays a strong and potentially deleterious antiangio-
genic effect in ischemic tissue (17, 18), it also reduces reactive 
hypertrophy and myocardial collagen deposition leading to 
cardiac protection after MI (19).

Myeloid Cells
The cellular components of innate immunity are myeloid cells, 
including monocytes, macrophages, mast cells, dendritic cells 
(DC), natural killer cells, as well as neutrophilic, basophilic, and 
eosinophilic granulocytes. Neutrophils are the first immune cell 
type to massively populate the infarcted myocardium in response 
to such factors as danger-associated molecular pattern, cytokines 
and chemokines, or endogenous lipid mediators. Neutrophils 
release proteolytic enzymes and contribute to the clearance of the 
wound from dead cells and matrix debris. Secretion of neutrophil 
gelatinase-associated lipocalin by cardiac neutrophils favors the 
occurrence of macrophages with reparative phenotype, thereby 
facilitating tissue healing (20). However, infiltrating neutrophils 
may also amplify the immune response (21) and exert direct 
cytotoxic actions on viable cardiomyocytes expanding ischemic 
injury (22, 23). Decreased number of CD209+ DC and CD11c+ 
DC in human-infarcted myocardial tissue correlates with 
increased macrophage infiltration, impaired reparative fibrosis, 
and the development of cardiac rupture after MI (24). Mice with 
DC ablation show deteriorated left ventricular function and 
remodeling and sustained expression of inflammatory cytokines, 
such IL1β, IL18, and tumor necrosis factor-α (25). Nevertheless, 
the specific role of each DC subtypes, such as conventional/
classical DC or plasmacytoid DC, remains to be defined. In addi-
tion, multipotent progenitor cells identified as myeloid-derived 
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suppressor cells (MDSC) are also known to infiltrate the infarcted 
heart, 24 h after acute MI (26). MDSC are mainly characterized 
as CD34+, Gr1+, or CD11b+ cells. Cytology and gene expression 
studies support MDSC heterogeneity and distinguishing MDSC 
from macrophages or neutrophils can be technically challeng-
ing. Functionally, they inhibited T cell proliferative responses, 
antibody production, and cytotoxic T lymphocyte induction and 
activity (27). In addition, Gr1lowCD11b+ cells have been shown to 
improve vessel density and blood flow recovery in ischemic tissue 
suggesting that MDSC could also control vascular remodeling in 
the infarcted heart (28).

Other types of myeloid cells are also known to control cardiac 
repair through distinct mechanism. Mast cells deficiency has been 
shown to hamper postischemic cardiac function and reduced 
cardiomyocyte contractility caused by myofilament calcium 

desensitization through a tryptase dependent mechanism (29). 
Interestingly, the infarcted heart hosts a mast cell lineage that 
derives from the adipose tissue and does not arise from bone mar-
row progenitors (29, 30). One can then speculate that the adipose 
tissue constitutes an additional reservoir of myeloid progenitors 
that could play a specific role in cardiac diseases, especially dur-
ing diabetes or obesity.

Circulating Monocytes
After the prompt appearance of neutrophils, monocytes, and 
macrophages comprise the most abundant cells in the infarcted 
heart. Mobilization of monocytes from both bone marrow 
and splenic reservoir translates into two successive periods of 
monocyte infiltration in the infarcted myocardium (31, 32). The 
inflammatory Ly-6Chigh monocyte subset is recruited during the 
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first days after MI but vanishes thereafter when inflammation 
resolves in the tissue wound. Starting at approximately day 3 after 
MI, the infarct tissue also amasses Ly-6Cint/low monocytes. The 
inflammatory Ly-6Chigh monocyte subset fosters vigorous inflam-
mation and proteolysis, whereas Ly-6Cint/low monocytes seem to 
promote reparative activities (31, 32). In this line, inhibition 
of CCR2, the CCL2 chemokine receptor that governs Ly-6Chigh 
monocyte mobilization from the bone marrow and recruitment 
to the cardiac tissue, attenuates infarct inflammation, and curbs 
post-MI left ventricular remodeling (33, 34).

Monocyte-Derived Macrophages and 
Resident Macrophages
The majority of these infiltrated monocytes may exit the cardiac 
tissue through systemic or lymphatic circulation, whereas 
surviving monocytes may differentiate into different subgroups 
of macrophages with M1-like and/or M2-like activation mode 
associated with specific functions in cardiac homeostasis (35). 
However, it is noteworthy that this classification as M1 and M2 
is based on in vitro activation by T-helper cell-type 1 (Th1) or 
Th2 cytokines only illustrating two extreme, opposing activation 
states. Hence, such nomenclature does not reflect the spectrum 
of functionally overlapping macrophage phenotypes in the 
cardiac milieu (36). Consequently, interpreting the published 
literature is difficult. More importantly, most of the results are 
obtained in experimental models, and the translation to the 
human immune system remains speculative. As a prototypic 
example, human blood monocytes are defined as CD14+CD16− 
classical, CD14+CD16+ intermediate, and CD14lowCD16+ 
non-classical monocytes. CD14lowCD16+ human monocytes 
are likely the counter parts of Ly-6Clow mouse monocytes, 
whereas CD14+CD16− human monocytes are that of Ly-6Chigh 
mouse monocytes (37). To facilitate translation from mouse to 
humans, a unified nomenclature should be applied across tissues 
and species. In this line of reasoning, it has been proposed that 
monocytes and macrophages should first be defined on the basis 
of their progeny and second on the basis of their function, loca-
tion, and/or phenotype (38).

To add on complexity, genetic fate mapping demonstrated 
that macrophages derived from CX3CR1+ embryonic progenitors 
persisted into adulthood (39). Nevertheless, the nature of those 
fetal precursors is still a matter of debate since conflicting results 
suggest that adult tissue-resident macrophages are all derived 
from yolk sac erythro-myeloid precursors or are progenies of 
classical hematopoietic stem cells with the exception of microglia 
and partially epidermal Langerhans cells (40, 41). These specific 
subclasses of resident macrophages of embryonic origin have 
also been shown to impact cardiac repair (42–45). However, 
after injury, these cells are replaced by monocyte-derived mac-
rophages that are proinflammatory and lack reparative activities 
(42). Furthermore, embryo-derived cardiac macrophages show 
declining self-renewal with age and are progressively substituted 
by monocyte-derived macrophages, even in the absence of injury 
(39). Thus, more research is needed to determine the exact origin, 
number, and function of these adult cardiac tissue-resident mac-
rophages as well as to assess their prominence in the human heart.

Lymphoid Cells
The central cellular components of adaptive immunity are T- and 
B-cells that result from lymphoid progenitor cells in the bone 
marrow. CD4+ and CD3+ T lymphocytes promptly colonized the 
infarcted heart, whereas B lymphocytes peaked later one around 
day 5 after the onset of ischemia (46). Lymphocyte activation by 
myocardial auto-antigens, recognized either by their respective 
T- or B-cell receptor or, alternatively, by pattern recognition 
receptors, shapes the dysfunctional infarcted heart either through 
their ability to release fibrotic factors, such as transforming 
growth factor β and IL-13, or indirect interaction with innate 
immunity (47). In this view, absence of CD4+ T-cells improves 
the amount of Ly-6Chigh monocytes, reduces neovascularization, 
and collagen deposition, 7  days after MI (48). CD4+ CD25+ 
Foxp3+ regulatory T cell depletion is associated with M1-like 
macrophage activation, characterized by decreased expression of 
inflammation-resolving and healing-promoting factors. Despite 
marked proangiogenic effects, regulatory T cell ablation results 
in aggravated cardiac inflammation and deteriorated cardiac 
function (49, 50). Regulatory T cell activation by superagonis-
tic anti-CD28 monoclonal antibody administration leads to  
M2-like macrophage differentiation and improves healing as 
well as survival after MI (50). Similarly, mature B lymphocytes  
selectively produce Ccl7 and induce Ly-6Chigh monocyte mobi-
lization from the bone marrow and recruitment to the heart, 
leading to enhanced tissue injury and deterioration of myocardial 
function (46).

inFLAMMATiOn AnD CARDiAC 
ReGeneRATiOn

The immune system is integral to the initial development of an 
organism as well as the continuous replacement of differentiated 
cell types to sustain homeostasis. Unlike embryonic development, 
tissue regeneration is initiated by an injury and mounting evi-
dences suggest that the inflammatory response to that insult also 
guides the regenerative process. Nevertheless, whether immune 
activation prompts tissue regeneration or scarring is defined by a 
multiplicity of factors, including age, species, and the accessibility 
of a stem or progenitor cell pool.

Interestingly, neonatal mouse heart displays a transient 
regenerative potential and constitutes a valuable model to 
decipher the interaction between inflammation and mam-
malian cardiac regeneration. Nevertheless, the genuine ability 
of neonatal mouse cardiac tissue to regenerate following apical 
resection or MI-induced injury has been rapidly questioned 
(51). Methodological differences, such as variations in surgical 
technique, amount of resected myocardium, methods of assess-
ment of resected and regenerated myocardium, and strategies 
of evaluation of myocyte proliferation, are likely to account for 
these discrepancies (52). However, it is clear that the type of 
injury limits the amount of refreshed tissue. Notably, permanent 
left anterior descending coronary artery ligation-induced MI 
produces incomplete regeneration with a residual small infarct 
in neonatal mouse (53). Nevertheless, substantial number of 
studies clearly proves that hearts of 1-day-old neonatal mice can 
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regenerate after partial surgical resection or MI, through cardio-
myocyte proliferation with minimal hypertrophy or fibrosis (54). 
Interestingly, a recent study reports the case of a newborn child 
having a severe myocardial infarction due to coronary artery 
occlusion. Cardiac recovery was observed within weeks after the 
onset of ischemia, indicating that, similar to neonatal rodents, 
newborn humans might have the inherent capacity to repair 
myocardial damage (55).

Newly formed cardiomyocytes can arise from preexisting 
cardiomyocytes or from proliferation/differentiation of a stem 
cell population. Genetic fate mapping indicates that the major-
ity of cardiomyocytes within the regenerated tissue originates 
from preexisting cardiomyocytes in neonate mice after partial 
surgical resection (54) or in aging mice (56). Conversely, after 
MI or pressure overload, stem cells or precursor cells, which do 
not originate from the bone marrow, are able to refresh injured 
cardiomyocytes at a significant rate in adult tissue (56).

Monocytes/Macrophages and  
Cardiac Regeneration
The early stages of cardiac regeneration are accompanied by an 
acute inflammatory response depicted notably by a marked infil-
tration of monocytes as well as upregulation of several inflam-
matory markers, such as IL6, IL1β, and Ccl3 (54). Moreover, 
injury-induced cardiomyocyte proliferation is inhibited after 
immunosuppression with dexamethasone (57). Neonatal mouse 
vagotomy has been shown to impair myocyte proliferation and 
heart regeneration after injury. Interestingly, neonatal vagotomy 
downregulates genes, such as IL1β and Cxcl5, involved in the 
innate immune response and chemotaxis (58).

Monocytes and macrophages seem to play a major role in 
cardiac refreshment in this experimental setting (Figure  2). 
Indeed, neonates depleted of macrophages are unable to regener-
ate myocardium and form fibrotic scars, resulting in reduced 
cardiac function and new vessel formation (59). Clodronate 
liposome-mediated depletion of monocytes/macrophages does 
not modulate cardiomyocyte proliferation in neonatal heart 
after MI but rather enhances cardiac regeneration via control of 
angiogenesis (59). Nevertheless, such approach is non-selective 
and drains all monocyte and macrophage subsets. As the different 
subsets of cardiac macrophages have distinct functional roles, it 
is likely that macrophage depletion prevents other reparative 
functions. In this line of reasoning, resident neonatal heart mac-
rophages, not recruited monocytes, have been shown to mediate 
neonatal heart regeneration (42). The neonatal heart contained 
one embryo-derived macrophages (MHC-IIlowCCR2−) and one 
monocyte-derived macrophages (MHC-IIlowCCR2+) subset. In 
an in vivo mouse model of cardiomyocyte ablation that induces 
cardiomyocyte cell death without systemic inflammation and car-
diac fibrosis, the neonatal heart selectively expands the number 
of MHC-IIlowCCR2− macrophages and does not recruit additional 
CCR2+ monocytes. In contrast, the injured adult heart selectively 
recruits monocytes and MHC-IIhighCCR2+ monocyte-derived 
macrophages. Of interest, only CCR2− neonatal macrophage 
conditioned media is sufficient to promote neonatal rat cardio-
myocyte proliferation in vitro (42).

Hence, neonatal heart undergoes revascularization and 
cardiomyocyte proliferation after injury, whereas the injured 
adult heart exhibits minimal increases in vessels density and 
negligible cardiomyocyte proliferation (42, 59). In response 
to injury, the neonatal heart enlarges the number of resident 
CCR2− reparative cardiac macrophages, whereas the adult heart 
enrolls CCR2+ proinflammatory monocytes and monocyte-
derived macrophages. The presence of an embryonic pool of 
macrophages could explain the superior regeneration capacity 
of the neonatal heart and could promote regeneration versus 
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repair. Depending on the inflammatory milieu, injury can then 
result either in complete tissue regeneration or in its dete-
rioration and fibrosis. Consistent with this, in acutely damaged 
skeletal muscle, sequential interactions between multipotent 
mesenchymal progenitors and infiltrating inflammatory cells 
determine the outcome of the reparative process. In particular, 
the disruption of the precisely timed progression from tumor 
necrosis factor-rich to transforming growth factor-β-rich 
environment favors fibrotic degeneration of the muscle during 
chronic injury (60). In this view, immunophenotyping and gene 
expression profiling of cardiac macrophages from regenerating 
(day 1) and non-regenerating hearts (day 14) indicate that 
regenerative macrophages have a unique M2-like polarization 
phenotype and secrete numerous soluble factors that may 
facilitate the formation of new myocardium. Macrophage-
derived factors dictate cell fate decisions and are involved in 
the regeneration of other organs, such as the kidney and the 
liver (61). Likewise, myogenic proliferation following toxic 
injury depends on monocyte/macrophage in skeletal muscle 
(62). Regeneration of experimentally induced demyelination is 
restored in old mice exposed to blood-derived monocytes from 
young parabiotic mice (63). Altogether, these studies suggest 
that monocytes/macrophages play critical roles in tissue regen-
eration in mammals.

Additional Types of Inflammatory Cells
Nevertheless, it is unlikely that only macrophages preside 
cardiac regeneration. One can speculate that additional actor 
of the immune system synchronizes the regenerative response 
in the mouse heart. In this line of reasoning, cardiomyocyte 
proliferation after apical resection or artificial inflammation 
induced by intra-myocardial injection of zymosan A is also 
associated with Ly-6G inflammatory neutrophils infiltration 
(57). Neutrophil numbers have also been shown to peak at 
day 1 following MI in neonate cardiac tissue (59). Similarly, 
the specific lymphocyte-dependent response has not been 
investigated in the cardiac tissue in this experimental model. 
However, in a model of skeletal muscle injury, a definite 
population of regulatory T cells has been shown to accumulate 
and switches from a proinflammatory to a pro-regenerative 
state. These muscle regulatory T cells express the growth fac-
tor amphiregulin, which acts directly on muscle satellite cells 
in vitro and improves muscle repair in vivo (64).

Inflammatory Mediators of Cardiac Regeneration
The ability of the different partners of cardiac inflammatory reac-
tion to release inflammatory mediators is expected to coordinate 
cardiac refreshment. Among these inflammatory intermediar-
ies, IL-6 emerges as an essential player in heart regeneration. 
Interestingly, both neutrophils and monocytes/macrophages 
are a rich source of IL-6 and its derivatives. IL-6 acts through 
activation of signal transducer and activator of transcription 3 
(STAT3) downstream signaling. Cell-specific ablation of STAT3 
in cardiomyocytes impairs their proliferative response after api-
cal resection in neonatal mice (57). Interestingly, cardiomyocyte 

STAT3 activation is also required for injury-induced cardiomyo-
cyte proliferation and heart regeneration in adult zebrafish (65).

Using RNA sequencing, IL13 has also been identified as a 
new regulator of cardiomyocyte cell cycle entry (66). IL-13 is a 
cytokine secreted by many cell types, but especially Th2 cells. 
IL4Ra/IL13Ra1 heterodimer mediates cardiomyocyte response 
to IL13 by the STAT3/periostin pathway suggesting that IL13/
STAT3 could also be an initiating factor in mouse cardiac regen-
eration (66). Similarly, IL4/IL13 signaling is required for regen-
eration of skeletal muscle after injury. Muscle damage results in 
rapid recruitment of eosinophils, which secrete IL-4 to activate 
the regenerative actions of muscle resident fibro/adipocyte 
progenitors (67). Interestingly, IL4 increases the relative density 
of tissue macrophages in inflamed tissue without any substantial 
effect on the recruitment of circulating monocytes (68). Hence, 
IL4/IL13 regenerative effects may depend on a direct impact on 
cardiomyocytes but also on their ability to trigger the prolifera-
tion of resident CCR2− reparative cardiac macrophages.

COnCLUSiOn

Mounting evidences propose that monocyte- and embryonic-
derived macrophages balance both regeneration and repair 
processes in cardiac tissue. However, the relevance of the 
data, obtained from the neonatal rodent heart, to the human 
adult heart is largely undetermined and the translation and 
repercussions of these experimental-based findings should be 
carefully evaluated. Nevertheless, although the adult myocar-
dium undoubtedly displays a lower ability for cardiac repair 
and refreshment compared with the neonatal myocardium, it 
is likely that some aspects of repair or regeneration activities 
continue to exist. Hence, a deep comprehension of the molecu-
lar and cellular mechanisms governing the regenerative effect 
of distinct subset of macrophages is mandatory. Furthermore, 
a clear understanding of human macrophage plasticity and 
function could guide the development of specific macrophage-
based therapies in patients with cardiac diseases. Finally, the 
putative involvement of other actors of the inflammatory 
reaction remains to be deeply appreciated, but additional types 
of inflammatory cells will likely enter the dance to ignite and 
refresh the broken heart.
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