
1. Introduction
Exposure to fine particulate matter (PM2.5) has severe negative impacts on human health. In the United States 
(US) alone, exposure to ambient PM2.5 is estimated to lead to 50,000–200,000 premature deaths (Ford et al., 2018; 
GBD, 2019; O’Dell et al., 2021; Tessum et al., 2019) and contribute 3%–11% of asthma emergency room visits 
in the US each year (Anenberg et al., 2018) among other negative health outcomes (U.S. EPA, 2022). Successful 
regulations of anthropogenic emissions in the US under the Clean Air Act have led to significant reductions in 
ambient PM2.5 concentrations over the past several decades (Malm et al., 2017; McClure & Jaffe, 2018; O’Dell 
et al., 2019; Ridley et al., 2018). However, in parts of the western US where fires drive interannual variability 
in summer PM2.5 (Jaffe et al., 2008; Spracklen et al., 2007) and contribute up to 75% of summer-mean PM2.5 
concentrations, particulate air quality has not improved (O’Dell et al., 2019). There, short-term PM2.5 pollution 
events have increased in frequency and intensity in recent years (Childs et al., 2022; McClure & Jaffe, 2018) 
due to increases in frequency and area burned by large western wildfires (Abatzoglou & Williams, 2016; David 
et al., 2021; Westerling, 2016).

Abstract Despite improvements in ambient air quality in the US in recent decades, many people still 
experience unhealthy levels of pollution. At present, national-level alert-day identification relies predominately 
on surface monitor networks and forecasters. Satellite-based estimates of surface air quality have rapidly 
advanced and have the capability to inform exposure-reducing actions to protect public health. At present, we 
lack a robust framework to quantify public health benefits of these advances in applications of satellite-based 
atmospheric composition data. Here, we assess possible health benefits of using geostationary satellite data, 
over polar orbiting satellite data, for identifying particulate air quality alert days (24hr PM2.5 > 35 μg m −3) 
in 2020. We find the more extensive spatiotemporal coverage of geostationary satellite data leads to a 60% 
increase in identification of person-alerts (alert days × population) in 2020 over polar-orbiting satellite data. 
We apply pre-existing estimates of PM2.5 exposure reduction by individual behavior modification and find 
these additional person-alerts may lead to 1,200 (800–1,500) or 54% more averted PM2.5-attributable premature 
deaths per year, if geostationary, instead of polar orbiting, satellite data alone are used to identify alert days. 
These health benefits have an associated economic value of 13 (8.8–17) billion dollars ($2019) per year. Our 
results highlight one of many potential applications of atmospheric composition data from geostationary 
satellites for improving public health. Identifying these applications has important implications for guiding use 
of current satellite data and planning future geostationary satellite missions.

Plain Language Summary The systems historically used to monitor air pollution in the US have 
insufficient spatial coverage to observe all air pollution events. For example, smoke from western wildfires 
varies rapidly in space and time, making smoke-sourced pollution difficult to track with surface monitors 
(spatially limited) or global satellites temporally limited to one daily snapshot. Here, we show that new satellites 
capturing hourly pollution changes over one world region can identify more person-alerts (population × poor 
air quality alert days) in the US, compared with global satellites, enabling the public to take action to reduce 
exposure and avoid health consequences. Our results illustrate the health and economic benefits of one pathway 
to improve the integrated air pollutant monitoring strategy in the US.
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Satellite-based estimates of surface PM2.5 concentrations are continually advancing (van Donkelaar et al., 2021) 
and can guide exposure-reducing actions to protect public health (Anenberg et al., 2020; Holloway et al., 2021). 
Surface PM2.5 is estimated from satellites by relating satellite observations of columnar aerosol optical depth 
(AOD) to ground-level PM2.5 concentrations with ground-based monitors and/or atmospheric chemistry models 
(Di et  al.,  2019; Diao et  al.,  2019; Hammer et  al.,  2020; Wang et  al.,  2018; Zhang & Kondragunta,  2021). 
These satellite-based data sets have been used to quantify health impacts of PM2.5 (e.g., Anenberg et al., 2018; 
Diao et al., 2019), identify racial and socioeconomic disparities in PM2.5 exposure (Castillo et al., 2021; Kerr 
et  al.,  2022; Liu et  al.,  2021), and estimate smoke exposure during wildfire events (e.g., Geng et  al.,  2018; 
Rappold et al., 2011). The inclusion of AOD observations on geostationary satellites expands these applications 
by allowing for observations during all cloud-free daylight hours as opposed to a single daily snapshot from 
previous polar-orbiting satellites. AOD observations on geostationary satellites began with the Geostationary 
Operational Environmental Satellites (GOES)-East and GOES-West in 2017 and are expected to be continued 
into the coming decade(s) by NASA's Tropospheric Emissions: Monitoring Pollution (TEMPO) mission and 
NOAA's Geostationary Extended Observations (GeoXO) mission (Zoogman et al., 2017).

Quantifying benefits of satellite-based data sets to public health can provide valuable information about the soci-
etal improvements from current and future governmental investments in Earth observing satellites with atmos-
pheric composition instrumentation. These potential benefits include near real time identification of pollution 
events (e.g., Huff & Kondragunta, 2017), assessment of sub-daily patterns in emissions sources which could 
inform more effective emissions-reduction strategies, and more accurate estimates of surface PM2.5 (e.g., Zhang 
et al., 2022). Currently, GOES provides observations of AOD over the contiguous US every 5 min during daylight 
hours (Kondragunta et al., 2020; Schmit et al., 2005; Zhang & Kondragunta, 2021). GOES-based AOD obser-
vations have already been used to help capture short-term pollution events in near real time or “nowcasting” 
(Huff et  al.,  2021; Vu et  al.,  2022; Zhang et  al.,  2022). This application of current and future geostationary 
atmospheric composition data is especially important for wildfire-driven PM2.5 pollution events, which can often 
be difficult to capture in monitoring networks due to wildfire smoke's high temporal and spatial variability (Huff 
& Kondragunta, 2017; O’Neill & Raffuse, 2021). At present, we lack a robust framework to quantify potential 
health benefits of this application of geostationary atmospheric composition data.

In this work, we develop a methodology to quantify the potential health benefits of PM2.5 nowcasting satellite-based 
atmospheric composition data. We use estimates of 24hr mean surface PM2.5 derived from both polar-orbiting 
satellites (one observation per day on cloud-free days) and geostationary satellites (observations during all cloud-
free daylight hours) previously estimated by Zhang et al.  (2022). Within these data sets, we flag days where 
the 24hr mean PM2.5 exceeds 35.45 μg m −3, the threshold for “code orange” particulate air quality alert days 
and approximating the current 24hr National Ambient Air Quality Standard (NAAQS) of 35 μg m −3 for PM2.5. 
Previous works have found that alerted populations take individual actions to reduce exposure to poor air quality 
(Burke et al., 2022; Rappold et al., 2017; U.S. EPA, 2021) and this can benefit public health (Chen et al., 2018). 
We apply previously calculated multi-study estimates of personal PM2.5 exposure reduction on poor air quality 
days and conduct a health impact assessment to estimate averted PM2.5-attributable mortality and morbidity. For 
comparison, we also apply this framework to estimate alert days identified by monitor based PM2.5 nowcasting. 
The framework developed here to quantify health benefits of reductions in PM2.5 exposure from this alerted 
behavior modification pathway can be applied to quantify benefits of future improvements in air quality nowcast-
ing and geostationary satellite-based observations of atmospheric composition.

2. Materials and Methods
2.1. PM2.5 Data Sets

We use four data sets of daily, surface PM2.5 concentrations in 2020 to investigate the possible benefits of differ-
ent data sources for use in air quality nowcasting. While 2020 was an anomalously active fire year, fire years 
like 2020 are projected to become more likely in the future (Abatzoglou et al., 2021; Xie et al., 2022), when 
new geostationary satellites that are presently in the planning phase and could be informed by our analysis (like 
GeoXO) will be operational. The three satellite-based data sets of surface PM2.5 we use are described in detail by 
Zhang et al. (2022). We will provide a brief description here and refer readers to Zhang et al. (2022) for additional 
details. The three data sets rely on three different sources of AOD, described in the following paragraph, which 
are used to estimate 24hr mean surface PM2.5 concentrations by a geographically weighted regression algorithm. 
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The algorithm assumes linear relationships between PM2.5 and AOD varying with space and time. It derives 
the relationships at each time step from the surface PM2.5 measurements and AOD matchup data set. In this 
work, we regrid all surface PM2.5 estimates from by Zhang et al. (2022) to a 0.01° × 0.01° grid (approximately 
1 km × 1 km).

AOD observations are obtained from the ABI sensor onboard GOES-16 and GOES-17 and the VIIRS sensors 
onboard the NOAA-20 and Suomi National Polar-orbiting Partnership (SNPP) satellites. The ABI sensor has 16 
spectral bands and a resolution of 2 km at nadir. It retrieves AOD at 550 nm at a temporal resolution of approxi-
mately 5 min during all cloud-free daylight hours (Schmit et al., 2005, 2018). The VIIRS sensor onboard SNPP 
and NOAA-20 retrieves AOD at 550 nm at approximately 1:30 pm local time if there is no interference from 
clouds (Liu et al., 2014; Zhang et al., 2016). The sensor has 22 spectral bands and a 0.75 km resolution at nadir. 
We use bias corrected ABI AOD with high and medium qualities (Zhang et al., 2020) and VIIRS high quality 
AOD. To represent geostationary satellite-based nowcasting, we use 24hr mean surface PM2.5 concentrations 
estimated using hourly ABI AOD from all daylight hours. We refer to this data set as ABI-Daytime. To represent 
polar-orbiting satellite-based nowcasting, we use 24hr mean surface PM2.5 concentrations estimated with VIIRS 
AOD observed at 1:30 p.m. local time. The VIIRS-based data set represents a true polar-orbiting case but uses a 
different retrieval algorithm compared with ABI.

Because there are differences between the VIIRS and ABI sensors, such as different processing algorithms and 
spatial resolutions, we also created a third data set to isolate the impacts of the difference in temporal coverage 
between geostationary and polar-orbiting satellites. To create the ABI-1pm data set, we use the ABI-Daytime 
estimated surface PM2.5 values, but only for grid cells where the ABI AOD has a retrieval at 1 p.m. local time. 
This data set mimics the temporal and spatial completeness of surface PM2.5 estimates based on a polar-orbiting 
satellite while quantitatively agreeing with surface PM2.5 estimated in the ABI-Daytime data set. The ABI-1pm 
data set thus isolates the impacts of the difference in temporal coverage between geostationary and polar-orbiting 
satellites by using the same retrieval algorithm and AOD to PM2.5 conversion for both. We note that our ABI-1pm 
data set, and subsequent comparison to ABI-Daytime, does not include the improved accuracy of surface PM2.5 
estimates with the additional data available in ABI-Daytime. This benefit of geostationary satellite data is 
described by Zhang et al. (2022) by analyzing surface-monitor PM2.5. They reported correlations between PM2.5 
at 1 p.m. and daily PM2.5 are generally above 0.6 across the continental US, while that for daytime PM2.5 and 
daily PM2.5 are above 0.8 (Zhang et al., 2022, Figure 6). In addition, the ABI-Daytime data set (when compared to 
surface monitors) has an estimated coefficient of determination ranging from 0.26 to 0.86 and a mean bias from 
−1 to 1 μg m −3, varying by US state (Zhang et al., 2022, Figure 3).

To represent monitor-only based nowcasting (the state of the art at the national level), we use 24hr mean PM2.5 
observations from ground-level monitors in the EPA's AirNow network (US EPA, 2023). With this data set, which 
we refer to as AirNow-RA, we attempt to replicate the spatial coverage of the NowCast value AirNow reports 
to a user based on their location. We assign the concentrations reported at monitors to the surrounding zip code 
tabulation areas (ZCTAs) by calculating a single concentration to represent an entire “reporting area.” Reporting 
areas are a feature of AirNow that specify the region for which a forecast is made and all monitors within that area 
(e.g., a city) are considered representative. The NowCast is typically reported hourly, where the maximum hourly 
value among all the monitors located in a particular reporting area is applied to the respective reporting area each 
hour. Here, we take the max of the 24hr mean PM2.5 observed by all monitors in each reporting area for a daily 
NowCast value to align with the temporal resolution of the satellite-based surface PM2.5 estimates.

For each of the data sets, ABI-Daytime, ABI-1pm, VIIRS, and AirNow-RA we determine the number of esti-
mated air quality alert days and the total population in alerted grid cells/ZCTAs. For the gridded satellite-based 
data sets, we use gridded estimates of population in 2020 from the NASA Socioeconomic Data and Applications 
Center (SEDAC) Gridded Population of the World, version 4.11 (GPW, v4.11) regridded to the 0.01° × 0.01° 
PM2.5 grid from an original resolution of 2.5 × 2.5 arcminutes (NASA SEDAC, 2018). With the reporting-area 
level AirNow-RA data set, we use 2020 population estimates by ZCTA from the 2020 census accessed through 
the National Historical Geographic Information System (Manson et al., 2022). We note these data sets and the 
subsequent identification of alerted populations used in this work do not reflect how these data sources may be 
used in practice to inform the public of air quality alert days. Here, we use these data sets to show the availability 
of PM2.5 concentration data from different data sources for use by air quality forecasters and investigate how this 
additional information may benefit public health.
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2.2. PM2.5 Reduction by Behavior Modification

We quantify the health benefits of air quality alerts by assuming alerted communities modify their behavior to 
reduce their personal PM2.5 exposure. Research studies on behavior modification decisions and effectiveness 
of different actions during smoke events were summarized in the Comparative Assessment of the Impacts of 
Prescribed Fire Versus Wildfire (CAIF) report by the US EPA (U.S. EPA, 2021, Table 6-1). The CAIF report 
provides effective exposure reduction values that account for both the fraction of people who take specific 
exposure-reducing actions and the estimated mean PM2.5 exposure reduction from the actions. The CAIF report 
provides multiple estimated reductions in PM2.5, with mean values ranging from 15% to 30%, depending on 
the action. We chose the 30% reduction value estimated for remaining indoors because it is associated with the 
highest likelihood of taking action (60%) with an associated PM2.5 reduction effectiveness estimate (50%) in the 
CAIF report. The resulting average overall exposure reduction for the behavior modification action of remaining 
indoors is 30% (0.60 taking action × 0.50 effectiveness) and likely represents an upper bound on population 
exposure reduction from individual-level action.

There is likely a high degree of uncertainty and possible geographic variability in the reduction in population 
PM2.5 exposure on alert days. We test the sensitivity of our results to this value by conducting our analysis using 
the reported standard deviation of the multi-study mean likelihood of remaining indoors and effectiveness of 
remaining indoors for exposure reduction provided in the EPA CAIF report (U.S. EPA, 2021, Table 6-1). This 
gives a lower bound of 15% and upper bound of 50% reduction in PM2.5. We note these values are specific to 
smoke-impacted pollution events, which may have a higher degree of awareness than non-smoke impacted pollu-
tion events. For example, a recent survey of residents in the Washington, DC metro area (far from large western 
wildfires) estimated a 23% likelihood of remaining indoors (Clean Air Partners, 2018). Assuming the same action 
effectiveness (50%), this results in an overall exposure reduction value of 12%, close to the lower bound exposure 
reduction value of 15% we use here. However, given 2020 was an active fire year with significant impacts on air 
pollution in populated areas, it is likely a majority of the alert days in our data set are impacted by smoke events. 
The details of our sensitivity analysis to the percent exposure reduction value are provided in the supplement.

We apply these reductions in PM2.5 exposure from air quality alerts and subsequent behavior modification to the 
two ABI-based nowcasting data sets. We don't apply the exposure reduction and health impact assessment calcu-
lations to the VIIRS-based and monitor-based data sets because there are quantitative differences in the under-
lying PM2.5 estimates which will also impact the health impact assessment results and thus make the impacts of 
additional spatial coverage and/or higher spatial resolution unclear. Thus, for the two ABI-based data sets only, 
we reduce PM2.5 by 30% in grid cells where the estimated 24hr average PM2.5 is >35.45 μg m −3 (air quality alert 
days). On non-alert days, PM2.5 exposure is taken as the estimated ambient concentration.

2.3. Health Impact Assessment

We use the following health impact function from Anenberg et al. (2010, 2014) to estimate the health benefits of 
reduced PM2.5 exposure,

𝐸𝐸 = 𝑃𝑃 × BR × (1 − exp(−𝛽𝛽 × ΔPM2.5)), (1)

where E is the attributable health events, P is the population, BR is the baseline event rate, ΔPM2.5 is the estimated 
PM2.5 exposure minus the theoretical concentration at which minimal excess risk occurs, and 𝛽 is defined as,

𝛽𝛽 = ln(RR)∕𝑋𝑋𝑋 (2)

where RR is the relative excess risk per an X increase in PM2.5 concentration. This equation assumes a linear rela-
tionship between PM2.5 concentrations and the log of relative risk and has been previously applied in several stud-
ies quantifying public health impacts of short-term and long-term exposure to PM2.5 (Anenberg et al., 2010, 2018; 
Ford et al., 2018; O’Dell et al., 2021).

Equations 1 and 2 are used to estimate both PM2.5-attributable premature mortality and asthma emergency room 
visits. As higher resolution rates are not available, we use a national baseline rate for asthma emergency room 
visits of 50.2 visits per 10,000 people, obtained from Centers for Disease Control reports based on data from the 
Healthcare Cost Utilization Project for the year 2018 (AHRQ, 2006; Healthcare Use Data | CDC, 2023). We use 
a RR of asthma emergency room visits of 1.03 (95% CI: 1.01, 1.05) from Orellano et al. (2017) with a threshold 
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concentration of 0 μg m −3. Total population estimates for the year 2020 are 
obtained from the NASA SEDAC Gridded Population of the World v4.11 at 
2.5 arcminute resolution (NASA SEDAC, 2018) and regridded to the same 
0.01° × 0.01° grid as the PM2.5 concentration estimates. We apply Equation 1 
with these inputs and 24hr mean PM2.5 to estimate the PM2.5-attributable 
asthma emergency room visits for each grid cell on each day. We sum the 
PM2.5-attributable asthma emergency room visits across all days in 2020 and 
all grid cells to estimate the national annual total of PM2.5-attributable asthma 
emergency room visits.

To estimate attributable premature mortality, we use a RR for long-term 
exposure to PM2.5 of 1.06 (95% CI: 1.04, 1.08) from Turner et  al.  (2016) 
with a threshold concentration of 2.8 μg m −3, the minimum PM2.5 exposure 
estimated in Turner et  al.  (2016). We obtain county-level all-cause base-
line mortality rates for all ages from the CDC WONDER database aver-
aged over the years 2015–2019 and grid these values to the 0.01° × 0.01° 
PM2.5 grid (CDC, 2021). Here, we again use the regridded total population 
estimates from the NASA SEDAC Gridded Population of the World v4.11 
described above. Annual mean PM2.5 is calculated for each data set for use in 
the mortality estimates to approximate the long-term PM2.5 exposures used 
to develop the concentration response function. We use the annual mean 
PM2.5 with the inputs described above in Equations  1 and  2 to calculate 
PM2.5-attributable mortality at each grid cell. This process is repeated for 
the baseline ABI-Daytime based PM2.5 exposure and the two reduced PM2.5 
exposure data sets using ABI-Daytime and ABI-1pm identified alert days. 
The difference between the baseline data set and the reduced data sets based 
on ABI-Daytime and ABI-1pm derived alerts gives the asthma emergency 
room visits and mortality that could theoretically be averted with geostation-
ary and polar-orbiting satellite informed nowcasting, respectively.

Finally, we perform an economic valuation of the averted asthma emergency 
room visits and mortality from nowcasting-informed behavior modification. 
We follow guidance from the US EPA on economic valuation of health events 
and mortality (U.S. EPA, 2010). Asthma emergency room visits are valued 
at $430 ($2010) using a cost-of-care approach (U.S. EPA, 2021). We update 

this value to $500 ($2019) using the US Bureau of Labor Statistics Consumer Price Index inflation calculator. For 
an economic valuation of averted premature mortality, we use a value of statistical life of $10.9 million ($2019) 
calculated using a willingness to pay approach (US DOT, 2023).

3. Results
3.1. Spatial Coverage and Resolution of PM2.5 Data Sets for Nowcasting

The AirNow data set of surface PM2.5 monitors, as applied by the Environmental Protection Agency (EPA) 
to Reporting Areas for NowCasting (AirNow-RA), has the greatest temporal completeness where values are 
reported, but there are large spatial gaps with no data (Figure 1a). On average, the AirNow-RA data set covers 
ZCTAs spanning 3.8 million km 2 each day, or 54% of the total contiguous US ZCTA area. This data set has the 
lowest spatial resolution of the four data sets (Figure 1a) because a single maximum 24hr mean PM2.5 value is 
applied across the entire reporting area. We note multiple monitors are available in many of the reporting areas 
over which air quality nowcast alerts are issued and higher resolution PM2.5 concentration estimates could be 
created with the AirNow monitor data such as with interpolation. However, in the AirNow-RA data set we have 
attempted to replicate the spatial coverage and resolution of the EPA NowCast, which reports a single value 
within each reporting area to users.

The two data sets representing polar-orbiting products, VIIRS and ABI-1pm, generally have broader spatial 
coverage, but a lower annual temporal completeness compared to the AirNow-RA data set (Figures 1a–1c). On 

Figure 1. Total days of observations (panels b–d) and annual mean PM2.5 
(panels f–h) in 2020 for three satellite based PM2.5 data sets. Panels (a, e) show 
total observations and annual mean PM2.5 for the AirNow reporting areas 
(RA) by ZipCode Tabulation Area (ZCTA), respectively. Gray areas indicate 
locations without observations.
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average, the VIIRS and ABI-1pm data sets cover 3.5 and 2.1 million km 2 each day or 45% and 27% of the contig-
uous US grid area in 2020, respectively. The ABI-1pm data set, in most locations, has fewer observations than 
VIIRS due to differences in retrieval algorithms, spatial resolution of AOD (originally 0.75 km for VIIRS and 
2 km for ABI at nadir) and subsequent impacts on cloud masking capabilities, and the lack of ABI retrievals over 
bright surfaces (e.g., the desert southwest US).

ABI-Daytime, which represents air quality observations from a geostationary satellite, generally provides the 
most annually complete temporal coverage of 24hr mean PM2.5 among the satellite-based data sets (Figure 1d). 
Like VIIRS and ABI-1pm, the ABI-Daytime data set also has a higher spatial resolution and broader spatial 
coverage than the AirNow-RA estimates. We note both ABI-Daytime and ABI-1pm have a swath of missing data 
over eastern Montana and North Dakota. In this location, the two satellites which host an ABI sensor, GEOS-East 
and GEOS-West, have large view zenith angles for which retrievals are assigned a lower quality. To maintain 
higher quality data, we remove these retrievals from our analysis. Overall, the ABI-Daytime data set has the high-
est average daily spatial coverage of all data sets (including AirNow-RA) with a mean of 4.6 million km 2 (59% 
of contiguous US grid area) covered each day. The 2020 annual mean PM2.5 estimated with the ABI-Daytime 
data set is 8.1 μg m −3 (Figure 1h). This is slightly lower than the annual mean PM2.5 estimated with AirNow-RA, 
ABI-1pm, and VIIRS of 8.4 μg m −3 (Figures 1e–1g). Although the ABI-1pm data set used here has the same 
daily PM2.5 values as the ABI-Daytime data set by design, the inclusion of different days in the annual average 
(only days where there is a retrieval at 1 p.m. local time) leads to differences in the estimated annual mean PM2.5.

3.2. Alert Days Identified Across the Four Data Sets

ABI-Daytime and VIIRS estimate a similar number of national population-weighted average alert days but follow 
different spatial patterns. VIIRS estimates a national population-weighted average of 2.4 alert days in the US 
in 2020 compared to 2.7 annual population-weighted mean alert days in ABI-Daytime. The spatial differences 
between particulate air quality alert days identified in ABI-Daytime and VIIRS are driven both by differences in 
spatial and temporal completeness as well as quantitative differences in estimated PM2.5 concentrations each day 
(Figure 2). As shown in Figures 2a and 2b (and the difference plot in Figure S1a in Supporting Information S1), 
VIIRS estimates more alert days than ABI-Daytime in the northwestern states and desert southwest. In addi-
tion to quantitative differences in estimated surface PM2.5 concentrations, this could be due to the higher native 
pixel resolution (750 m vs. 2 km) and stronger capability to retrieve over bright surfaces with the VIIRS sensor 
discussed previously. We find, nationally, the overall performance of VIIRS and ABI-Daytime at identifying alert 
days is fairly similar; both data sets have a ∼70% probability of correctly identifying an alert day in 2020 (Table 
S1 in Supporting Information S1). The AirNow-RA alerts (Figure 2d) generally follow a similar spatial pattern 
to these satellite-based alert days and have a higher number of annual population-weighted mean alerts (3.3), but 
AirNow-RA has much wider alert areas due to assignment of monitors to broad reporting areas.

Figure 2. Number of days in 2020 flagged as air quality alert days (24-hr mean PM2.5 > 35.45 μg m −3) in each of the four 
data sets. Gray areas indicate locations with zero identified alert days or no available observations.
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Comparing ABI-1pm and ABI-Daytime removes the influence of algorithm and quantitative differences in 
estimated PM2.5 concentrations. Differences in alert days between these two data sets are thus driven entirely 
by differences in temporal and spatial completeness each day. As shown in Figure 1, ABI-Daytime has more 
complete spatial coverage than ABI-1pm due to additional daytime observations. In Figures  2a and  2d (and 
the difference plot in Figure S1b in Supporting Information S1), we show this also leads to a larger number of 
observed alert days. On average, ABI-1pm estimates 1.7 annual population-weighted mean alert days in 2020 
across the US, much lower than that estimated by ABI-Daytime (2.7 alert days). In total, 57% of the grid cell 
level alert days identified in the ABI-Daytime data set in 2020 were missed in the ABI-1pm data set due to cloud 
coverage at the single overpass time. The single overpass was likely missing observations due to partial cloud 
cover that is not present all day, which allows the ABI-Daytime to report more days.

In all data sets, particulate air quality alert days are predominantly concentrated in California but are not exclu-
sive to California (Figure 2). The spatial distribution of particulate air quality alert days will likely be different 
for different years as there is high interannual variability in wildfire driven-PM2.5 (Jaffe et al., 2008; Spracklen 
et al., 2007), which is likely contributing to many of the alert days (Childs et al., 2022; David et al., 2021).

We relate the spatial distribution of the number of PM2.5 observations (Figure 1) to population and calculate total 
person-alerts (product of population and number of alerts for each grid cell or ZCTA) for each data set in Figure 3. 
We find that in 2020 the AirNow-RA data set has the largest population coverage with valid 24hr PM2.5 estimates 
for an average of 333 days (national, population-weighted mean) and the largest number of person-alerts of 1.1 
billion. However, as noted previously, the spatial resolution of these alerts is much lower than the satellite-based 
data sets as a single monitor value is assigned across the reporting areas (Figure 2). When we apply the moni-
tors only to the population in the census tract in which they are located (a closer spatial comparison to the 
satellite data sets, but not representative of how the monitors are designed to be used in practice) we find only 
5 population-weighted number of observation-days and 23 million person alerts in 2020. Of the satellite-based 
data sets, ABI-Daytime has the highest population coverage with a population-weighted mean 234  days per 
year, followed by 148 days for VIIRS and 121 days for ABI-1pm. The ABI-Daytime data set also contains the 
largest number of person-alerts of the satellite-based data sets in 2020 at 960 million person-alerts (Figure 3b). 
The ABI-Daytime data set identifies more person-alerts than the ABI-1pm (+60%) and VIIRS (+14%) data sets. 
Although we use these data sets to identify air quality alert days and alerted populations, we again note that they 
do not directly represent the air quality alerts people currently receive from AirNow or would receive if satellite 
data were incorporated into nowcasting. Here, we use these data sets as an initial step to investigate if incorporat-
ing satellite data, in particular geostationary satellite data, in nowcasting could benefit public health.

3.3. Estimated Reductions in PM2.5 Exposure

Due to the higher spatial coverage available through geostationary satellite-based PM2.5 estimates and subsequent 
higher number of alert days identified, the ABI-Daytime based alerts and assumed exposure-reducing behavior 

Figure 3. Population-weighted number of days with estimates of 24hr mean PM2.5 for each data set (left) and total 
contiguous US person-alerts (24-hr mean PM2.5 > 35.45 μg m −3) in each dataset (right) in 2020.
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modification lead to a larger estimated reduction in annual mean PM2.5 exposure than the ABI-1pm based alerts 
(Figure 4). We only estimate exposure reduction in the two ABI-based data sets, which quantitatively agree on 
estimates of daily PM2.5 by design, unlike the AirNow-RA and VIIRS data sets. We assume a 30% reduction in 
PM2.5 exposure associated with behavior modification on alert days based on a multi-study mean of responses to 
air pollution during smoke events. We find a national average reduction in estimated PM2.5 exposure from indi-
vidual behavior modification on ABI-Daytime based alert days of 0.2 μg m −3, with the largest reductions occur-
ring in central California. The reduction in PM2.5 exposure estimated from ABI-1pm based alerts follows a similar 
spatial pattern, but the absolute exposure reductions are smaller with a national mean reduction of 0.1 μg m −3. We 
estimate national, population-weighted PM2.5 exposure is reduced by 2% using the ABI-Daytime data set and by 
1% using the ABI-1pm data set. For the California population, the change in population-weighted PM2.5 exposure 
is over 7% for ABI-Daytime based alerts and 4% for ABI-1pm based alerts. Like the total estimated reductions in 
annual mean PM2.5 exposure, the additional reductions in the geostationary case are not evenly distributed across 
the country (Figure 4c). Overall, we find a national average of 0.1 μg m −3 additional reduction in mean PM2.5 
exposure using ABI-Daytime based alerts compared to ABI-1pm based alerts. In Figures S2 and S3 in Support-
ing Information S1 we show these estimated reductions in annual-mean PM2.5 exposure when we assume a 15% 
and 50% exposure reduction on alert days, respectively, representing the estimated standard deviation of the 30% 
exposure reduction estimate (U.S. EPA, 2021). We discuss the implications of this uncertainty on our results in 
the discussion section.

3.4. Health and Economic Benefits

We use a health impact assessment to estimate an additional 1,200 (95% 
CI: 800–1,500) PM2.5-attributable premature deaths per year (1% of all 
PM2.5-attributable deaths) could be averted due to the additional exposure 
reduction with air quality alerts from geostationary satellite (ABI-Daytime) 
based PM2.5 concentration estimates over polar-orbiting satellite (ABI-1pm) 
based PM2.5 concentration estimates (Figure 5). First, before applying reduc-
tions due to assumed behavior modification, we estimate a total of 96,000 
(95% CI: 65,000–126,000) deaths attributable to PM2.5 in the US per year 
based on total 2020 annual mean concentrations. We subsequently estimate 
that using geostationary (ABI-Daytime) based PM2.5 data for air quality 
alerts could avert 2,800 (95% CI: 1,900–3,600) PM2.5-attributable prema-
ture deaths annually, while 1,600 (95% CI: 1,100–2,100) PM2.5-attributable 
deaths could be averted with polar orbiting satellite (ABI-1pm) based 
PM2.5 estimates compared to a scenario with no air quality alerts/behavior 
modification (Figure 5). In the Supporting Information S1, we also calcu-
late averted deaths from short-term PM2.5 exposure (Table S2 in Support-
ing Information S1) using Equation 1 with a relative risk estimate from Dai 
et al. (2014). We estimate an additional 210 (95% CI: 160–250) additional 
averted premature deaths from avoided short-term PM2.5 exposure nation-
wide in 2020 using geostationary over polar-orbiting satellite based alerts.

Figure 4. Reduction in annual mean PM2.5 exposure due to behavior modification from poor air quality alerts (24-hr mean 
PM2.5 > 35.45 μg m −3) based on data from ABI-Daytime (panel a) and ABI-1pm (panel b). Panel c shows the difference 
in the estimated annual mean PM2.5 exposure reduction estimated using ABI-Daytime and ABI-1pm (panels a, b). Gray 
areas indicate locations with no reduction in annual mean PM2.5 and white areas are locations where no reliable ABI data is 
available.

Figure 5. All-cause PM2.5-attributable premature deaths averted (left y-axis) 
and associated economic value (right y-axis) with behavior modification from 
poor air quality alerts (24-hr mean PM2.5 > 35.45 μg m −3) identified using 
PM2.5 estimates based on ABI-1pm and ABI-Daytime. Error bars indicate 
uncertainty in averted deaths as defined by the 95% confidence interval in the 
relative risk used in the health impact function.
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Using an economic value of statistical life of 10.9 million dollars ($2019; US DOT, 2023) the 2,800 ABI-Daytime 
averted deaths and 1,600 ABI-1pm averted deaths are valued at 30 billion and 17 billion dollars per year, respec-
tively. The additional 1,200 (95% CI: 800–1,500) PM2.5-attributable premature deaths averted with geostationary 
satellite-based alerts are economically valued at 13 (95% CI: 8.8–17) billion dollars per year ($2019). These 
estimated averted premature deaths are also sensitive to our assumed 30% exposure reduction via behavior 
modification on alert days. Assuming a 15% or 50% exposure reduction instead results in an uncertainty range 
of 590–2,000 deaths (Table S3 in Supporting Information S1), of similar magnitude to the reported 95% CI 
bound on the health impact function. While the absolute number of estimated averted deaths is sensitive to this 
assumption, we note the percent difference in alert/behavior modification averted deaths between ABI-1pm and 
ABI-Daytime based alerts of 54%, is robust.

We similarly estimate 240 (95% CI: 90–340) PM2.5-attributable asthma emergency room visits per year (1% 
of all PM2.5-attributable asthma emergency room visits) could be averted with geostationary satellite based air 
quality alerts over polar-orbiting satellite based alerts. A total of 29,000 (95% CI: 10,000–48,000) asthma emer-
gency room visits in 2020 were attributable to PM2.5, based on the total PM2.5 concentration estimates in the 
ABI-Daytime data set. We find 610 (95% CI: 240–890) and 370 (95% CI: 140–550) of these PM2.5-attributable 
emergency room visits could be avoided with geostationary satellite and polar orbiting satellite based alerts, 
respectively. The additional 240 (95% CI: 90–340) PM2.5-attributable asthma emergency room visits averted with 
geostationary satellite-based alerts are associated with an economic benefit of 120,000 (95% CI: 45,000–170,000) 
dollars per year ($2019).

We find a majority of the PM2.5 alert days identified in each data set and subsequent averted deaths and 
asthma emergency room visits occur in the western US in 2020. Specifically, 64% of the additional averted 
PM2.5-attributable asthma emergency room visits and 58% of the additional averted PM2.5-attributable premature 
deaths occur in California alone in 2020. The spatial distribution of these benefits will likely vary for different 
years due to interannual variability in emissions (e.g., wildfire occurrence). However, we expect these benefits 
to predominantly occur in the western US in most years, where there are now more frequent short-term PM2.5 
pollution events due to increases in the frequency and intensity of large western wildfires (Childs et al., 2022).

4. Conclusions
In this work, we show that atmospheric composition information from geostationary satellites could lead to a 
greater reduction in personal exposure to air pollution and subsequently greater public health benefits compared 
to similar information from polar-orbiting satellites. Specifically, we find estimates of surface PM2.5 based 
on AOD observations from a geostationary satellite are able to identify more particulate air quality alert days 
(24hr PM2.5 > 35 μg m −3) for a larger fraction of the population than a similar data set representing AOD from 
polar-orbiting satellites in 2020. Applying pre-existing estimates of the reduction in PM2.5 exposure due to indi-
vidual behavior modification in alerted populations, we estimate 54% more averted PM2.5-attributable mortality, 
or 1,200 (800–1,500) deaths per year, using geostationary over polar-orbiting satellite data. These averted deaths 
are associated with an economic value of 13 (95% CI: 8.8–17) billion dollars ($2019) per year. There are many 
additional health benefits of reduced PM2.5 exposure that are not quantified in this work, such as lost work 
days  and inhaler medication refills, which impact a larger percentage of the population than the more severe 
health outcomes we quantify (U.S. EPA, 2022).

The magnitude and spatial distribution of alert days and subsequent benefits of identifying additional alert 
days will likely vary for different years. The total PM2.5-attributable mortality we estimate using 2020 annual 
means (96,000 deaths) is within the range of previous estimates of PM2.5-attributable mortality in the US (Ford 
et al., 2018; O’Dell et al., 2021; Tessum et al., 2019) and approximately double the 2019 GBD estimate of 50,000 
PM2.5-attributable deaths (GBD,  2019). Differences in these values predominantly come from differences in 
concentration response functions used and estimated PM2.5 concentrations. We note 2020 was an exceptionally 
active wildfire year and had many PM2.5 alert days in populated areas in the western US compared to other recent 
years. However, wildfire seasons worse than 2020 are projected to become at least twice as likely by 2050 in 
the US West under climate change (Abatzoglou et al., 2021; Xie et al., 2022). Thus, these results using 2020 
data are likely more representative of benefits of geostationary satellites and nowcasting applications in the 
future compared to a recent less active fire year such as 2019. We expect our main conclusion that atmospheric 



GeoHealth

O’DELL ET AL.

10.1029/2023GH000890

10 of 13

composition data from geostationary satellites is able to lead to additional exposure reduction by identifying more 
PM2.5 alert days than polar-orbiting satellites to still hold for other, less active, wildfire years.

Our application of a health impact assessment to an alert/behavior modification pathway for PM2.5 exposure 
reduction is novel and requires several assumptions when quantifying health benefits. First, the relative risk 
values and concentration response function we applied were developed using ambient outdoor PM2.5 concen-
trations, not personal exposure. In addition, relative risk values may already incorporate some level of behavior 
modification that was taken by people in the cohorts studied to develop them. These assumptions have been made 
previously in estimating benefits of N95 masks for reducing wildfire smoke exposure (Kodros et al., 2021). We 
incorporate the uncertainty associated with the concentration response function in our health impact assessment, 
but there are additional sources of uncertainty from population estimates, baseline disease rates, PM2.5 estimates, 
and the assumed exposure reduction in alerted populations. It is also currently uncertain how reductions in peak 
exposures to PM2.5 translate to reduced health impacts of long-term exposure. However, this assumption is often 
made when assessing the contribution of wildfire smoke PM2.5 to mortality from long-term PM2.5 exposure (Ford 
et al., 2018; Neumann et al., 2021; O’Dell et al., 2021). Thus, despite our novel application of this pathway of 
exposure reduction in a health impact assessment, our applications of PM2.5 concentration response functions are 
consistent with previous health impact assessments.

The relationship between PM2.5 data sets and issuing air quality alerts is more complex in practice than we are 
able to represent in our methodology. First, we use a 24hr average concentration for flagging alert days and 
reduce exposure to the full 24hr average. In practice, the AirNow NowCast typically relies on weighted, rolling 
PM2.5 concentration averages over the previous 12 hr (US EPA, 2021). However, we do not know in which hour 
people may modify their behavior to reduce exposure and a daily average exposure is required for the health 
impact assessment to align with the underlying epidemiology data. Second, our analysis assumes air quality 
alerts from national nowcasting based on these individual data sets are the only driver for behavior modification 
during pollution events. However, information from air quality forecasting (often based on numerical models 
along with satellite imagery), local air quality monitoring agencies, and personal awareness of poor air quality are 
additional drivers for action (Semenza et al., 2008; Wen et al., 2009). In practice, a combination of many of these 
tools is used to determine air quality alerts. Determining how to best incorporate satellite-based data products 
in the EPA's AirNow system is an ongoing effort (Bratburd et al., 2022). In this work, we do not prescribe how 
these tools may be used in practice, but rather investigate how these data sources may better inform air quality 
forecasters in their decision making.

The pathway from air quality alerts to reduced PM2.5 exposure is also more complex than we are able to represent 
here. We assume the same percent reduction in PM2.5 across all alerted populations yet in reality some commu-
nities or age groups may be more able or willing to modify their behavior than others (Burke et al., 2022; D’An-
toni et al., 2017; Hano et al., 2020; Kolbe & Gilchrist, 2009; Mirabelli et al., 2018; Rappold et al., 2019). The 
exposure reduction values we use come from studies investigating responses to smoke events which estimate a 
likelihood of taking action (specifically remaining indoors) of ∼60% (U.S. EPA, 2021). Studies of responses to all 
air pollution events and/or alerts (not smoke specific) often report smaller response rates (D’Antoni et al., 2017; 
McDermott et al., 2006; Wen et al., 2009). Given that 2020 was a very active fire year, and the likelihood of 
action on alert days is higher for smoke-impacted days, the magnitude of our results likely constitutes an upper 
bound on the averted premature deaths and associated economic benefits from nowcasting with geostationary 
over polar-orbiting satellite data. While these factors would impact the overall magnitude of the health benefits 
from expanded PM2.5 nowcasting with geostationary satellite data, in this work we are more concerned with the 
relative difference in exposure reduction between the geostationary and polar-orbiting cases which are calculated 
under the same assumptions.

Our results have implications both for the application of current geostationary atmospheric composition data (like 
AOD from GOES) as well as planning for future geostationary satellite missions, such as NASA's TEMPO and 
NOAA's GeoXO mission. These future geostationary satellite missions have the potential to continue and expand 
upon the public health benefits of satellite-based atmospheric composition data applications. This work high-
lights one of the many advantages of using satellite data for air pollution monitoring. Atmospheric composition 
data from geostationary satellites will also provide valuable information for long-term PM2.5 monitoring such 
as a greater capability to observe sub-daily patterns in emissions sources which could potentially be applied to 
design more effective and health-beneficial approaches for reducing ambient PM2.5 concentrations. Pathways to 
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quantify the health benefits of these additional applications of geostationary satellite data should be explored 
in future works. The work presented here shows satellite data, in particular geostationary satellite data, can be 
used to inform personal adaptation to short-term PM2.5 pollution events for a greater number of people, leading 
to a reduction in the negative health impacts of poor air quality. Future cost-benefit analyses of satellite missions 
should incorporate these and other health and economic benefits of monitoring and reducing exposure to air 
pollution. It will be important to ensure these benefits are realized by working with decision makers and local 
actors to incorporate these data sets into national and local air quality decision-making.
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