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Abstract: Plastic waste is rapidly accumulating in the environment and becoming a huge global chal-
lenge. Many studies have highlighted the role of microbial metabolic engineering for the valorization
of polyethylene terephthalate (PET) waste. In this study, we proposed a new conceptual scheme for
upcycling of PET. We constructed a multifunctional Pseudomonas putida KT2440 to simultaneously
secrete PET hydrolase LCC, a leaf-branch compost cutinase, and synthesize muconic acid (MA) using
the PET hydrolysate. The final product MA and extracellular LCC can be separated from the super-
natant of the culture by ultrafiltration, and the latter was used for the next round of PET hydrolysis.
A total of 0.50 g MA was produced from 1 g PET in each cycle of the whole biological processes,
reaching 68% of the theoretical conversion. This new conceptual scheme for the valorization of PET
waste should have advantages over existing PET upcycling schemes and provides new ideas for the
utilization of other macromolecular resources that are difficult to decompose, such as lignin.

Keywords: metabolic engineering; LCC; polyethylene terephthalate; enzymatic hydrolysis; bioconversion

1. Introduction

Polyethylene terephthalate (PET) is one of the most commonly used plastics and
widely exists in single-use beverage bottles, textiles, and food packaging [1]. However,
when post-consumer PET is poorly managed, it accumulates in the environment, leading to
serious environmental pollution and a significant loss of valuable resources [2]. Therefore,
an innovative plastic recycling strategy is imperative to achieve the resourceful utilization
of PET [3].

PET can be depolymerized to monomers and oligomers by physical and chemical
methods, such as pyrolysis, ammonolysis, hydrolysis, and glycolysis [4]. Many chemo-
bioprocesses have been developed to synthesize high-value chemicals from the PET
waste [5]. Using terephthalate (TPA) produced from PET pyrolysis as the feedstock, Kenny
et al. synthesized bioplastic polyhydroxyalkanoates (PHA) employing Pseudomonas strains
isolated from PET-exposed soil [6], and Kim et al. engineered Escherichia coli and Gluconobac-
ter oxydans to synthesize higher-value products, such as gallic acid, pyrogallol, muconic
acid (MA), vanillic acid, and glycolate [7]. Zhang et al. employed Taonella mepensis WT-6
to synthesize bacterial cellulose from PET ammonolysis products [8]. Bis(2-hydroxyethyl)
terephthalate (BHET) generated from the glycolysis of PET can be hydrolyzed and con-
verted to value-added compounds, such as protocatechuate, β-ketoadipic acid, and gly-
collate by engineered strains [9,10]. These studies demonstrated the great potential for
bioconversion of the PET hydrolysates to higher-value chemicals.

Recently, many efforts have been devoted to improve the properties of PET hy-
drolases [11]. Thermobifida fusca cutinase (Tfcut2) [12,13], leaf-branch compost cutinase
(LCC) [14], and Ideonella sakaiensis PETase (IsPETase) [15] derived variants with improved
thermostability and activity have made enzymatic hydrolysis of PET more efficient and
applicable. The most promising variant LCCICCG can efficiently hydrolyze PET with the
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TPA productivity up to 16.7 g/(L·h) at 72 ◦C, providing the possibility of creating a fully
biological process for PET recycling [14]. Sadler et al. used semi-purified LCC from E. coli
BL21(DE3) to hydrolyze PET, and then converted the hydrolysates to vanillin by whole-cell
catalysis with another engineered E. coli RARE_pVanX [16]. Similarly, Tiso et al. used
the purified LCC to hydrolyze PET, and then converted the hydrolysates to PHA by Pseu-
domonas umsongensis GO16 [17]. In our previous study, we have proposed a cocultivation
system using the engineered Yarrowia lipolytica and Pseudomonas stutzeri to achieve the
coupling of PET degradation and polyhydroxybutyrate (PHB) production [18]. However,
due to the low efficiency of IsPETase, it was only able to convert the BHET but not PET
into PHB.

Muconic acid (MA) is an important unsaturated dicarboxylic acid, which can be used
to produce commodity, new functional resins, pharmaceuticals, and agrochemicals [19].
The current market price of muconic acid is USD 1.5/kg and the global market size is
expected to be more than USD 110 million in 2024 [20,21]. Studies have demonstrated
MA production from aromatic compounds by directing carbon flux to catechol [22]. The
aromatic compound TPA from PET hydrolysate can also be converted to catechol via
protocatechuate and, as an example for upcycling, is highly suitable for the biosynthesis
of MA. In this study, we designed a new scheme that continuously converts PET to MA
using an engineered multifunctional P. putida KT2440 that can simultaneously secrete LCC
and metabolize PET monomers. PET was first hydrolyzed into TPA and ethylene glycol
(EG) employing the LCC crude enzyme from culture supernatant. Subsequently, TPA
was converted to MA in the next round of cultivation and another hydrolysate EG was
used to support cell growth. MA and LCC in the culture supernatant can be separated by
ultrafiltration. The new produced LCC can continue to hydrolyze PET and start a new
cycle, allowing continuous production of MA from PET.

2. Results and Discussion
2.1. Construction of a Multifunctional P. Putida KT2440

To achieve the new scheme for upcycling of PET, a multifunctional host that can
secrete PET hydrolase and, at the same time, convert the PET hydrolysate TPA and EG
to high-value compounds is needed (Figure 1). MA can be applied in the synthesis of
new functional resins, pharmaceuticals, and agrochemicals and was selected as the end
product [19,22]. P. putida KT2440, a soil bacterium that can metabolize a variety of aromatic
compounds, was selected as the host chassis [23].

It has been shown that MA can be produced from TPA through a pathway involv-
ing the intermediates protocatechuate and catechol by using whole-cell catalyst E. coli
strain MA-1 [7]. P. putida KT2440 was also considered a suitable chassis for the produc-
tion of MA from TPA, as the part from PCA to MA in the pathway has been proven [24].
In our previous study, we identified a tph cluster containing genes encoding the tran-
scriptional regulator (TphR), TPA transporter (TpaK), TPA 1,2-dioxygenase (TphA), and
1,2-dihydroxy-3,5-cyclohexadiene-1,4-dicarboxylate dehydrogenase (TphB) from a TPA
degrading P. Stutzeri [25]. To utilize TPA and simultaneously block the metabolic branch
of the intermediate protocatechuate in P. putida KT2440, we replaced protocatechuate 3,4-
dioxygenase encoding genes (pcaHG) with the tph cluster identified in P. stutzeri. Then,
the codon-optimized protocatechuate decarboxylase gene aroY and flavin prenyltrans-
ferase gene ecdB from Enterobacter cloacae were introduced to convert protocatechuate to
catechol. EcdB synthesizes a prenylated flavin cofactor required by AroY to enhance the
decarboxylase activity [24,26]. Finally, MA biosynthesis pathway was set up by deletion of
the downstream metabolic genes catBC [27,28] (Figure 2A).
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Figure 1. Conceptual scheme for conversion of PET to MA with an engineered multifunctional Pseu-
domonas putida. A leaf-branch compost cutinase (LCC) crude enzyme prepared from the culture su-
pernatant hydrolyzes PET and produces the EG and TPA monomers, which can be directly used as 
substrates for the following cultivation to produce MA and reproduce LCC. The final product MA 
can be separated from the LCC crude enzyme by filtration. The remaining concentrated LCC crude 
enzyme was collected and used for the next round of PET hydrolysis with a stable activity, leading 
to the continuous conversion of PET to MA. 
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Figure 1. Conceptual scheme for conversion of PET to MA with an engineered multifunctional
Pseudomonas putida. A leaf-branch compost cutinase (LCC) crude enzyme prepared from the culture
supernatant hydrolyzes PET and produces the EG and TPA monomers, which can be directly used as
substrates for the following cultivation to produce MA and reproduce LCC. The final product MA
can be separated from the LCC crude enzyme by filtration. The remaining concentrated LCC crude
enzyme was collected and used for the next round of PET hydrolysis with a stable activity, leading to
the continuous conversion of PET to MA.

To prove the metabolic pathway, the derived engineered strains were cultivated in
LB medium containing 2 g/L TPA in a 24-well plate for 24 h. As expected, TPA was
almost not consumed by the wild-type P. putida KT2440, whereas, in P. putida KT2440-t
expressing tph cluster, TPA was almost fully converted to protocatechuate (Figure 2B).
After introducing aroY and ecdB, protocatechuate was catalyzed into catechol and further
metabolized, resulting in a reduction in protocatechuate to 6.4 mM. When the catRBC genes
were further replaced with the tac promoter to constitutively express dioxygenase gene
catA, the resulting strain P. putida KT2440-tac produced 4.63 mM MA from 12.86 mM TPA
(Figure 2B), and all of the produced MA was cis, cis-MA determined by chromatographic
analysis (Figure S8). In the entire MA pathway, the accumulation of the intermediate
product protocatechuate was detected, indicating that protocatechuate decarboxylase
activity is the catalytic bottleneck [29–31]. However, even so, the final engineered strain P.
putida KT2440-tac has been able to convert TPA into MA.

EG, another hydrolysis product of PET, can be sequentially oxidized to glyoxylate, and
then supports the growth of P. putida KT2440 via the glyoxylate carboligase (gcl) pathway
(Figure 2A) [32]. However, wild-type P. putida KT2440 cannot grow on EG because the
gcl-operon was repressed by a specific transcriptional regulator (gclR) [33]. To make P.
putida KT2440 grow on EG, we knocked out gclR and overexpressed glycolate oxidase gene
(glcDEF) via the strong, constitutive tac promoter, as described by Werner [10]. The resulting
P. putida KT2440-tacRD (∆pcaHG::tph::aroY:ecdB ∆catRBC::Ptac:catA ∆gclR::Ptac:glcDEF)
strain was confirmed to grow on EG (Figure 2C).

To further achieve the production of PET hydrolase in P. putida KT2440-tacRD, LCC
was expressed on pBBR1MCS-2 driven by lac promoter (Figure 2A). We found that the extra-
cellular LCC was comparable whether with or without the native signal peptide (Figure S1).
The transfer of LCC from the cytoplasm to the outside of the cell was probably attributed to
the activity of phospholipid hydrolyzing, resulting in membrane permeation [34,35]. The
27.8 kDa protein band representing LCC was clearly shown on the SDS-PAGE (Figure 2E).
To verify the activity of LCC, culture supernatant was collected to catalyze BHET emulsion
hydrolysis. It was proven by HPLC that BHET was almost completely hydrolyzed to
MHET and TPA within 1 h by crude enzyme from P. putida KT2440-tacRDL expressing
LCC. In comparison, enzyme-free phosphate buffer (Control) and the crude enzyme from
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P. putida KT2440-tacRD containing pBBR1MCS-2 without expressing LCC (Empty) cannot
hydrolyze BHET (Figure 2D).
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Figure 2. Construction of a multifunctional strain. (A), P. putida KT2440 as the chassis for metabolic
engineering design. 1, engineering the metabolic pathway for converting TPA to MA; 2, enhancing
the endogenous EG metabolic pathway; 3, secretory expression of LCC on pBBR1MCS-2. (B), Bio-
conversion of TPA by the derived engineered strains in LB containing TPA. KT2440-t refers to the
expression of tph-operon by replacing pcaGH in KT2440; KT2440-ta refers to the further expression
of aroY-ecdB; KT2440-tac refers to the further deletion of catRBC and the promoter replacement of
catA with tac promoter. (C), Growth and EG metabolism by P. putida KT2440-tacRD with the further
deletion of gclR and the overexpression of glcDEF. (D), BHET hydrolysis by LCC crude enzyme from
P. putida KT2440-tacRDL. Control refers to enzyme-free buffer and empty refers to crude enzyme from
strain with an empty vector. (E), SDS-PAGE analysis of LCC crude enzyme from P. putida KT2440-
tacRDL with the further expression of LCC. 1, Concentrated cell-free supernatant (10×); 2, cell-free
supernatant; 3, cell lysis sample; TPA, terephthalate; DCD, 1,2-dihydroxy-3,5-cyclohexadiene-1,4-
dicarboxylate; PCA, protocatechuate; CAT, catechol; MA, muconic acid; EG, ethylene glycol. TpaK,
TPA transporter; TphA, TPA 1,2-dioxygenase; TphB, DCD dehydrogenase; AroY, PCA decarboxylase;
CatA, CAT 1,2-dioxygenase; glcDEF, glycolate oxidase; gcl-operon, genes involved in glyoxylate
carboligase metabolic pathway; gclR, the transcriptional regulator that represses the expression of
gcl-operon; LCC, leaf-branch compost cutinase. Error bars indicate the standard deviation based on
triplicate parallels.

Hereto, P. putida KT2440-tacRDL (∆pcaHG::tph::aroY:ecdB ∆catRBC::Ptac:catA ∆gclR
Ptac:glcDEF) (pBBR-LCC) achieved the expectation, namely secreting PET hydrolase LCC
and simultaneous production of MA using PET hydrolysates.
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2.2. Enzymatic Hydrolysis of PET Using LCC Crude Enzyme

A total of 50 mL culture supernatant of P. putida KT2440-tacRDL was concentrated
to 1 mL LCC crude enzyme by filtration with a 10 kDa ultrafilter. The total protein
concentration was determined to be 5 mg/mL with the folin phenol reagent [36], and
the content of LCC was determined to be 38.70% by image analysis using ImageJ [37]
(Figure S2). As a proof, 0.125 g amorphous PET powder and 1 mL LCC crude enzyme
(~15 milligrams of LCC per gram of PET) was added to 100 mM phosphate buffer to a
total volume of 10 mL. The enzyme was considered to be sufficient relative to the substrate,
because it was shown by Tournier that a ratio of 3 milligrams of enzyme per gram of PET
appeared to maximize the depolymerization [14]. The catalytic reaction was carried out at
72 ◦C in a water bath shaker. During the hydrolysis of PET, there was little accumulation
of BHET with the concentration less than 0.23 mM, while the amount of MHET increased
first and then decreased to produce TPA (Figure 3). The TPA productivity over the whole
reaction was about 0.15 g/(L·h) in a 10 mL scale reaction system under the experimental
conditions. The reaction was stopped at 48 h as the degradation ratio of PET reached 79%
and no longer increased (Figure 3B). The final concentration of TPA reached 43.66 mM
(Figure 3B), that is, at least 0.58 g TPA can be produced from 1 g PET in a hydrolysis process
catalyzed by LCC crude enzyme under the above conditions. The results demonstrated
the feasibility of directly catalyzing PET hydrolysis using LCC crude enzyme produced by
P. putida KT2440-tacRDL.
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2.3. Bioconversion of the PET Hydrolysates into MA by the Engineered Multifunctional Strain

To convert PET hydrolysate into MA, we first evaluated the conversion of TPA to
MA by P. putida KT2440-tacRDL, with EG as the sole carbon source. The cultivation was
performed in mineral medium containing simulated PET hydrolysates (20 mM EG and TPA)
at 30 ◦C. However, the OD600nm only reached about 1.0, and 6.71 mM TPA was converted
when EG was completely consumed. The product was mainly PCA, and only 0.70 mM MA
was accumulated (Figure S3). It indicated that additional nutrients need to be added to the
PET hydrolysate to provide sufficient energy for cell growth and TPA conversion.

Therefore, the bioconversion was evaluated in LB containing 20 mM simulated PET
hydrolysates at 30 ◦C and 37 ◦C, respectively. The cell growth and the bioconversion of TPA
were significantly improved when cultivated in LB (Figure S4). TPA was almost completely
converted in 36 h; however, the subsequent conversion of PCA slowed down with cell
growth arrest at 18 h, leading to the residue of PCA (Figure S4). Interestingly, the residual
PCA at 37 ◦C was less than that at 30 ◦C, which led to a higher yield of MA at 37 ◦C
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(14.09 mM, the yield at 30 ◦C was 7.59 mM, the maximum theoretical yield was is the actual
detected initial concentration of TPA, about 17.00 mM) (Figure S4). We speculate that aroY
from E. cloacae may have higher PCA decarboxylase activity at 37 ◦C. We also found that the
yield of LCC at 37 ◦C was higher than that at 30 ◦C. Therefore, the subsequent experiments
were all carried out at 37 ◦C. To continue the conversion of PCA, we supplemented glucose
at 24 h to maintain the cell growth. Under the conditions, TPA was completely converted
to MA within 36 h without the accumulation of intermediates (Figure S5).

Finally, the bioconversion of actual PET hydrolysates was performed under the opti-
mized conditions. PET powder was hydrolyzed by LCC produced from P. putida KT2440-
tacRDL to generate the actual hydrolysates, which were mixed with 2× LB in equal volumes.
The initial concentrations of TPA and EG in the medium were determined to be 31.86 mM
and 29.83 mM, respectively. Glucose was supplemented to maintain the cell growth. The
cultivation lasted for 60 h until TPA was completely converted to MA without the accu-
mulation of intermediates. The final concentration of MA reached 39.54 mM, which was
higher than the initial concentration of TPA (31.86 mM). It may be caused by the volatiliza-
tion of the medium, because the final volume of the culture medium (35.0 mL) was less
than the theoretical residual volume (42.8 mL) calculated from sampling and feeding vol-
ume. According to this ratio, the final concentration of MA should be 32.33 mM, which
is slightly higher than 31.86 mM. The synthesis of MA from glucose requires the expres-
sion of several heterologous genes, such as 3-deoxy-D-arabinoheptulosonate 7-phosphate
synthase necessary for entry into the shikimate pathway [38], which are not present in the
engineering strain P. putida KT2440-tacRDL. Therefore, we believe that all of the MA is
converted from TPA and not the glucose. The still slightly higher conversion of TPA to
MA (101.48%) is probably due to the experimental error. The productivity of MA reached
0.54 mmol/(L·h), which was higher than the rate of producing MA from glucose and
lignin-derived aromatic compounds by engineered P. putida KT2440-CJ083 in shake flask
experiments [0.28 mmol/(L·h)] [24] and the rate of producing MA from PET hydrolysates
by engineered E. coli MA-1 in whole-cell catalysis experiments [0.45 mmol/(L·h)] [7].

The metabolism of EG was significantly inhibited when the cultivation was performed
in LB medium (Figures 4, S4 and S5). A similar phenomenon also appeared in Werner’s
study, when producing β-ketoadipic acid from BHET by engineered P. putida KT2440 [10].
They considered that part of the EG catabolic pathway is repressed by β-ketoadipic acid
rather than glucose. However, β-ketoadipic acid was not involved in our study. Therefore,
there may be a more complex regulatory mechanism on the metabolism of EG in P. putida
KT2440.
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In conclusion, PET monomer TPA can be converted to MA at 100% molar yield by
P. putida KT2440-tacRDL. According to the molecular weight calculation, 0.50 g MA can be
produced per gram PET in one cycle of valorization, reaching 68% of the theoretical conversion.

2.4. Separation of LCC from MA in Culture Supernatant for Continuous PET Valorization

During the production of MA, a new batch of PET hydrolase LCC was produced by
P. putida KT2440-tacRDL at the same time. Newly produced LCC should be separated from
the value-added product MA and used for the next round of hydrolysis of PET to achieve
a continuous PET valorization. To achieve this purpose, culture supernatant containing
extracellular LCC and MA was collected by centrifugation at 12,000 rpm to remove cell
debris. Then, the supernatant was filtrated with a 10 kDa ultrafilter, wherein LCC was in
the concentrate and MA was in the filtrate (Figure 5A). MA was extracted from cultures
with different substrate concentrations by crystallization and purification as described in
methods. The recovery reached 71.85 % and the purity was determined by HPLC to exceed
99% (Figure 5B, Table S2).
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Figure 5. Separation of LCC from MA and used for the new round of hydrolysis of PET. (A), The
process for separating the end product MA and the reproduced LCC; (B), recovery rate and purity of
the obtained MA powder; (C), SDS-PAGE analysis of the crude enzyme produced when the biocon-
version of PET hydrolysates occurred concurrently in LB or mineral medium (MM). There is a clear
thickened band at the size of LCC (approximately 27.8 kDa); (D), activity comparison of LCC crude
enzyme form different resources. LCC-0, crude enzyme produced from LB without bioconversion of
PET hydrolysates; LCC-1 in LB, crude enzyme produced from LB when the bioconversion occurred
concurrently; LCC-1 in MM, crude enzyme produced from MM when the bioconversion occurred
concurrently. Error bars indicate the standard deviation based on duplicate parallels.

As for PET hydrolase LCC, SDS-PAGE showed a protein band consistent with the size
of LCC, indicating the cultivation on the PET hydrolysates did not affect the expression
of LCC (Figure 5C). The new produced LCC crude enzyme from LB containing PET
hydrolysates was used for the new round of PET hydrolysis to achieve the continuous
PET valorization. In total, 35.30 mM TPA was produced within 48 h, equivalent to 81%
of the LCC activity produced in LB without PET hydrolysates (Figures 5D and S7A). In
addition, to reduce the cost, we also evaluated the conversion of PET hydrolysates and
reproduction of LCC in low-cost mineral medium with glucose as the supplemented carbon
source. The conversion rate of TPA to MA in mineral medium was lower than that in LB
(Figure S6). However, it was surprising that 42.06 mM TPA was produced within 48 h from
PET hydrolysis catalyzed by the LCC crude enzyme prepared from the mineral medium,
which is equivalent to 96% of the LCC activity produced in LB without PET hydrolysates
(Figures 5D and S7B). These results indicated that the new produced LCC was stable in
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yield and activity during the bioconversion of PET hydrolysates and can be sustained for
the new round of hydrolysis of PET.

3. Materials and Methods
3.1. Strains and Cultivation

E. coli DH5α used for plasmid construction and clone was cultivated in LB (10 g/L
tryptone, 5 g/L yeast extract, and 10 g/L NaCl) at 37 ◦C and 220 rpm. Primary and
conventional cultivation of P. putida KT2440 and derived strains was performed in LB
at 30 ◦C and 220 rpm. Mineral medium (MM) used in this study contains 34.74 g/L
Na2HPO4·12H2O, 0.408 g/L KH2PO4, 2 g/L NH4Cl, 1 g/L NaCl, 2 mM MgSO4, 0.1 mM
CaCl2, and 1 mL/L trace element solution (TES). TES contains 50 g/L Na2EDTA, 20 g/L
ZnSO4·7H2O, 5.5 g/L CaCl2, 5 g/L MnCl2·4H2O, 1.0 g/L (NH4)6Mo7O24·4H2O, 5.0 g/L
FeSO4·7H2O, CuSO4·5H2O 1.5 g/L, and 1.61 g/L CoCl2·5H2O. If necessary, kanamycin
antibiotic was added as the working concentration of 25 mg/L. The content of agar in the
solid medium was 20%.

3.2. Plasmid Construction and Strain Engineering

Codon-optimized aroY (GenBank: ADF61496), ecdB (GenBank: ADF63617) [24], and
LCCICCG (hereafter referred to as LCC) [14] genes were synthesized by GeneralBio, China.
The tph operon genes tphR (GenBank: QTF59206), tphA1 (GenBank: QTF59202), tphA2
(GenBank: QTF59205), tphA3 (GenBank: QTF59204), tphB (GenBank: QTF59203), and
tpaK (GenBank: QTF59201) were cloned from a TPA degrading P. stutzeri isolated from
PET waste in our previous study [25]. Polymerase chain reaction (PCR) was performed
with Phanta Max Super-Fidelity DNA Polymerase (Vazyme). Oligonucleotides used in
this study were synthesized by TsingKe, China, and are shown in Table S1. The plasmid
backbone and DNA fragments were assembled using MultiF Seamless Assembly Mix
(ABclonal) according to the manufacturer’s instructions. The assembled products were
directly transformed into E. coli DH5α chemically competent cell (TsingKe, China) for
plasmid maintenance. Colony PCR was performed with 2× Taq Plus Master Mix II (Dye
Plus) (Vazyme) and plasmid inserts were confirmed with Sanger sequencing performed by
TsingKe, China. The gene replacement and deletion of P. putida KT2400 were performed
via two-step recombination using the vector pK18mobsacB. Initial recombination into the
chromosome was selected based on kanamycin resistance gene on LB plates containing
25 mg/L kanamycin, and the second recombination was selected based on sucrose lethal
gene (sacB) on LB plates containing 20% sucrose. The final correct strains were confirmed
by colony PCR and Sanger sequencing. The detailed information of plasmids and strains
are shown in Table 1.

Table 1. Strains and plasmids used in this study.

Strains and Plasmids Relevant Properties Sources

pK18mobsacB Allelic exchange vector, oriColE1 Mob+, sacB, Kmr Lab Stock [39]
pBBR1MCS-2 Protein expression vector, pBBR1 replicon, Mob+, Kmr Lab Stock [40]

pBBR-LCC LCC expression driven by lac promoter on pBBR1MCS-2 This study

E. coli DH5α
F– ϕ80lacZ∆M15 ∆(lacZYA-argF)U169 deoR recA1 endA1 hsdR17(rK–,

mK+) phoA supE44 λ– thi-1 gyrA96 relA1, used for plasmids
construction and clone.

Lab Stock

P. putida KT2440 Wild-type Lab Stock

P. putida KT2440-t P. putida KT2440 (∆pcaHG::tph), genomic replacement of pcaHG with
tph cluster (tphRA2A3A1BK). This study

P. putida KT2440-ta P. putida KT2440 (∆pcaHG::tph::aroY:ecdB), additional insertion of
codon-optimized aroY and ecdB follow tph cluster. This study
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Table 1. Cont.

Strains and Plasmids Relevant Properties Sources

P. putida KT2440-tac
P. putida KT2440 (∆pcaHG::tph::aroY:ecdB ∆catRBC::Ptac:catA),

additional genomic replacement of catRBC with tac promoter, which
enabled constitutive expression of catA

This study

P. putida KT2440-tacR P. putida KT2440 (∆pcaHG::tph::aroY:ecdB ∆catRBC::Ptac:catA ∆gclR),
additional gclR deletion. This study

P. putida KT2440-tacRD
P. putida KT2440 (∆pcaHG::tph::aroY:ecdB ∆catRBC::Ptac:catA

∆gclR::Ptac:glcDEF), additional promoter replacement of glcDEF wih
tac promoter.

This study

P. putida KT2440-tacRDL
P. putida KT2440 (∆pcaHG::tph::aroY:ecdB ∆catRBC::Ptac:catA

∆gclR::Ptac:glcDEF) (pBBR-LCC), additional LCC expression on
pBBR1MCS-2

This study

3.3. Preparatin of LCC Crude Enzyme

P. putida KT2400-tacRDL was inoculated from the overnight cultivated seeds into
50 mL LB containing 25 mg/L kanamycin, and cultivated at 37 ◦C and 220 rpm for 24 h.
This expression system is constitutive due to the absence of lacI both in the used plas-
mid and P. putida KT2400 [23,41], so it does not need the addition of isopropyl β-d-1-
thiogalactopyranoside (IPTG). Cells were removed by centrifugation at 12,000 rpm and
the cell-free supernatant was filtered with a 10 kDa ultrafilter (Millipore, Burlington, MA,
USA) and concentrated to obtain 1 mL LCC crude enzyme. Cells were disrupted with an
automatic sample rapid grinder (Jingxin Technology, Shanghai, China) [42] and analyzed
by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), as with the cell-
free supernatant, before and after concentration. Total protein concentration of the crude
enzyme was determined with the folin phenol reagent [36], and the content of LCC was
determined by image analysis using online ImageJ [37] (https://cnij.imjoy.io/ (accessed on
24 February 2022)).

3.4. Enzyme Assays on Bis(2-Hydroxyethyl) Terephthalate (BHET)

The activity of extracellular LCC was preliminarily detected with BHET as substrate.
In total, 0.4 g BHET particles (Sigma) were added to 100 mL 100 mM phosphate buffer (pH
8.0) to prepare the emulsion by ultrasonic pretreatment for 2 min and magnetic stirring
for 30 min. The reaction system contained 300 µL 100 mM phosphate buffer, 200 µL LCC
crude enzyme, and 500 µL BHET emulsion and reacted at 40 ◦C for 1 h. The reaction was
stopped by mixing with an equal volume of acetonitrile. The samples were analyzed using
high-performance liquid chromatography (HPLC) after centrifugation and filtration. Three
parallel experiments were carried out in each assay.

3.5. Enzymatic Hydrolysis of PET

Amorphous PET film (Goodfellow) was micronized under the condition of liquid
nitrogen freezing. The particle size of the PET powder was limited to 425 µm by a 35-mesh
screen. A total of 0.125 g PET powder and 1 mL LCC crude enzyme prepared from 50 mL
culture supernatant were added to 100 mM phosphate buffer (pH 8.0) to a total volume
of 10 mL. The catalytic reaction was carried out at 72 ◦C and 150 rpm in a water bath
shaker (Yijing Technology, Beijing, China). Samples were taken every 12 h and the pH of
the reaction system was adjusted to 8.0 with NaOH. The sample was treated with an equal
volume of acetonitrile to stop the reaction and analyzed using HPLC after centrifugation
and filtration. Two parallel experiments were carried out in each assay.

The weight loss of PET was proved in a good quantitative agreement with the de-
termined sum of aromatic products released [43]. Therefore, in this study, the estimated

https://cnij.imjoy.io/
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degradation ratio of PET was calculated from the sum of TPA, MHET, and BHET measured.
The equation used to calculate the degradation ratio of PET was the following:

PET degradation ratio =

CTPA
MWTPA

+ CMHET
MWMHET

+ CBHET
MWBHET

WPET
MWPET

/V
× 100%

where CTPA (g/L), CMHET (g/L) and CBHET (g/L) refer to the concentration of TPA, MHET
and BHET measured at a specific reaction time; WPET (g) and V (L) refer to initial weight
of PET and the reaction volume, respectively. MWPET, MWTPA, MWMHET, and MWBHET
are the molecular weights of PET repeating unit (192 g/mol), TPA (166 g/mol), MHET
(210 g/mol), and BHET (254 g/mol), respectively.

3.6. Well Plate Cultivation for the Bioconversion of TPA

P. putida KT2440 and the derived strains KT2440-t, KT2440-ta, and KT2440-tac were
pre-cultivated in LB at 30 ◦C for 12 h. Then, 0.1 mL of the prepared cultures was inoculated
into 1 mL of LB containing 2 g/L TPA in a 24-well plate at 30 ◦C and 400 rpm for 24 h.
The cultures were transferred to 1.5 mL centrifuge tubes and centrifuged at 12,000 rpm for
5min. The supernatants were filtered with a 0.22 filter membrane and analyzed by HPLC.

3.7. Shake Flask Cultivation on the PET Hydrolysates

Cultivation on PET hydrolysates was performed in 50 mL MM or LB medium contain-
ing simulated or actual PET hydrolysates in a shake flask. Simulated PET hydrolysates
were prepared with 20 mM TPA and EG. Actual PET hydrolysates were prepared from
PET enzymatic hydrolysis by LCC produced by P. putida KT2440-tacRDL. The hydrolysates
were centrifuged and mixed with 2× LB in equal volume, and then sterilized. Glucose was
appropriately supplemented to maintain cell growth during the cultivation.

3.8. Separation of LCC and MA

Cells were removed from the culture broth by centrifugation at 12,000 rpm to obtain the
cell-free supernatant containing extracellular LCC and MA. LCC and MA were separated
by filtration with 10 kDa ultrafilter (Millipore), wherein LCC was in the concentrate and MA
was in the filtrate. Concentrated LCC crude enzyme was used again for PET hydrolysis.
MA was separated and purified from the filtrate according to the method reported by
Beckham [44]. The specific steps include: 1, remove color compounds with 5 wt% activated
carbon powder; 2, crystallize at pH 2 and 5 ◦C; 3, redissolve the crystals in ethanol and
filtered to remove insoluble salts. Finally, the recovered MA was dried and the purity
determined by HPLC.

3.9. Substrate and Product Analysis

Glucose was measured using an SBA-40C biosensor (developed by Biology Insti-
tute of Shandong Academy of Sciences) equipped with glucose oxidase immobilized on
membranes [39].

EG was detected on SHIMADZU LC-20A HPLC system equipped with a refractive
index detector and a Bio-Rad Aminex HPX-87H column (7.8 × 300 mm) [18]. The col-
umn temperature was 65 ◦C. The mobile phase was 5 mM H2SO4 and the flow rate was
0.6 mL/min.

Enzymatic hydrolysates, including BHET, MHET, and TPA (Figure S9), were de-
tected by a photodiode array detector at 240 nm using SHIMADZU LC-20A HPLC system
equipped with an Agilent ZORBAX Extend-C18 column (4.6 × 150 mm), as previously [18].
The mobile phase was a solution containing 0.1% (v/v) trifluoroacetic acid and 20% (v/v)
acetonitrile. The flow rate and column temperature were set to 0.8 mL/min and 40 ◦C,
respectively.

Products in the culture broth, including TPA, protocatechuate, catechol, and MA,
were detected by a photodiode array detector at 230 nm using SHIMADZU LC-20A HPLC
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system equipped with a Discovery HS C18 (4.6 × 250 mm) column. The mobile phase was
a solution containing 0.1% (v/v) trifluoroacetic acid and 10% (v/v) acetonitrile. The flow rate
and column temperature were set to 0.8 mL/min and 40 ◦C, respectively.

4. Conclusions

In this study, we designed a new conceptual scheme for the continuous valorization of
PET to MA. The well-designed multifunctional strain is capable of converting TPA to MA
accompanied by the production of extracellular PET hydrolase. This is more simplified and
cost-effective than the process of using recombinant E. coli to produce enzymes and then
using another strain for PET hydrolysate conversion. By optimizing the entire process, we
achieved an efficient bioconversion of PET into MA (0.50 g MA/g PET). In order to make a
practical application, each section of the process requires scale-up experiments and assesses
the feasibility and cost. In addition, since efficient enzymatic hydrolysis of PET using LCC
requires the high reaction temperature (72 ◦C) but P. putida KT2440, the chassis chosen in
this study, is a mesophilic strain, the enzymatic hydrolysis of PET and the bioconversion
of PET hydrolysate had to be separated into two independent processes. Recently, a new
variant of IsPETase was reported to depolymerize PET efficiently at 50 ◦C [45], which
increases the possibility of realizing the one-pot biological valorization of PET, because it is
easier for strains to tolerate 50 ◦C than 72 ◦C. As a paradigm, this study aims to provide an
illustration for the eventual realization of the one-pot biological valorization of PET.
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