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Background. Tyrosine metabolism pathway-related genes were related to prostate cancer progression, which may be used as
potential prognostic markers. Aims. To dissect the dysregulation of tyrosine metabolism in prostate cancer and build a prognostic
signature based on tyrosine metabolism-related genes for prostate cancer.Materials and Method. Cross-platform gene expression
data of prostate cancer cohorts were collected from both /e Cancer Genome Atlas (TCGA) and Gene Expression Omnibus
(GEO). Based on the expression of tyrosine metabolism-related enzymes (TMREs), an unsupervised consensus clustering method
was used to classify prostate cancer patients into different molecular subtypes. We employed the least absolute shrinkage and
selection operator (LASSO) Cox regression analysis to evaluate prognostic characteristics based on TMREs to obtain a prognostic
effect. /e nomogram model was established and used to synthesize molecular subtypes, prognostic characteristics, and clin-
icopathological features. Kaplan–Meier plots and logrank analysis were used to clarify survival differences between subtypes.
Results. Based on the hierarchical clustering method and the expression profiles of TMREs, prostate cancer samples were assigned
into two subgroups (S1, subgroup 1; S2, subgroup 2), and the Kaplan–Meier plot and logrank analysis showed distinct survival
outcomes between S1 and S2 subgroups.We further established a four-gene-based prognostic signature, and both in-group testing
dataset and out-group testing dataset indicated the robustness of this model. By combining the four gene-based signatures and
clinicopathological features, the nomogram model achieved better survival outcomes than any single classifier. Interestingly, we
found that immune-related pathways were significantly concentrated on S1-upregulated genes, and the abundance of memory
B cells, CD4+ resting memory T cells, M0 macrophages, resting dendritic cells, and resting mast cells were significantly different
between S1 and S2 subgroups. Conclusions. Our results indicate the prognostic value of genes related to tyrosine metabolism in
prostate cancer and provide inspiration for treatment and prevention strategies.

1. Introduction

Prostate cancer is one of the most common cancers in men
[1, 2]. About 20–30% of prostate cancer patients will
progress to a biochemical recurrence [3], followed by clinical

recurrence and metastases, resulting in patient death. /us,
it becomes urgent to subclassify a subgroup of patients as
potential responders to adjuvant therapy. Previous studies
suggested that prostate-specific antigen (PSA), Gleason
score, and tumor stage are critical factors in predicting the
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recurrence of prostate cancer patients [4]. However, the
values of these features were limited by intratumor het-
erogeneity, sampling error, interobserver variability, or
subjective evaluation. Several studies focused on gene ex-
pression profiles to generate predictive signatures to identify
patients with different risks and obtain moderate outcomes
[5–7]. Nevertheless, a few disadvantages limit the usage of
these signatures, i.e., several signatures comprise many genes
(e.g., 157- or 30-gene signatures), resulting in technical
challenges and overload during clinical use. Moreover, few
of these signatures were validated by more than two inde-
pendent cohorts.

Recently, accumulating evidence suggested that tumor
cells will generate more oxidative stress and increase ROS
production than normal cells [8]. Regulation of cell signaling
and metabolism could be controlled by redox homeostasis
and is finely tuned in cancer cells [9, 10]. Like other amino
acids, tyrosine is the basis of proteins and serves as an al-
ternative energy source for cellular activity. Besides, tyrosine
metabolism and dysregulation participate in the progression
of diverse diseases, such as Huntington’s disease [11],
esophageal cancer [12, 13], and hepatocellular carcinoma
[14]. Some sporadic studies revealed that tyrosine meta-
bolism pathway-related genes participate in prostate cancer
progression and serve as prognostic markers for cancer
patients [15–20].

Here, we dissect the potential prognostic value of ty-
rosine metabolism-related genes in prostate cancer by in-
tegrating several large-scale datasets. /ese findings will
shed light on the genomic variations, clinical relevance, and
potential effects of tyrosine metabolic enzymes on prostate
cancer progression.

2. Materials and Method

2.1. Data Collection. TCGA level-3 RNA-seq gene expres-
sion data, somatic mutation data, and the corresponding
clinical pathology and survival information of patients with
prostate cancer were downloaded from UCSC Xena (https://
xenabrowser.net/datapages/). Gene expression array, clinical
pathology, and survival information of GSE116918 were
downloaded from Gene Expression Omnibus (GEO) data-
base (https://www.ncbi.nlm.nih.gov/geo/). /e gene ex-
pression profile and clinical pathology and survival
information of the Memorial Sloan Kettering Cancer Center
(MSKCC) were downloaded from the following website:
https://www.mskcc.org/.

2.2.EnzymeGeneSelection. /e genes (42 genes) belonging
to the tyrosine metabolic pathway were extracted from
the Kyoto Encyclopedia of Genes and Genome (KEGG)
database. Among them, 19 genes are annotated as en-
zymes, referring to the MetaCyc database (https://
metacyc.org/).

2.3. Bioinformatics Analysis. Unsupervised hierarchical
clustering analysis of prostate cancer samples was per-
formed using the R package “ConsensusClusterPlus

v1.42.0” [21]. Genes whose adjusted P value was less than
0.05 and |log2Foldchange| higher than 1 were identified as
differentially expressed genes (DEGs), which were ob-
tained using the R package “DESeq2 v1.18.1.” Gene Set
Enrichment Analysis (GSEA) was applied by “cluster-
profiler v3.6.0” package [22], and the hallmark gene sets
were downloaded from the GSEA MSigDB (https://www.
gsea-msigdb.org/). A protein interaction network was
constructed using the webserver GeneMANIA (https://
genemania.org/). Immune cell decomposing analysis
was executed using the CIBERSORT algorithm [23]. So-
matic mutation data of TCGA prostate cancer was
transformed into the format of “maf” and exhibited using
the “maftools v2.2.20” R package. Cox regression analysis
and Kaplan–Meier estimation were achieved by R
package “survival c3.1–7.” /e nomogram was produced
by R package “rms v2.4.1.” /e LASSO Cox regression
algorithm was used for prognostic model construction by
applying R package “glmnet v2.0–18” with default pa-
rameters. In this process, the regression coefficients were
determined by the value of λ that gives the minimum
mean partial likelihood deviance.

2.4. Statistics. R software (version 3.4.3) was adopted to
execute all bioinformatic analyses. /e Kaplan–Meier (KM)
curve was used to display the difference of overall survival,
and the logrank test was used to determine its significance.
/e receiver operating characteristic curve (ROC) and the
area under the ROC curve (AUC) were used to estimate the
discriminative power of the classification system, and a
decision curve analysis was used to evaluate the usability of
the nomogram. /e chi-squared test was performed to
identify genes which were differentially mutated between the
subgroups.

3. Results

3.1. Expression of Tyrosine Metabolism-Related Enzymes
(TMREs) in Prostate Cancer and Normal Tissue. Firstly, we
downloaded the TCGA prostate cancer expression data from
UCSC Xena (https://xenabrowser.net/datapages/) and per-
formed DEG analysis. Most of TMREs, including TAT,
HPD, DDC, GOT1, COMT, GSTZ1, LCMT1, and FAH were
significantly upregulated (P< 0.05), while GOT2 and ADH5
were significantly deregulated in prostate cancer tissues
(Figure 1(a)). When comparing the tumor samples in which
patients were found to have tumor metastases with other
tumor samples, we found that no enzymes were differentially
expressed in these two groups (Figure 1(b)). /e co-ex-
pression analysis suggested that majority of the enzymes
were positively correlated. Particularly, HPD was signifi-
cantly related to most TMREs (13 out of 18 genes)
(Figure 1(c)).We further constructed the regulation network
and performed pathway enrichment analysis on TMREs-
related genes based on gene expression, sublocations, as well
as protein-protein interactions (Figure 1(d); see Methods).
Genes from this regulation network were enriched in many
metabolic-related pathways, including “aromatic amino acid
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family metabolic process,” “alpha-amino acid metabolic pro-
cess,” “catecholamine metabolic process,” “organic acid cata-
bolic process,” “catecholamine biosynthetic process,” and other
pathways including “response to xenobiotic stimulus” and
“oxidoreductase activity, acting on the aldehyde or oxo group
of donors.” We also investigated mutations in these TMREs
and found that 2.71% of the samples of TCGA prostate cancer
have nonsilent mutations (Figure 2).

3.2. Prognostic Subtyping of Prostate Cancer Based on the
ExpressionofTMREs. Based on the expression of 19 TMREs,
we applied an unsupervised hierarchical clustering method

to establish the molecular subgroups of prostate cancer. As a
result, 498 prostate cancer samples were classified into two
subtypes, S1 (354 samples) and S2 (144 samples)
(Figure 3(a)). /e prostate cancer subtype S1 was charac-
terized with high expression of AOX1, while S2 samples
expressed high expression of MAOB, DBH, DDC, PNMT,
HPD, TH,ADH1B,ADH4, and TAT. Compared with S2 (144
samples), we found the subtype S2 showed a higher level of
regional lymph node involvement (X-square� 3.0881,
P-value� 0.07). PCA analysis further shows that there are
apparent differences in expression between the two subtypes
(Figure 3(b)). Notably, the patients in the S2 group had
worse overall survival (OS) outcomes than those in the S1
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Figure 1: Expression of tyrosine metabolism pathway-related genes in prostate cancer. (a) Heatmap showed the expression landscape of
tyrosine metabolism-related genes between prostate cancer and normal prostatic tissues; (b) heatmap showed the expression landscape of
tyrosine metabolism-related genes between metastatic prostate cancer and primary prostate cancer tissues; (c) Pearson analyses showed the
correlation between genes encompassed in tyrosine metabolism pathways; (d) the regulation network and pathway enrichment of tyrosine
metabolism pathway-related genes using GeneMANIA.
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group (Figure 3(c)). We also examined the prognostic value
of TMREs, and multivariate cox regression analysis results
showed that MAOB, ADH5, and GOT2 were independent
favorable prognostic factors (Figure 3(d)).

We identified 554 DEGs between the S2 and S1 sub-
groups, including 148 upregulated genes and 406 down-
regulated genes (Figure 3(e) and Supplemental Table 1).
Hallmark GSEA shows that hallmark gene sets including
TNFA signaling via NFKB, UV response, DN, epithelial-
mesenchymal transition, estrogen response, early KRAS
signaling, TGF beta signaling, apical junction, androgen
response, and more were upregulated in S1 whereas cell
division related pathways such as mitotic spindle and
G2M checkpoint were significantly upregulated in S2
(Figure 3(f ) and Supplemental Table 2). Particularly, we
noticed that immune-related terms including IL6, JAK,
STAT3 signaling, and inflammatory response were also
highly expressed in S1. We also compared the S1 and S2
samples at the genomics level. Of the fifteen most prev-
alent mutated genes in the two subsets, eight genes were
shared (Figures 4(a) and 4(b)). /e TTN gene is too long
and was excluded in the mutation frequency analysis in
most of the other studies. After removing it, SPOP was the
most frequently mutated gene in both S1 and S2. 5 genes,
including MUC17, HMCN1, SPOP, KMT2C, and OBSCN,
were mutated with a significantly higher frequency in the
poor prognostic subgroup (S2) (Figures 4(c) and 4(d);
P< 0.05, chi-squared test).

3.3. A Four-Gene-Based Signature Showing Robustness Risk
Stratification of Prostate Cancer. To expand the application
of TMREs in the prognosis of prostate cancer, we built a
prognostic model to predict the risk score of each patient.
We randomly divide the TCGA sample into a training set
and a test set at a ratio of 3 :1. All 19 TMREs were used to
build predictive models by using the LASSO Cox regression

algorithm. 1,000-time alteration and cross-validation were
applied in this process, and as a result, a four-gene signature
including ADH5, DBH, DDC, and GOT2 was adopted
(Figures 5(a)–5(c)). /e prognostic model is displayed as
follows: Riskscore � −0.763 × ExpADH5 + 0.053×

ExpDHB + 0.013 × ExpDDC − 0.148 × ExpGOT2. /e patients
were divided into two subgroups based on the median risk
score, which showed significant differences in survival
outcomes (P � 5.26 × 10− 5) (Figures 5(d) and 5(e)). /e
ROC curve further proved the robust prognostic prediction
performance of our model (AUC� 0.709) (Figure 5(f )). We
next divided the test data into high-risk and low-risk groups,
and the results also showed significant prognostic differences
(P � 1.75 × 10− 3) (Figures 5(g) and 5) and robustness
(AUC� 0.806) (Figure 5(g)). We further applied this model
to two external validation datasets (MSKCC dataset and
GSE116918), including 140 and 109 prostate cancer samples,
respectively. /e high- and low-risk groups also present
significantly different OS times in both datasets
(P � 7.35 × 10− 3 and P � 0.02, respectively) (Figure 6).

We evaluated the predictive power of the signature for
different clinical prostatic cancer subtypes. A new nomo-
gram model was constructed to quantitatively predict the
probability of OS in the TCGA training dataset referring to
the multivariate Cox regression analysis (Figure 7(a)). Be-
sides, we assessed the 1-, 3-, and 5-year OS proportions for
prostate cancer patients, and a calibration analysis was
executed to validate our findings through resampling
(Figures 7(b)–7(d)). /ese results prove that the nomogram
model has an application in predicting the prognosis of
prostate cancer.

3.4. Association between Risk Score and Tumor-Infiltrated
Immune Cells. Considering the immune-related pathways
enriched in the GSEA above, we performed infiltrated im-
mune cell decomposition for each TCGA prostate cancer
sample using CIBERSORT. We found that the abundance of
memory B cells, CD4+ resting memory T cells, M0 mac-
rophages, resting dendritic cells, and resting mast cells were
significantly different between S1 and S2 subgroups (Fig-
ure 8) and were significantly associated with the risk scores
(Figure 9).

4. Discussion

We retrieved available public prostate cancer datasets to
explore the prognostic role of tyrosine metabolism-related
genes in prostate cancer. Our exploration indicated that
most tyrosine metabolism-related enzymes, including TAT,
HPD, DDC, GOT1, COMT, GSTZ1, LCMT1, and FAH, were
significantly upregulated, while GOT2 and ADH5 were
significantly deregulated in prostate cancer samples. To
study the effect of tyrosine metabolism on the progression of
prostate cancer, we used an unsupervised consensus clus-
tering method to establish the molecular subgroups of
prostate cancer based on the expression of 19 tyrosine
metabolism-related enzymes. S1 and S2 subtypes of prostate
cancer patients showed different survival outcomes. We

Altered in 9 (2.71%) of 332 samples.
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Figure 3: Establishment of the molecular subgroup of prostate cancer. (a) /e unsupervised hierarchical clustering method established the
molecular subgroup of prostate cancer based on the expression of 19 tyrosine metabolism-related enzymes; (b) principal component
analysis (PCA) showed the clustering of two molecular subgroups; (c) Kaplan–Meier plot and logrank analysis showed the survival
difference between S1 and S2 subgroups; (d) univariate Cox regression analysis revealed the prognostic role of tyrosine metabolism-related
genes in prostate cancer; (e) the differentially expressed genes between S2 and S1 subgroups; (f ) GSEA revealed the difference between S2
and S1 subgroups at the pathway level.
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cancer. (b) Frequently mutated genes in the S2 group of TCGA prostate cancer. (c) /e forest plot shows the differentially mutated genes
between S1 and S2. (d) Mutations of SPOP in S1 (up) and S2 (down) groups, respectively.
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further conducted a GSEA and found that the differences
between the two groups mainly focused on TNF-α signaling
through NF-κB, UV-response DN, and EMT pathways. In
addition, at the genomic mutation level, significant differ-
ences were also observed between the two groups. We used
LASSO Cox regression analysis and established features
based on four genes to obtain a better prognostic effect. Both
the Kaplan–Meier and ROC analyses proved the significance

and robustness of the signature in the overall survival
prediction in MSKCC, TCGA, and GSE116918 cohorts.
Notably, by combining the four-gene-based signature and
clinicopathological features, the nomogram model achieved
better survival outcomes than any single classifier, as sug-
gested by Kaplan–Meier, ROC, CSS, and other analyses.
/ese results proved the critical role of tyrosine metabolism
in prostate cancer.
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Figure 5: Establishment of the signature based on tyrosine metabolism-related genes. (a) Partial likelihood deviance of different numbers of
variables; (b) the LASSO coefficient profiles of the selected four features; (c) the heatmap plot showed the distribution of four selected genes
between different clinicopathological features; (d) the Kaplan–Meier plot and log-rank analysis showed the survival outcome difference
between low- and high-risk subgroups in the TCGA training cohort; (e) the ROC curve showed the predictive value of the four gene-based
signatures in the training cohort; (f ) the Kaplan-Meier plot and logrank analysis showed the survival outcome difference between low- and
high-risk subgroups in the TCGA validation cohort; (g) the ROC curve showed the predictive value of the four gene-based signatures in the
validation cohort.
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Figure 6: External validation of the established four tyrosine metabolism-related genes in MSKCC (a) and GSE116918 (b) cohorts.
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Tyrosine metabolism is a necessary process that often
occurs in various diseases, including cancer and chronic
diseases [24]. Patients with tyrosinemia type I have an in-
creased risk of developing liver cancer [24], a result con-
sistent with Nguyen et al.’s [25] work that the tyrosine
catabolic enzymes’ expression is associated with the prog-
nosis of liver cancer patients, and the upstream regulators
might participate in the reprogramming of tyrosine catab-
olism and drive the initiation of liver cancer. Consistently,
tyrosine is decreased in serum samples derived from
esophageal cancer patients compared with the healthy
control [26, 27]. Here, we revealed that the aberrated ex-
pression of tyrosine metabolism-related genes in prostate
cancer served as prognostic markers for prostate cancer
patients. Of note, ADH5, DBH, DDC, and GOT2 were se-
lected to establish the prognostic signature. /e staining of
ADH5 might be useful in classifying the subtypes of breast

cancer. Besides, Pontel et al. [28] reported that endogenous
formaldehyde could be cleared by ADH5, and Adh5 (-/-)
mice, thus, the formaldehyde adducts were accumulated in
DNA, which will contribute to the initiation of fatal ma-
lignancies. DDC plays a vital role in the enzymatic synthesis
of dopamine, and dysregulation of this gene has been re-
ported in various malignancies. Gilbert et al. [29] considered
that the expression of DDC could be used to precisely
discriminate neuroblastoma from other small round cell
tumors among children. Consistently, Avgeris et al.’s [30]
study confirmed that DDC expression could distinguish
prostate cancer from normal tissues. GOT2 is a transaminase
that plays an important role in the malate-aspartic acid
shuttle and the aspartic acid that generates nucleotide
biosynthesis. Yang et al. [31] found that suppressing the
function of GOT2 will result in a profound induction of
senescence, thus decreasing pancreatic cancer growth. /e
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Figure 7: Nomogram model establishment. (a) /e establishment of a nomogram model by integrating prostate cancer patients’ age,
pathological grade, T, N, M stages, and a risk score of four-gene models. An unsupervised hierarchical clustering method established the
molecular subgroup; (b–d) the calibration curve for 1-year, 3-year, and 5-year PFS from the prognostic nomogram model.
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GOT2 mutation carriers are more susceptible to para-
gangliomas and pheochromocytomas, which are uncom-
mon neuroendocrine tumors described as a strong genetic
determinism [32]. Previous studies also showed that genes
from tyrosine metabolism reprogramming (TAT, HPD,
HGD, GSTZ1, and FAH) may be used as prognostic bio-
markers in liver cancer [25]. However, this study did not
construct a robust prognostic model, which limits its clinical
application. Interestingly, although these five genes did not
appear in our prognostic model, three of them (TAT, HPD,
and FAH) were significantly highly expressed in prostate
cancer, showing a high degree of concordance. /is result
suggests that the tyrosine metabolism reprogramming
pathway may play a similar role in the progression of dif-
ferent tumours. Another interesting study shows that the
activation of tyrosine aminotransferases in the tyrosine
metabolic pathway affects treatment resistance in the glio-
blastoma core [33], highlighting the deleterious role of genes
in this pathway in tumour therapy. /erefore, a more in-
depth study of these genes is necessary and of great interest.
In the future, we will investigate the functions of these key
genes in tumour progression at the cellular level and im
animal models, and the biological mechanisms behind them.

We also investigated the mutational difference between
S2 and S1 subgroups. We found that MUC17, HMCN1,
SPOP, and KMT2C were significant and frequently mutated
in the S2 than in the S1 subgroups. MUC17 is commonly
mutated in diverse cancers [34]. A total of 63% of pancreatic
ductal adenocarcinoma carried mucin gene alteration
events, and the frequency of MUC17 is 15%. Besides, for
these, patients with global upregulation of MUC1/4/16/17/

20/21 commonly have a poor prognosis. Silencing the ex-
pression ofMUC17 significantly increases the chemotherapy
sensitivity in breast cancer [35]. In addition, survival analysis
showed that deregulation of MUC17 was significantly as-
sociated with poor prognosis after chemotherapy. HMCN1
encodes an extracellular protein [36]. Lee et al. [37] iden-
tified that the frameshift mutations of HMCN1 will lead to a
premature stop of amino acid synthesis and result in the loss
of function of this gene; besides, they also indicated that
HMCN1 is inactivated in gastric cancer and colorectal
cancer with mutations. Kikutake et al. [38] found that the
intratumor heterogeneity of the HMCN1 expression is
correlated with the prognostic value of breast cancer pa-
tients. SPOP seems to play pleiotropic tumorigenic effects
since many pathways have been altered upon its mutations
[39–41]. SPOP is the substrate-binding subunit of E3
ubiquitin ligase. For normal cells, the protein degradation
process is essential. /us, that is why proteasome pathways
are prevalently mutated in diverse cancers. Nowadays,
mutations or variations of SPOP are one of the potential
causes of the dysfunction of the proteasome pathway in
diverse cancers [42–44]. Finally, either downregulation of
SPOP or gene mutations will promote the stabilization of
downstream proteins of SPOP that will subsequently pro-
mote the progression of cancers [45]. As one of the critical
epigenetic regulators, KMT2C frequently mutates in diverse
cancers and is a crucial biomarker in detecting the occur-
rence or progression of diverse cancers [46, 47]. Besides,
KMT2C is regarded as a tumor suppressor, and deletion of
this gene is correlated with unfavorable prognosis of breast
cancer [48], acute myeloid leukemia [49], and gastric
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Figure 8: A boxplot presented compositional differences of 22 immunocytes between the low-risk group (S1) and the high-risk group (S2).
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adenocarcinoma [50]. Functional studies are required to
verify the function of these highly mutated genes in prostate
cancer.

5. Conclusion

To sum up, we successfully established a nomogram model
based on tyrosine metabolism-related genes and validated
the feasibility of this nomogram in independent prostate
cancer cohorts. /is prognostic model would be helpful for
clinicians to classify patients at different risks and thus
develop appropriate treatment strategies.
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Figure 9: /e correlation between the risk score derived from the nomogram model and ratios of infiltrated immune cells.
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ROC: Receiver operating characteristic curve
AUC: Area under the ROC curve
OS: Overall survival.
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