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ABSTRACT

Purpose: Three observations drove this study. First, 2′-5′-oligoadenylate synthetase-like 
protein (OASL) is a negative regulator of type I interferon (IFN). Second, type I IFN plays 
a central role during virus infections and the pathogenesis of various diseases, including 
asthma. Third, influenza A virus (IAV) causes non-eosinophilic asthma. To evaluate the 
potential relationships between OASL, type I IFN, and pulmonary innate immune cells in 
IAV-induced acute airway inflammation by using Oasl1-/- mice.
Methods: Asthma was induced in wild-type (WT) and Oasl1-/- mice with IAV or ovalbumin 
(OVA). Airway hyperreactivity (AHR) and immune cell infiltration in the bronchoalveolar 
lavage (BAL) fluids were measured. The immune cells in the lungs were analyzed by flow 
cytometry. To investigate the ability of type I IFN to shape the response of lung type 2 innate 
lymphoid cells (ILC2s), IFN-α was treated intratracheally. Plasmacytoid dendritic cells (pDCs) 
sorted from bone marrow and ILC2s sorted from lungs of naive mice were co-cultured with/
without interferon-alpha receptor subunit 1 (IFNAR-1)-blocking antibodies.
Results: In the IAV-induced asthma model, Oasl1-/- mice developed greater AHR and immune 
cell infiltration in the BAL fluids than WT mice. This was not observed in OVA-induced 
asthma, a standard model of allergen-induced asthma. The lungs of infected Oasl1-/- mice also 
had elevated DC numbers and Ifna expression and depressed IAV-induced ILC2 responses, 
namely, proliferation and type 2 cytokine and amphiregulin production. Intratracheal 
administration of type I IFN in naïve mice suppressed lung ILC2 production of type 2 
cytokines and amphiregulin. Co-culture of ILC2s with pDCs showed that pDCs inhibit the 
function of ILC2s by secreting type I IFN.
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Conclusions: OASL1 may impede the IAV-induced acute airway inflammation that drives 
AHR by inhibiting IAV-induced type I IFN production from lung DCs, thereby preserving the 
functions of lung ILC2s, including their amphiregulin production.

Keywords: Oligoadenylate synthetase-like protein; type I interferon; influenza A virus;  
type 2 innate lymphoid cells; amphiregulin; airway hyperreactivity; dendritic cell; lung; mice

INTRODUCTION

Influenza A viruses (IAV) occur in local outbreaks and pandemics, particularly during winter. 
They not only cause significant illness in the general community, but they also raise the 
mortality rates of susceptible populations. They are RNA viruses that are classified into types 
according to their hemagglutinin (H) and/or neuraminidase (N) antigens.1 H1N1, H2N2, 
and H3N2 are the 3 most pathogenic IAV types in humans2: while they typically cause fever, 
cough, sore throat, and myalgia, they can also lead to more serious problems, including 
pneumonia, respiratory arrest, and neurological illness.3-5

During viral infection, the first line of defense is the innate immune system, which mounts 
anti-viral responses. In particular, once a host cell is penetrated by a virus, the cell recognizes 
the virus via its pattern-recognition receptors (PRRs). These include Toll-like receptor (TLR) 
7, which binds to single-stranded viral RNA, and TLR3 and retinoic acid-inducible gene I 
(RIG-I), which bind to double-stranded viral RNA.6 The signals transmitted by these PRRs 
then cause the infected cells to produce anti-viral cytokines, including type I interferons 
(IFNs) such as IFN-α.7

IFNs exert their pleiotropic effects by inducing a variety of IFN-stimulated genes (ISGs).8,9 
Of particular interest is the ISG family called oligoadenylate synthetase (OAS), which has 
seven members. Among them, two OAS genes bear an OAS-like domain that has changes 
in the nucleotidyltransferase active site and thus fails to produce functional OASs. These 
genes encode the OAS-like proteins called oligoadenylate synthetase-like protein (OASL) 
and OASL1.10-12 Despite their lack of OAS activity, the OASLs can also limit RNA viral 
infections by interacting with the RNA sensor RIG-I and enhancing RIG-I-mediated type I 
IFN production.13 Conversely, OASLs can promote DNA virus infections by impeding virus-
triggered IFN production.14 OASL1 also negatively regulates the production of type I IFNs by 
preventing the translation of interferon regulatory factor (IRF) 7.15 Thus, depending on the 
stimulus, OASL can both promote and inhibit type I IFN production, thereby shaping the 
antiviral properties of the innate immune system.

Innate lymphoid cells (ILCs) are lymphocytes that do not express the antigen receptors 
on T cells and B cells.16 There are 3 distinct ILC groups, as determined by the different 
transcription factors that drive their production and the effector cytokines that they express: 
group 1 ILCs (ILC1s), group 2 ILCs (ILC2s), and group 3 ILCs (ILC3s).17 Of these, the ILC2s, 
which are driven by GATA-3 and produce type 2 cytokines (interleukin [IL]-5 and IL-13), 
play essential roles in mucosal immunity, particularly in the lung.18,19 Thus, when the lung is 
stimulated by viruses or other asthmogenic triggers, these lung-residing cells become rapidly 
activated by epithelial cell-derived cytokines, namely, IL-33 and IL-25. This induces the ILC2s 
to produce IL-5 and IL-13, which in turn leads to eosinophil recruitment, mucus secretion, 
goblet cell hyperplasia, and airway hyperreactivity (AHR).20,21 Notably, lung ILC2s also secrete 
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amphiregulin, which promotes airway epithelial cell proliferation and tissue regeneration 
after virus-induced tissue damage, and helps resolve virus-induced inflammation.19 Thus, the 
functions of ILC2s against virus can vary from worsening inflammation (due to their type 2 
cytokine production22) to generating protective immunity by secreting amphiregulin.19

In the present study, we explored the effect of knocking out Oasl1 on the ability of IAV to 
induce excessive lung inflammation. We found that during the acute phase of IAV infection, 
Oasl1-/- mice exhibited worse lung inflammation and AHR than wild-type (WT) mice. Thus, 
OASL1 appears to suppress IAV-induced asthma. Further experiments then showed that 
compared to IAV-infected WT mice, the infected Oasl1-/- mice had increased dendritic cells 
(DCs) and fewer ILC2s in the lung. Since (i) OASL can shape type I IFN production, (ii) 
type I IFNs play essential roles in antiviral innate immune host responses, (iii) type I IFN 
can downregulate ILC2s, and (iv) DCs are key producers of type I IFN in viral infections, 
we speculated that the effect of Oasl1 deletion on ILC2s was mediated by DC-produced type 
I IFN. Indeed, the infected Oasl1-/- mice had higher lung levels of Ifna genes than infected 
WT mice. Moreover, intratracheal injections of type I IFN in naïve mice reduced lung ILC2 
functions, and co-culture of ILC2s with plasmacytoid dendritic cells (pDCs) inhibited 
the function of ILC2s by type I IFN. Thus, OASL1 may contribute to lung homeostasis by 
maintaining the ILC2s population during IAV infection, thereby preserving the function of 
these innate immune cells and protecting the lung from IAV-induced lung inflammation.

MATERIALS AND METHODS

Mice
C57BL/6 WT mice were obtained from the Koatech Company (Pyeongtaek, Korea). Oasl1-/- mice 
on the C57BL/6 background were derived from our previous study by a standard gene-targeting 
strategy with embryonic stem cells.15 Seven-week-old female mice were used for experiments. 
All mice were maintained in specific pathogen-free facilities on a 12-hour light/12-hour dark 
cycle and were provided food and water ad libitum. The IAV infection- and ovalbumin (OVA)-
induced asthma model animal experiments were approved by the Institutional Animal Care and 
Use Committee (IACUC) in Yonsei University. The IFN-α treatment experiment was approved by 
the IACUC in Seoul National University Hospital. The animals were maintained in a facility that 
was accredited by AAALAC International (#001169) and that follows the Guide for the Care and 
Use of Laboratory Animals, 8th edition, NRC (2010).

Induction of asthma
To generate the IAV-induced asthma model, mice were anesthetized with 1.5% isoflurane and 
then infected intranasally with 1.5 × 106 plaque-forming units of IAV (New Caledonia/20/99 
H1N1 strain) in 50 μL phosphate-buffered saline (PBS) per mouse or the same volume of PBS. 
On day 5 after virus infection, mice were sacrificed. For OVA-induced asthma, mice were 
sensitized with intraperitoneal administrations of 100 μg OVA-2 mg alum on day 0 followed by 
intranasal challenges with 50 μg OVA on days 14, 21, 22, and 23. Mice were sacrificed on day 24. 
After sacrifice, the lung and bronchoalveolar lavage (BAL) fluids were collected for analysis.

IFN-α administration
Mice were treated for 3 consecutive days by intratracheal injections of 300 ng IFN-α 
(BioLegend, San Diego, CA, USA) in 50 μL PBS. The mice were sacrificed 3 days after the last 
challenge, and the lungs were collected for analysis.
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Measurement of AHR
Airway responsiveness was measured in conscious animals by using whole body barometric 
plethysmography (Buxco, Troy, NY, USA). Increases in enhanced pause (Penh) were used as 
an index of airway obstruction. Briefly, mice were placed in the main chamber and baseline 
readings were taken for 3 minutes and then averaged. The mice were then nebulized for 3 
minutes with increasing concentrations (10–80 mg/mL) of methacholine (Sigma-Aldrich, 
St. Louis, MO, USA). After each nebulization, the readings were taken for 3 minutes and 
averaged. AHR was expressed as fold increases in Penh values for each concentration of 
methacholine compared with Penh values after PBS challenge.

BAL fluid cytology and lung histology
BAL fluid was collected from the lung by inserting an 18G catheter into the trachea and gently 
washing the bronchioles 3 times with 1 mL sterile PBS containing 2% fetal bovine serum 
(FBS). BAL fluid cells were attached to slides by centrifugation using a Shandon™ Cytospin 
(Thermo Fisher Scientific, Waltham, MA, USA). The cells were stained with DiffQuick 
(Sysmex, Kobe, Japan) and the infiltrating cells were counted. Lung tissues were fixed with 
4% formaldehyde for at least 24 hours, embedded in paraffin, and stained with hematoxylin 
and eosin (H&E). All bright field microscopy images were captured by using the Olympus 
IX53 microscope (Olympus, Center Valley, PA, USA) with 20X apochromatic objective lenses 
and an Olympus color CCD camera.

Single cell isolation from lung tissue
Lung tissues were minced with single-edge blades and digested in 5 mL RPMI medium 
containing type IV collagenase (1 mg/mL, Worthington, Lakewood, NJ, USA) for 1 hour at 
37°C with shaking. After incubation, the cell suspensions were filtered with nylon mesh. 
The red blood cells were then lysed by Red Blood Cell Lysing Buffer (Sigma-Aldrich). After 
washing with PBS, the cells were resuspended in an appropriate volume of buffer and 
subjected to flow cytometry, as described below.

Quantitative polymerase chain reaction
Tissues were homogenized using PowerMasher (Optima, Tokyo, Japan) with Trizol® Reagent 
(Invitrogen, Carlsbad, CA, USA). After extracting total RNA, cDNA was synthesized 
using iScript™ cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA). Quantitative real-time 
polymerase chain reaction (PCR) was performed using iQ™ SYBR® Green Supermix (Bio-
Rad) and PrimeTime® qPCR Assays (Integrated DNA Technologies, Coralville, IA, USA). Gene 
expression of each target was calculated relative to the house-keeping gene Gapdh.

Flow cytometry
Single-cell suspensions from lung tissues were blocked with anti-mouse CD16/CD32 (BD 
Bioscience, Franklin Lakes, NJ, USA) and stained with the following monoclonal antibodies: 
Brilliant Violet (BV) 421-anti-Siglec-F (BD Biosciences), Allophycocyanin (APC)-anti-F4/80, 
anti-CD11b (BioLegend), BV650-anti-CD45 (BioLegend), Fluorescein isothiocyanate (FITC)-
anti-F4/80, Lineage cocktail (anti-CD3, anti-CD11b, anti-CD11c, anti-CD19, anti-CD49b, 
anti-F4/80, anti-FcεRIα) (BioLegend), PE-anti-CD11c, PE/Cy7-anti-CD11c, anti-CD127, anti-Ly-
6G, PerCP/Cy5.5-anti-CD45 (BioLegend), and TexasRed-anti-CD45 (Invitrogen). For intracellular 
cytokine staining of lymphoid cells, single cells were incubated in RPMI medium containing 
10% FBS with phorbol 12-myristate 13-acetate (PMA) (100 ng/mL, Sigma-Aldrich), ionomycin 
(1 μg/mL, Sigma-Aldrich), and BD GolgiStop™ (0.7 μL/mL, BD Bioscience) at 37°C for 4 hours. 
For intracellular cytokine staining of myeloid cells, single cells were incubated in RPMI medium 
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containing 10% FBS with lipopolysaccharide (LPS) (10 ng/mL, Merck, Darmstadt, Germany), 
and BD GolgiStop™ (0.7 μL, BD Bioscience). at 37°C for 2 hours. After surface staining, the 
cells were fixed and permeabilized with Foxp3/Transcription Factor Fixation/Permeabilization 
Buffer set (Invitrogen). Finally, the cells were stained with the following monoclonal antibodies: 
BV421-anti-GATA3 (BD Bioscience), APC-anti-IL-5, anti-T-bet (BioLegend), BV421-anti-IL-17A 
(BioLegend), FITC-anti-IL-1β (BioLegend), PE-anti-IFN-γ, anti-IL-13, anti-T-bet, anti-TNF-α 
(BioLegend), and PerCP/Cy5.5-anti-IFN-γ (BioLegend). The cells were analyzed by using a BD 
LSRII flow cytometer and FACS Diva software (BD Biosciences). Flow cytometry data were 
analyzed by using Flow Jo analysis software (Treestar, Ashland, OR, USA).

Enzyme-linked immunosorbent assays (ELISA)
The levels of mouse IL-5 and IL-13 were measured by sandwich ELISA. 96 Well EIA/RIA Plates 
(Corning, NY, USA) and DuoSet® ELISA Development Systems (R&D Systems, Minneapolis, 
MN, USA) were used according to the manufacturers’ instructions. Results were read at an 
optical density of 450 nm by using a Sunrise™ microplate reader and Magellan V7.2 software 
(Tecan, Männedorf, Switzerland).

Co-culture of type 2 ILCs and pDCs
ILC2s were isolated from the lungs of naïve mice by using EasySep™ Mouse Pan-
ILC Enrichment Kit (STEMCELL Technologies, Vancouver, Canada) according to the 
manufacturer’s instructions. pDCs were isolated from bone marrows of naïve mice using 
EasySep™ Mouse Plasmacytoid DC Isolation Kit (STEMCELL Technologies, Vancouver, 
Canada) according to the manufacturer’s instructions. Thus, bone marrow was flushed out 
with PBS and filtered with a 40-μm strainer. Red blood cells were lysed by RBC Lysis Buffer 
(BioLegend) and the cells were washed with PBS. Sorted 1.0 × 105 ILC2s were cultured with 
1.0 × 105 pDCs in DMEM media at 37°C, 5% CO2. Recombinant IL-2 (10 ng/mL, BioLegend), 
IL-7 (10 ng/mL, BioLegend), IL-33 (10 ng/mL, BioLegend), and ssRNA40 (1 μg/mL, 
Invitrogen) were simultaneously added into the co-culture plate. In some groups, anti-mouse 
interferon-alpha receptor subunit 1 (IFNAR-1) (20 μg/mL, BioXCell, Lebanon, NH, USA) 
was added in co-culture. After 48 hours, the cells were analyzed by flow cytometry, and the 
supernatant was analyzed by ELISA.

Statistical analysis
All statistical analyses were performed using GraphPad Prism7 (Graph Pad Software, San 
Diego, CA, USA). Data normality was based on Shapiro-Wilk test. Two unpaired groups were 
compared by using two-tailed Student’s t-test (parametric variables) or Mann-Whitney U test 
(nonparametric variables). When multiple groups were compared, two-way ANOVA followed 
by Tukey’s multiple comparison test was used. The data are presented as arithmetic means 
with the standard error of the mean (SEM). P < 0.05 was considered statistically significant. 
Statistical methods to predetermine sample size were not used; rather, sample sizes were 
based on prior experience with similar studies.

RESULTS

Oasl1 deletion associates with increased pulmonary inflammation and AHR in 
a model of IAV infection-induced asthma
To elucidate the role of OASL1 in IAV infection, we inoculated WT and Oasl1-/- mice 
intranasally with influenza virus H1N1 (New Caledonia/20/99) and collected the lung tissues 
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and BAL fluids 5 days after infection (Fig. 1A). Lung H&E staining showed that compared to 
the infected WT mice, the infected Oasl1-/- mice exhibited more severe peribronchiolar and 
perivascular infiltration of inflammatory cells (Fig. 1B). Notably, the infected Oasl1-/- mice also 
developed greater AHR (Fig. 1C). In addition, analysis of the infiltrating BAL cells showed that 
the infection increased recruitment of neutrophils into the airways and that the Oasl1 deletion 
significantly increased this recruitment (Fig. 1D and E). Also, mRNA expression levels of 
Tnf, Il6, and Il10 were increased in the infected Oasl1-/- mice, although there was no difference 
in that of Il8 (Supplementary Fig. S1). Thus, Oasl1 deficiency aggravates lung inflammation 
during the early phase of IAV infection.

Oas1 deletion does not enhance pulmonary inflammation and AHR in the 
OVA-induced asthma model
Since Oasl1 deletion increased IAV-induced AHR, we asked whether this deletion also 
augmented AHR in another model of asthma, namely, OVA-induced asthma (Fig. 2A). 
WT and Oasl1-/- mice were sensitized and challenged with OVA, and the resulting lung 
inflammation and AHR were measured. Unlike in IAV-induced asthma, Oasl1 deletion had no 
effect on the extent of immune cell infiltration into the lungs (Fig. 2B) or AHR (Fig. 2C). Analysis 
of the inflammatory cells in the BAL fluids showed that the OVA challenge predominantly 
increased eosinophil numbers in WT mice; however, Oasl1 deletion had no effect on this 
pattern (Fig. 2D and E). These results together suggest that OASL1 may suppress pulmonary 
inflammation and AHR by shaping virus-specific inflammatory responses rather than overall 
pulmonary inflammation.
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in response to increasing dose of methacholine (0–80 mg/mL) was measured on day 5. Data are presented as mean ± SEM. (D-E) The percentage (D) and 
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Oasl1 deletion further increases the dendritic cell frequencies in IAV-infected 
lungs
Next, we assessed the inflammatory cell populations in the lungs of the WT and Oasl1-/- mice 
after IAV infection more closely (Supplementary Fig. S2). Since neutrophils and eosinophils 
play critical roles in the development of asthma, we initially focused on these cells. We 
noted that the Oasl1 deletion had no effect on the baseline numbers of these cells, and that 
compared to the IAV-infected WT mice, the infected Oasl1-/- mice had significantly higher 
neutrophil numbers but lower eosinophil numbers (Fig. 3A and B). Thus, OASL1 appears to 
limit neutrophil recruitment in IAV infection.

Analysis of the alveolar macrophages (AMs) then showed that the Oasl1 deletion had no effect 
AM numbers (Fig. 3C). The percentage of interstitial macrophages (IM) decreased in Oasl1-/- 
mice under normal conditions, but there was no difference in number between WT and Oasl1-

/- mice before and after IAV infection (Fig. 3D). With regard to the DCs, the Oasl1 deletion had 
no effect on the baseline DC numbers, infection increased them in WT mice, and the Oasl1 
deletion further upregulated this increase (Fig. 3E).

Since DCs can counter viral infections by stimulating T cells,23 we then explored whether 
the increased DCs in the IAV-infected Oasl1-/- lungs aggravated pulmonary inflammation by 
stimulating T cells. Thus, we measured the population and cytokine production of the lung T 
cells by flow cytometry. However, there was no difference of the percentage of lung T cells of 
the infected WT and Oasl1-/- mice and they produced similar amounts of IFN-γ, IL-5, IL-13, and 
IL-17A (Fig. 3F and G). Thus, the elevated DCs in the infected Oasl1-/- mice were not promoting 
lung inflammation by activating T cells.
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Oasl1 deletion decreases ILC2 numbers and functions after IAV infection
ILCs are the innate counterpart of T cells and also play an essential role in regulating the 
immune responses and homeostasis of the lungs.17,24 Since the infected Oasl1-/- mice did not 
exhibit changes in lung T cell activation, and DCs can activate ILCs,25 we speculated that 
the upregulated DCs in the infected Oasl1-/- mice could aggravate IAV-induced inflammation 
by affecting the lung ILCs. Thus, we examined the distribution of ILCs in the lungs from 
infected WT and Oasl1-/- mice. The ILCs were identified by focusing on the IL-7R+ cells that 
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did not express lineage markers (Lin). The ILC subsets were then identified by measuring 
the subset-specific transcription factors (Supplementary Fig. S3A). The Oasl1 deletion is 
associated with significantly lower baseline Lin-Gata3+ ILC2 frequencies. With IAV infections, 
the number of Lin-Gata3+ ILC2s in Oasl1-/- mice was lower than in WT (Fig. 4A and B). IAV 
infection increased the number of Lin-T-bet+ ILC1s in both WT and Oasl1-/- mice, but there 
were no differences between groups (Fig. 4A and B).

We then looked at the effect of the Oasl1 deletion on lung ILC2 production of type 2 cytokines 
after IAV infection. Since ILC2s also secrete amphiregulin in response to IAV,19 we also 
examined the mRNA expression of amphiregulin (Areg). Oasl1 deletion generally did not affect 
the baseline numbers of IL-5 and IL-13-producing ILCs or their Areg expression (Fig. 4C-E). In 
line with previous reports,19,22 IAV infection increased the production of IL-5 and IL-13 by lung 
ILC2s from WT mice; however, this increase did not occur in the Oasl1-/- mice (Fig. 4C and D). 
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Similarly, the infection increased Areg expression in WT lung ILCs but not in Oasl1-/- lung 
ILC2s, although this difference did not achieve statistical significance (P = 0.07) (Fig. 4E). 
With regard to the IFN-γ-secreting ILC1s, infection elevated their IFN-γ expression to similar 
levels in the WT and Oasl1-/- mice (Supplementary Fig. S3B and C). Based on these results, we 
hypothesized that the Oasl1 deletion increased the neutrophilic inflammation in the lungs by 
reducing the numbers of ILC2s and impairing their functions.

Oasl1 deletion increases type I IFN expression and thereby inhibits the 
numbers and functions of ILC2s
During our explorations to understand how Oasl1 deletion decreased the numbers and 
functions of lung ILC2s in IAV infection, we measured the lung levels of the innate cytokines 
that are known to stimulate ILC2s. However, Oasl1 deletion did not affect the baseline or IAV-
induced levels of Il33, Il25, and Tslp mRNA (Fig. 5A). Therefore, we considered other factors 
that can regulate ILC2s. Recently, it was reported that type I IFN can restrict the function of 
ILC2s.26,27 This excited our interest because (i) type I IFN is the potent anti-viral cytokine,7,8 (ii) 
compared to WT mice, Oasl1-deficient mice have higher serum levels of type I IFNs at baseline 
and produce much higher type 1 IFN levels in response to viral infection: this is because 
OASL1 binds to and prevents the translation of IRF7,15 and (iii) as noted above, the infected 
Oasl1-/- lungs contained increased DC numbers, and we knew that pDCs are an essential 
cellular source of IFN-α upon various viral infections.28-30 Thus, we first examined the effect of 
Oasl1 deletion on the lung expression of IFNs and ISGs, namely, Ifna5, Ifna13, Ifnb1, Mx1, and 
Ifng. As reported previously,15 Oasl1-/- mouse lungs tended to have higher baseline expression 
of IFNs and ISGs than WT mouse lungs. Infection in WT mice had little effect on Ifna5, Ifna13, 
and Mx1, but in the Oasl1-/- mice, the infection hugely augmented the already upregulated 
Ifna5 and Mx1 levels while sharply decreasing the Ifna13 levels. With regard to Ifnb1 and Ifng 
expression, the infection elevated these levels in WT mice, and the Oasl1 deletion further 
increased this response (Fig. 5B). Moreover, the Oasl1-/- ILC2s had marked increases in their 
IFNAR-1 expression after IAV infection (Fig. 5C). Therefore, it is possible that the increased 
type I IFN expression in the lungs of IAV-infected Oasl1-/- mice was responsible for the reduced 
numbers and functions of their lung ILC2s.

To determine whether elevating the type I IFN levels in the lung can affect lung ILCs, we treated 
naïve WT mice with intratracheal IFN-α and measured the cytokine production from the lung 
ILCs (Fig. 5D). Indeed, this in vivo IFN-α treatment significantly reduced the lung GATA3+ ILC2s 
but not the T-bet+ ILC1s (Fig. 5E, Supplementary Fig. S4A and B). The treatment also suppressed 
the production of IL-5, IL-13, and amphiregulin by the lung ILC2s (Fig. 5F and G) while not 
affecting the lung ILC production of IFN-γ and IL-17A (Supplementary Fig. S4C and D). These 
findings together suggest that the increased lung inflammation in IAV-infected Oasl1-/- mice 
may due to high local type I IFN levels that in turn impaired ILC2s. Thus, OASL1 may 
suppress IAV-induced lung inflammation by inhibiting local type I IFN production, thereby 
creating an environment in which ILC2s remain able to respond to the infection.

Plasmacytoid DCs suppress ILC2s by secreting IFN-α
Since pDCs are an essential source of IFN-α upon various viral infections28-30 and Oasl1 
deletion associated with not only higher IFN-α levels but also greater DC frequencies after 
IAV infection (Figs. 3E and 5B), we asked whether IFN-α secreted by pDCs can regulate ILC2 
functions and numbers. Thus, we isolated ILC2s and pDCs from the lung and bone marrow 
of naïve mice, respectively, and co-cultured these cells with ssRNA40, which activates mouse 
TLR7 (Fig. 6A). Indeed, the co-culture significantly downregulated ILC2 production of type 
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2 cytokines (IL-5 and IL-13) and amphiregulin (Fig. 6B and C, Supplementary Fig. S5) and 
ILC2 proliferation (Fig. 6D and E). To confirm that the decreased function of the ILC2s was 
mediated by IFN-α from pDCs, we added anti-IFNAR antibodies. This blockade of IFN-α 
signaling caused the cytokine and amphiregulin production and proliferation of the ILC2s 
to recover strongly despite the presence of the pDCs. Thus, OASL1 may suppress IAV-
induced lung inflammation by inhibiting the local type I IFN production of DCs and thereby 
preserving the function of ILC2s (Fig. 7).
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DISCUSSION

Viral infections, including IAV, are a well-known cause of asthma exacerbations. The present 
study showed with Oasl1-deficient mice that OASL1 protects mice from IAV-induced acute 
airway inflammation but not from OVA-induced asthma. This effect appears to be mediated 
by OASL1 inhibition of local type I IFN by DCs, which preserves the functions of lung ILC2s 
to produce amphiregulin.

Host immunity against viral infection is mediated primarily by type I IFN, which exerts 
multiple effects by inducing various ISGs.8,9,31 These ISGs include OASL, which is rapidly 
induced by virus infection32 and has been shown to exert anti-viral activities against RNA 
viruses such as picornavirus33 by enhancing RIG-I-mediated type I IFN production.13 
However, OASL has also been shown to promote viral persistence.28,34 Lee et al.28 showed that 
when Oasl1-/- mice were infected with lymphocytic choriomeningitis virus, the elimination 
of the virus was accelerated. This was associated with high serum type I IFN levels, which 
were generated by splenic pDCs, and an increased anti-viral CD8+ T cell response that was 
dependent on type I IFN signaling. Similarly, Oh et al.34 showed that when Oasl1-/- mice were 
infected with herpes simplex virus type 2, they exhibited better survival rates and higher type 
I IFN and cytotoxic T cell responses than WT mice. These studies suggest that OASL1 can 
suppress type I IFN production during viral infection, thereby promoting viral persistence. By 
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contrast, our study shows for the first time that OASL-mediated suppression of type I IFN can 
also have antiviral effects, in this case on IAV, a pulmonary virus.

Notably, type I and III IFNs are thought to regulate immune responses that play a critical 
role in asthma pathogenesis,35,36 although the underlying mechanisms have been explored 
less than the mechanisms by which IFNs participate in viral infections. Bullens et al.37 
reported that the sputum of school-aged asthmatics had higher levels of both IFNλ1 and 
IFNλ2. Similarly, da Silva et al.36 showed that the sputum of asthmatics with neutrophilic 
inflammation had elevated levels of type I and III IFN. Finally, Hastie et al.38 showed that 
sputum IFN-α levels correlated positively with sputum lymphocytes in patients with asthma. 
Together, these studies suggest that IFN participates in the pathogenesis of asthma.

Our study also showed that OASL1 preserves the function of ILCs by inhibiting IAV-
induced type I IFN responses in the lung. This mechanism is supported by recent studies 
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showing that type I IFN restricts the effector functions of ILC2s, thereby downregulating 
type 2 inflammation.26,27 Moreover, ILC2s play essential roles in airway hyperreactivity and 
inflammation by producing type 2 effector cytokines in an antigen-independent manner.39,40 
However, it should be noted that the roles of ILC2s in the development of virus-induced 
asthma are more complicated than their roles in other experimental models of asthma: 
thus, while IL-13-producing ILC2s drive the development of AHR in a murine model of 
influenza (H3N1) infection,22 ILC2s also enhance tissue repair after IAV induces acute lung 
injuries.19 This complexity is also demonstrated in the present study. Thus, we showed that 
while IAV infection reduced the number of lung ILC2s, it nevertheless increased the type 2 
cytokine production in the ILC2s, which could explain why IAV induced AHR. However, Oasl1 
deficiency led to worse AHR by IAV infection even though the decrease of type 2 cytokines 
from the ILC2s. What could be the cause of the exacerbated AHR in these mice? We speculate 
that it reflects the decreased ILC2 production of amphiregulin, which is a growth factor for 
airway epithelial cells that is known to resolve IAV-induced inflammation in the lung. These 
findings together suggest that type I IFN responses could influence asthma, especially virus-
induced asthma, regardless of the degree of type 2 immune activation. However, further 
studies are needed to verify this.

The transcription factor IRF7 plays a central role in the regulation of type I IFN production,41 
and He et al.42 recently reported that IRF7 signaling may promote allergic asthma by 
upregulating ILC2s. Thus, they showed that: papain or IL-33 stimulation dramatically 
induced IRF7 expression in murine lung ILC2s; IRF7 deficiency impaired the expansion 
and function of lung ILC2s in several allergic asthma models and induced remission from 
asthma; and the ILC2s from asthma patients had higher levels of IRF7 than ILC2s from 
healthy donors.42 However, in the present study, hampering type I IFN responses by deleting 
Oasl1 did not augment the pulmonary inflammation and AHR in the classic OVA-induced 
allergic asthma model. This difference may reflect the fact that OVA is not a potent stimulant 
of ILC2s, unlike IL-33 or papain. Moreover, Marichal et al.43 showed that Irf7 deletion does 
not affect house dust mite-induced airway inflammation. Interestingly, He et al.42 also found 
that Irf7-/- mice had lower levels of amphiregulin expression on IAV infection than control 
mice (data not shown), which is consistent with what we found in the Oasl1-/- mice. These 
observations together reflect the complexity of airway inflammation in asthma, which 
involves several mediators or pathways that influence the lung environment. For example, 
type I IFN not only has roles in both innate and adaptive immunity, but it is also targeted 
by other inflammatory mediators; this means that IFNs are likely to play complex roles in 
respiratory diseases. Thus, when developing asthma treatment strategies, it is essential to 
understand the mechanisms by which viruses and type I IFN shape asthma.

In conclusion, we showed here that OASL1 suppresses IAV-induced airway inflammation and 
AHR by inhibiting the virus-induced type I IFN expression of DCs, thereby allowing ILC2s to 
conduct their activities, including their production of inflammation-resolving amphiregulin. 
Together, these results demonstrate that OASL1 may be a novel target candidate for the virus-
induced exacerbations in asthma.
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SUPPLEMENTARY MATERIALS

Supplementary Fig. S1
The expression of Tnf, Il6, Il8, and Il10 in the lung of control and IAV-infected WT of Oasl1-

/- mice. Quantitative PCR analysis of Tnf, Il6, Il8, and Il10 mRNA expression in the lung of 
control and IAV-infected mice. Values are normalized to Gapdh. Data are presented as mean ± 
SEM (two-way ANOVA).

Click here to view

Supplementary Fig. S2
Population of myeloid cells in the lung of control and IAV infected WT or Oasl1-/- mice. 
Representative flow cytometry plots of myeloid cells including neutrophils (CD45+CD11b+Ly-
6G+) and eosinophils (CD45+CD11b+Siglec-F+), dendritic cells (CD45+CD11c+F4/80-), alveolar 
macrophages (CD45+CD11c+F4/80+), and interstitial macrophages (CD45+CD11c-F4/80+) in 
the lung of control and IAV-infected mice.

Click here to view

Supplementary Fig. S3
The expression of IFN-γ and IL-17A of ILCs in the lung of control and IAV-infected WT or 
Oasl1-/- mice. (A) Gating strategy of ILC1s (CD45+ Lin-IL-7Rα+ T-bet+) and ILC2s (CD45+ Lin- IL-
7Rα+ GATA3+). (B) Representative flow cytometry plots of IFN-γ+ ILCs in the lung of control 
and IAV-infected mice. (C) The percentage and absolute number of IFN-γ+ ILCs in the lung of 
control and IAV-infected mice. Data are presented as mean ± SEM (two-way ANOVA). Data 
representative of three independent experiments with n = 3 per group.

Click here to view

Supplementary Fig. S4
The expression of IFN-γ and IL-17A of ILCs are not affected by type I IFN. (A) Representative 
flow cytometry plots of ILC1s and ILC2s in the lung of control and IFN-α-treated mice. (B) 
The percentage of ILC1s (CD45+Lin-CD127+T-bet+) in the lung of control and IFN-α-treated 
mice. Data are presented as mean ± SEM (Student’s t-test). (C) Representative flow cytometry 
plots of IFN-γ+ and IL-17A+ ILCs in the lung of control and IFN-α-treated mice. (D) The 
percentage of IFN-γ+ and IL-17A+ ILCs in the lung of control and IFN-α-treated mice. Data are 
presented as mean ± SEM (Student’s t-test).

Click here to view

Supplementary Fig. S5
Levels of IL-5 and IL-13 in co-culture experiment of ILC2s with pDCs. ILC2s and pDCs were 
co-cultured with or without anti-IFNAR-1 antibodies for 48 hours. Levels of IL-5 and IL-13 
in the culture supernatant were determined by enzyme-linked immunosorbent assays. Data 
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are presented as mean ± SEM (one-way ANOVA). Data representative of two independent 
experiments.

Click here to view
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