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The transcription factor p53 plays pivotal roles in numerous biological processes, including the suppression of tumours. The rich

availability of biophysical data aimed at understanding its structure–function relationships since the 1990s has enabled the

application of a variety of computational modelling techniques towards the establishment of mechanistic models. Together they

have provided deep insights into the structure, mechanics, energetics, and dynamics of p53. In parallel, the observation that

mutations in p53 or changes in its associated pathways characterize several human cancers has resulted in a race to develop

therapeutic modulators of p53, some of which have entered clinical trials. This review describes how computational modelling

has played key roles in understanding structural-dynamic aspects of p53, formulating hypotheses about domains that are beyond

current experimental investigations, and the development of therapeutic molecules that target the p53 pathway.
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Introduction

Discovered in 1979, the tumour suppressor protein p53 is a

transcription factor that regulates genes involved in cell cycle

arrest, apoptosis, senescence, and DNA repair (Vogelstein et al.,

2000; Toledo and Wahl, 2006). Over the years, it has become

one of the most important and attractive drug targets in cancer

therapy (Brown et al., 2009, 2011a). Its significance stems from

its role as the ‘guardian of the genome’ (Lane, 1992), in which it

coordinates cellular responses to various stress signals, includ-

ing DNA damage, oxidative stress, heat shock, and oncogene

activation. Impairment of p53 function by either mutation of the

TP53 gene or overexpression of negative regulators of p53 is a

major cause of tumourigenesis.

p53 functions as a tetramer. Each monomer consists of an

intrinsically disordered N-terminal transactivation domain (TAD),

a proline-rich domain, a core DNA-binding domain (DBD), a tet-

ramerization domain, and a C-terminal regulatory domain (CTD)

(Figure 1). The first experimental structures of p53 were solved

in 1994. One of them reveals how the DBD is bound to DNA

(Cho et al., 1994), while the other shows how the p53 tetramer

is formed from the assembly of a dimer of dimers of the tetra-

merization domain (Clore et al., 1994). The crystal structure of a

peptide derived from the p53 TAD in complex with one of its

negative regulators, MDM2, was obtained two years later in

1996 (Kussie et al., 1996). The number of p53-related structures

deposited in the Protein Data Bank (PDB) has proliferated expo-

nentially since then, providing a rich resource for computational

modelling.

The plethora of experimental structures has made it possible

for computational modellers to further build upon our knowl-

edge of p53. A variety of computational approaches, including

homology modelling, docking, molecular dynamics (MD), have

been employed to study the domain structure and dynamics of

both wild-type and mutant p53. Not only does p53 interact with

DNA, it is also a hub protein that is central to the normal func-

tion and stability of the protein–protein interaction (PPI) net-

work in an organism (Collavin et al., 2010). A search of public

PPI databases using the APID web server (Alonso-López et al.,

Received November 14, 2018. Revised December 14, 2018. Accepted January 31,

2019.

© The Author(s) (2019). Published by Oxford University Press on behalf of Journal

of Molecular Cell Biology, IBCB, SIBS, CAS.

This is an Open Access article distributed under the terms of the Creative

Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),

which permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.

http://creativecommons.org/licenses/by/4.0/


2016) showed that human p53 is involved in >1100 PPIs.

Computational modelling approaches complement structural

biology approaches in understanding these interactions at the

atomic level. MD simulation methods provide an additional tem-

poral perspective.

Therapeutic targeting of p53 focuses on the discovery of mole-

cules that either inhibit its negative regulators or stabilize its

mutants. Computational methods have not only provided insight

into the structure and dynamics of p53, but also played important

roles in the discovery of many of these therapeutic molecules

(Lauria et al., 2010). They help to provide insight into the mechan-

ism and energetics of binding, and effect of ligand binding on the

dynamics and structure of p53 and its binding partners. In many

cases, the discovery of the lead compound was driven by computa-

tional molecular models, thus reducing the need for tedious and

expensive screening of extensive compound libraries.

In this review, we summarize and discuss the contributions

that computational modelling has made towards our under-

standing of p53 structure, biology, and its therapeutic targeting

over the last 20 years.

Understanding p53 structure

Wild-type p53

Experiments have shown that the TAD adopts transiently stable

secondary structures. MD simulations of the TAD agree with the

experimental observations and provide further information about

its structure and dynamics. They show that the TAD exists in a

partially collapsed state (Lowry et al., 2007), including the region

from Phe19 to Leu22, which exhibits local helix propensity

(Espinoza-Fonseca and Trujillo-Ferrara, 2006), and that leucine-

rich clusters are responsible for stabilizing its folded state

(Espinoza-Fonseca, 2009).

The DBD contains an antiparallel β-sheet sandwich framework

held together by weakly conserved loops. Loops L2 and L3

accommodate a tetrahedrally coordinated Zn2+ ion. Although

the role of zinc in maintaining the stability of p53 was known,

mechanistic details were lacking. MD simulations of the DBD

with and without Zn2+ were carried out to study its role in DNA

recognition and DBD stability (Duan and Nilsson, 2006). The

inherent instability of p53 DBD was also investigated by Verma

and coworkers (Madhumalar et al., 2008) in MD simulations,

who were inspired to explain why a double mutation of p53 to

the corresponding residues in the comparatively stable homolo-

gues p63 and p73 stabilizes the DBD, as reported in an earlier

work by Fersht and coworkers (Cañadillas et al., 2006). Other

computational studies involving the use of MD simulations and

homology modelling have been performed to understand the

molecular basis for the low thermal stability of human p53 DBD

compared to its homologues, p63 and p73 (Patel et al., 2008a),

and orthologues from evolutionarily less developed organisms

(Pan et al., 2006; Pagano et al., 2013). Further insights into the

dynamics of the highly flexible loop L1 were gained in multiple

MD simulations of the DBD (Lukman et al., 2013).

The oligomerization of p53 is mediated by the tetramerization

domain. Its structure was resolved as early as 1994 (Clore et al.,

1994; Lee et al., 1994), but it was only in 2005 that the first MD

simulations of this domain were performed to examine how the

domain folds and oligomerises (Chong et al., 2005; Duan and

Nilsson, 2005).

Following the success of these early simulations in providing

important insights into the structure and dynamics of individual

p53 domains, several groups became interested in studying the

full-length p53 protein in silico. In 2011, Khazanov and Levy

(2011) carried out coarse-grained simulations of the full-length

p53 tetramer to study its movement along DNA. The first atomis-

tic MD simulations of the full-length p53 monomer and tetramer

in complex with DNA were reported by Chillemi et al. (2013) and

D’abramo et al. (2016), respectively. A subsequent simulation

study of the p53 tetramer–DNA complex suggests for the first

time that the CTD directly interacts with DNA (Demir et al., 2017).

Mutant p53

The molecular modelling and simulation of mutant forms of

p53 are of exceptional interest because of their association with

cancer development. Although the majority of p53 cancer muta-

tions occur in the DBD, they can also be found in other domains,

including the TAD and tetramerization domain. Conformational

ensembles of TAD mutants have been studied using replica

exchange implicit solvent MD simulations, which show that the

mutations cause local and remote structural changes that may

affect binding to p53 partner proteins (Ganguly and Chen,

2015). The pH-dependent destabilizing effect of the R337H

mutation on the tetramerization domain was studied using MD

simulations by Bashford and coworkers (Lwin et al., 2007). They

found that Arg337 constitutes part of a salt bridge cluster that

Figure 1 The p53 architecture. (A) Domain architecture of p53.

(B) The modelled full-length structure of p53 (Chillemi et al., 2013).

Reprinted by permission of Taylor & Francis Ltd.
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stabilizes the wild-type tetramer. Under alkaline conditions, the

R337H mutant is destabilized by the deprotonation of His337,

which loses interaction with the salt bridge cluster.

One of the earliest computational studies of p53 was carried out

by Brandt-Rauf’s group, who studied the structures of p53 DBD

peptide mutants using a conformational analysis program (Brandt-

Rauf et al., 1992, 1994). His group was also the pioneer in p53

MD simulations. The release of the first crystal structure of the

p53 DBD in 1994 made it possible to study the entire domain com-

putationally. Brandt-Rauf and his colleagues interrogated the asso-

ciated dynamics of this structure and two mutants in short MD

simulations, which show that the PAb240 epitope is exposed in

the mutants only. This was subsequently validated using immuno-

histochemistry of liver angiosarcomas. The success of this early

work established MD simulation as a method with good predictive

power, which was later extended to the study of the H179L (Chen

et al., 1999), L145Q, V157F, R282W (Calhoun and Daggett, 2011),

and environmentally-induced mutants (JM Chen et al., 2001). Later

simulation studies that incorporate DNA allowed the mechanism of

mutation-induced loss of p53–DNA contacts to be elucidated (Lu

et al., 2007). A few oncogenic DBD mutants are temperature-

sensitive. They bind to DNA at lower temperatures but lose binding

at warmer temperatures. MD simulations have been used to

understand the mechanism for their temperature-induced oncogen-

icity, which involves solvent exposure of interface residues and

changes to loop dynamics (Barakat et al., 2011; Koulgi et al.,

2015; Ng et al., 2015).

Not all mutations in the DBD are cancer-causing. Some of

them are benign. MD simulations were coupled with a free

energy method called molecular mechanics/Poisson-Boltzmann

surface area (MM/PBSA) to explain why the C238Y mutant

retains wild-type activity (Ferrone et al., 2006). More intri-

guingly, some DBD mutations actually suppress the effect of

oncogenic mutations. The molecular mechanisms of these so-

called second-site suppressor mutations were first studied com-

putationally by Lim and coworkers (Wright et al., 2002). MD

simulations of wild-type p53, the R273H mutant and the R273H

+T284R mutant in their unbound and DNA-bound states were

performed to understand the detrimental effect of R273H and

suppressing effect of T284R. The simulations show that loss in

DNA binding of the R273H mutant results from the disruption of

a hydrogen bond network, which in turn disrupts major groove

interactions of R280 and K120. The positively charged Arg284

forms a new interaction with DNA that helps to restore the DNA

contacts of R280 and K120. Other second-site suppressor muta-

tions that have been studied by MD simulations include N235K

(Tan et al., 2009) and H115N (Merabet et al., 2010). An MD

study of several DBD mutants found that in general, oncogenic

mutations increase flexibility while second-site suppressor

mutations reduce flexibility (Demir et al., 2011).

Understanding p53 interactions

Interaction with DNA

The interaction between p53 DBD and DNA has been studied at

the atomic level in several MD simulation studies. These simulations

sought to elucidate the mechanism of DNA recognition and binding,

the structural implication of DBD binding to DNA, and the effect of

DNA binding on cofactor recruitment by the DBD (Pan and Nussinov,

2010a; Lambrughi et al., 2016). MD simulations of the p53 tetra-

mer–DNA complex suggest that only two monomers are involved in

DNA recognition and that at least three R273H mutant monomers

are required to disable tetramer binding to DNA (Ma and Levine,

2007). MD simulations performed by Pan and Nussinov have also

shown that DNA bends in response to DBD binding and the amount

of bending is sequence-specific, in agreement with experimental

data (Pan and Nussinov, 2007). The remarkable agreement with

experimentally observed differential bending patterns suggests that

the models proposed in this study are functionally relevant. The role

of DNA sequence and flexibility in p53-induced DNA bending was

uncovered in a later study by the same authors (Pan and Nussinov,

2008). They further investigated the relationship between organiza-

tion of the p53 response elements and binding cooperativity. MD

simulations of the tetrameric p53–DNA complex followed by con-

formational analysis show that p53–DNA binding is highly coopera-

tive when there are two or fewer base pair spacers between the p53

response elements (Pan and Nussinov, 2009). To understand the

binding process, Pan and Nussinov (2010b) have also performed

MD simulations of p53 DBD approaching DNA. They found that ini-

tial electrostatic recognition between the positively charged DNA

binding surface of DBD and the negatively charged DNA results in

the drifting of the DBD along the DNA surface until the key binding

residues anchor into the major groove.

Protein–protein interactions

The different domains of p53 are involved in a myriad of inter-

actions with various proteins. Some of these partner proteins

engage with more than one p53 domain. Molecular models and

MD simulations can help us to understand the structure and

dynamics of these protein–protein complexes, and the effects of

post-translational modifications on their interactions.

The binding of p53 TAD to MDM2 was studied in great detail

by Chen and Luo, who performed MD simulations on apo

MDM2, apo p53 and the MDM2–p53 complex for a total of

600 ns (Chen and Luo, 2007). The simulations show that the

p53 TAD binding pocket of MDM2 is, as expected, narrow in the

apo state and expands upon binding p53. Later in 2012, Verma

and coworkers (Dastidar et al., 2012) performed MD simulations

of the p53 TAD approaching MDM2. These simulations postulate

the initial capture of Phe19, which acts as an anchor that opens

up the binding cleft through crack propagation. This could

explain why the F19A p53 mutant does not bind to MDM2

(Bottger et al., 1997). The detrimental effect of the phosphoryl-

ation of p53 Thr18 (Lee et al., 2007), p53 Ser20 (ElSawy et al.,

2015), MDM2 Ser17 (Dastidar et al., 2011), and MDMX Tyr99

(Chan et al., 2017) on p53 binding to MDM2 or MDMX have also

been extensively studied in MD and Brownian dynamics (BD)

simulations.

Nussinov and coworkers (Tuncbag et al., 2009) provided a

temporal dimension to the PPI network of the p53 hub protein

based on its DBD interactions. This allows for the prediction of
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p53 interactions that can and cannot occur at the same time.

MD simulations and protein–protein docking have been used to

study the interaction of the DBD with the ASPP proteins (Patel

et al., 2008b), Hsp90 (Blacklock and Verkhivker, 2013), and ubi-

quitin (Landré et al., 2017). The computational model of the

DBD–ubiquitin complex is especially illuminating as it shows

that ubiquitin can extend the DNA binding interface of the DBD,

thus explaining why monoubiquitination, which occurs under

certain cellular conditions such as post-nutlin treatment,

counter-intuitively enhances p53 activity.

The CTD of p53 is intrinsically disordered, allowing it to adopt

multiple conformations for binding to different protein partners.

Its interaction with S100B was particularly well characterized in

several computational studies that employed simulation meth-

ods such as MD and Monte Carlo (Chen, 2009; Staneva et al.,

2012; McDowell et al., 2013). MD simulations have also been

combined with free energy techniques to examine the effect of

K382 acetylation on p53 binding to the CBP bromodomain

(Eichenbaum et al., 2010). A couple of comprehensive MD simu-

lation studies on the different CTD complexes helped to provide

important insights into the ability of the CTD to engage with

diverse interfaces (Allen et al., 2010; Kannan et al., 2016).

Therapeutic targeting of p53

Impairment of p53 function is caused by either mutations to

the TP53 gene or overexpression of proteins that negatively

regulate p53 activity, such as MDM2 and MDMX. It is estimated

that mutations in TP53 are implicated in about half of all human

cancers (Vousden and Lu, 2002). Most of these mutations (95%)

occur in the DNA binding domain, which could undermine the

direct binding of p53 to DNA, destabilize the protein so that it

unfolds, or induce misfolding (Vousden and Lu, 2002).

Therapeutic intervention seeks to restore proper p53 function

either by reactivating mutant p53 or enhancing the activity of

wild-type p53 by inhibition of its interaction with MDM2 and/or

MDMX. This section highlights the important roles that compu-

tation has played in the development and discovery of drugs

that target the p53 pathway.

Targeting the p53–MDM2 interaction

Small molecules. p53 interacts with the N-terminal domains of

MDM2 and MDMX via its N-terminal TAD. The crystal structure

of MDM2 complexed with a short peptide corresponding to the

N-terminal region of p53 shows that the interaction is mediated

by three critical residues from p53: Phe19, Trp23, and Leu26

(Kussie et al., 1996). These residues insert into a deep hydro-

phobic cleft in MDM2. Early computational efforts focused on

the generation of pharmacophore and quantitative structure–
activity relationship (QSAR) models based on this protein–pep-
tide complex structure. In 2001, Galatin and Abraham (2001)

reported the development of a QSAR model that predicts pep-

tide activity based on hydropathic descriptors obtained from the

hydropathic interactions (HINT) program. HINT was also used to

generate a p53 pharmacophore model by analysis of importance

of individual atoms within the side chains of Phe19, Trp23, and

Leu26. Based on this model, a 3D database search of the

National Cancer Institute (NCI) chemical database was carried

out using the program UNITY (Galatin and Abraham, 2004). This

yielded a sulphonamide compound that exhibits low micromolar

inhibition of the p53–MDM2 interaction in binding assays and

increases p53-dependent transcription in cancer cells. Zhao

et al. (2002) employed a similar pharmacophoric search with

UNITY and evaluated the hit compounds by docking. One of

them was found to activate the p53 pathway in several tumour

cell lines.

Molecular docking played a prominent role in the development

of later generations of inhibitors. The first isoindolinone-based

inhibitors of the p53–MDM2 interaction identified in a prelimin-

ary binding assay had very weak activity (Hardcastle et al.,

2005). They were optimized with the help of the structure-based

de novo ligand design program SkelGen (Dean et al., 2006) and

docking programs, easyDock (Mancera et al., 2004) and GOLD

(Jones et al., 1997). A new series of inhibitors based on the isoin-

dolinone scaffold, the most potent of which has low micromolar

IC50 in an ELISA assay, was generated (Hardcastle et al., 2006).

Further optimization of this series of inhibitors, guided by NMR

titrations, resulted in compounds with nanomolar potency and

improved cellular activity (Hardcastle et al., 2011).

The structure-based design of another series of MDM2 inhibitors,

the spiro-oxindoles, was also guided by molecular docking.

Candidate compounds containing the spiro-oxindole scaffold were

docked into MDM2 using GOLD, yielding a lead compound that had

slightly weaker binding affinity for MDM2 than the p53 peptide

(Ding et al., 2005). Based on its predicted binding mode obtained

by docking, modifications to the compound structure were made to

enhance hydrophobic interactions. The modified compound is

∼100 times more potent than the initial lead compound. It was fur-

ther optimized to improve its binding and pharmacokinetic proper-

ties, which eventually led to the identification of MI-219, a potent,

highly specific and orally active inhibitor that has entered clinical

trials (Ding et al., 2006; Shangary et al., 2008).

Although virtual screening by pharmacophore search is fast, it

cannot predict quantitatively how tightly the ligand binds to the

target protein. Conversely, although virtual screening by dock-

ing allows for quantitative assessment of the binding affinity of

a compound for the target protein, it is relatively computation-

ally expensive. An integrated approach that combines these

complimentary computational techniques was adopted by some

groups to discover new MDM2 inhibitors. The same group that

developed MI-219 separately discovered a nanomolar inhibitor

of the p53–MDM2 interaction using an integrated virtual screen-

ing approach (Lu et al., 2006b). They initially did a pharmaco-

phore search of NCI’s database, which led to the identification

of 2599 hits. These hit compounds were then docked into the

p53 binding site of MDM2. Some of the top-ranking compounds

were evaluated in binding and cellular assays, resulting in the

discovery of a potent quinolinol inhibitor. Another research

group used the program CAVEAT (Lauri and Bartlett, 1994) to

search chemical databases for scaffolds similar to that of the

p53 peptide (Lu et al., 2006a). These hit scaffolds were docked
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to MDM2 using DOCK (Ewing et al., 2001), followed by cluster-

ing of promising scaffolds and filtering away of ‘poor’ scaffolds.

A final round of docking was performed with the side chains

added to the scaffolds. This yielded a library of moderately

active MDM2 inhibitors with α-helix-mimetic scaffolds.

To expand the scaffold diversity of lead MDM2 inhibitors,

Czarna et al. (2010) employed multicomponent reaction chemis-

try (MCR) complimented by docking. They first created a virtual

library of compounds containing the indole moiety of Trp23,

which was identified as the anchor residue. These compounds

were docked into the p53 binding site of MDM2 using the soft-

ware suite Moloc (Gerber and Müller, 1995). The highest-ranked

compounds were then selected for synthesis by MCR. Seven

scaffolds exhibited low micromolar activity in NMR-based bind-

ing assays.

Initial pharmacophore and docking models were based on the

single static crystal structure of MDM2 bound to the p53 pep-

tide. The importance of protein flexibility for structure-based

drug design was later recognized, as research groups began to

incorporate it into their computational models. Bowman et al.

(2007) proposed the use of the multiple protein structure (MPS)

method to generate a dynamic receptor-based pharmacophore

model of the p53 binding site in MDM2. Protein structures were

extracted at regular intervals from an MD simulation of p53-

bound MDM2. These structures were flooded with benzene, eth-

ane and methanol probes to identify consensus interaction sites

within the p53 binding cleft. A database of ∼35000 commer-

cially available compounds was then screened against this

receptor-based pharmacophore model. Five active compounds

were eventually identified. The binding modes of these inhibi-

tors were investigated by induced-fit docking (Sherman et al.,

2006), which accounts for protein flexibility by allowing for lim-

ited movement of residues close to the ligand during the

docking.

The p53–MDM2 interaction was proving to be a highly tract-

able drug target and pharmaceutical companies eventually got

into the act of designing inhibitors against this interaction.

Computational modelling played important roles in the develop-

ment of some of these drug candidates. For example, Amgen

initiated their rational design of MDM2 inhibitors by using both

ligand-based and structure-based computational techniques to

identify suitable scaffolds (de Turiso et al., 2013). This led to

the discovery of AM-8553 (Rew et al., 2012) and ultimately AMG

232 (Sun et al., 2014), which is currently undergoing clinical

trials for cancer treatment. Norvatis also made concerted efforts

to discover small-molecule inhibitors of the p53–MDM2 inter-

action, which led to the identification of three different classes

of inhibitors. The first class of inhibitors has 3-imidazolyl indole

as the core structure (Furet et al., 2012), which was designed

with the help of molecular modelling and docking by the pro-

gram MacroModel (Mohamadi et al., 1990). The structure-based

optimization of the second class of inhibitors, the tetra-

substituted imidazoles, was guided by molecular models

obtained from docking (Vaupel et al., 2014). The third class of

inhibitors, the dihydroisoquinolinones, was discovered by virtual

screening of ∼50000 compounds from the Novartis compound

collection (Gessier et al., 2015). This integrated virtual screening

approach combines the methods of QSAR, high-throughput

docking, and pharmacophore modelling (Jacoby et al., 2009).

The initial hit compound identified was optimized into NVP-

CGM097, which is currently under evaluation in clinical trials

(Holzer et al., 2015).

Besides virtual screening and structure-based design, compu-

tational methods have also been used to elucidate the mechan-

isms by which these small molecules bind to MDM2. The nutlins

are the first reported class of small-molecule p53–MDM2 inhibi-

tors with in vivo activity (Figure 2A) (Vassilev et al., 2004).

However, they are unable to disrupt the p53–MDMX interaction.

MD simulations of their complexes with MDM2 and MDMX were

performed to understand the molecular basis for their binding

specificity (Joseph et al., 2010b). The reduced interaction of

nutlin with MDMX compared to MDM2 is attributed to the

replacement of Leu54 in MDM2 with the larger Met53 in MDMX.

This reduces the size of the binding cleft and hence, the interac-

tions of nutlin with MDMX. The mechanism of nutlin binding to

MDM2 was also investigated using BD and MD simulations in a

few separate studies. The most potent nutlin variant is nutlin-3,

which has two chiral centres. BD simulations of the association

of the four different nutlin-3 stereoisomers with MDM2 was per-

formed to explain the stereoselectivity of MDM2 for one of the

stereoisomers (ElSawy et al., 2013). In another study, a putative

second nutlin interaction site was discovered on MDM2 by

hydrogen/deuterium exchange mass spectrometry (Hernychova

et al., 2013). MD simulations of the unbound nutlin and MDM2

Figure 2 Structures of molecules developed to modulate the p53 pathway. (A) Nutlin-2 in complex with MDM2 (PDB 1RV1) (Vassilev et al.,

2004). (B) ATSP-7041 in complex with MDMX (PDB 4N5T) (Chang et al., 2013). (C) PhiKan083 in complex with p53 DBD (PDB 2VUK)

(Boeckler et al., 2008).
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suggest that this region could serve as an initial docking site for

nutlin, which then enters the p53-binding pocket after a series

of dissociations and reassociations from the MDM2 surface.

Besides nutlin, other MDM2 inhibitors have also been studied

using computational methods. During the optimization of their

lead compound to AM-8553, Rew et al. (2012) did quantum

mechanical calculations on some of the derivative compounds

to predict the relative stability of their anti and gauche confor-

mations. It was found that potency was increased if the more

stable conformer of the free compound matches its bound con-

formation within MDM2, which helped to rationalize the experi-

mental potency data. A comprehensive computational study

that involved enhanced sampling techniques, umbrella sampling

and variational free energy profile methods helped to shed light

on the effect of ligand binding on the dynamics and structure of

the N-terminal lid region of MDM2 (Bueren-Calabuig and Michel,

2015). Their results indicate that the binding of nutlin and

benzodiazepinedione-based MDM2 inhibitors are unaffected by

the lid, while piperidinone-based MDM2 inhibitors gain potency

by interaction with the lid. The piperidinones form stabilizing

hydrophobic contacts with residues at the base of the lid that

induce the folding of MDM2 residues 19–24 into an α-helical
conformation. These findings provide suggestions on how small-

molecule MDM2 inhibitors could be designed for optimal inter-

action with the lid.

Peptides. Peptides are promising therapeutic agents for the

modulation of PPIs (Wilson, 2009). They can bind with high spe-

cificity and potency to their target proteins, resulting in reduced

off-target effects and improved safety (Craik et al., 2013).

However, peptides are hindered by their poor pharmacokinetic

properties, such as low bioavailability, rapid elimination, poor

in vivo stability, and the requirement for intravenous administra-

tion. Computational tools have mainly been used to understand

the energetics and mechanism of p53 peptide binding to MDM2,

and to a limited extent, to design novel peptidic inhibitors of

the p53–MDM2 interaction.

The p53–MDM2 interaction was chosen as the model system

by Massova and Kollman (1999) to validate the computational

alanine scanning technique. In their study, the computed

change in binding free energy upon alanine mutation of the p53

peptide residues agreed qualitatively with the experimental

data. The three key residues, Phe19, Trp23, and Leu26, as well

as Leu22, were found to be the most important residues for p53

binding to MDM2. Structures used for the calculation were

taken from a 400 ps MD simulation of the p53–MDM2 complex.

In 2005, Zhong and Carlson (2005) performed computational

alanine scanning on the same system. The differences were that

the structures were derived from a longer 2 ns MD simulation,

selected MDM2 residues were mutated, and the faster molecu-

lar mechanics/Generalized Born surface area (MM/GBSA)

(Srinivasan et al., 1998) method was used to calculate the ener-

gies instead of the molecular mechanics/Poisson Boltzmann

surface area (MM/PBSA) (Kollman et al., 2000) method. The

information was used to design a p53 peptidomimetic with a

β-proline scaffold. Although the β-peptide mimic was not tested

experimentally, it was predicted to have a lower free energy of

binding than the p53 peptide based on MM/GBSA calculations.

Using a similar protocol of MD simulations followed by free

energy calculations, Madhumalar et al. (2009) designed a pep-

tide that was predicted to have higher affinity for MDM2 than

the p53 and 12-1 peptides, the latter of which is a high-affinity

MDM2-binding peptide derived from phage display experiments.

This study showed that certain residues in the p53 peptide

could be mutated to enhance its binding affinity for MDM2.

Pro27 is of particular interest, as it has been shown that its

mutation to Ser improves the binding of the p53 peptide to

MDM2 considerably (Zondlo et al., 2006). MD simulations

revealed that both helical and extended C-terminal conforma-

tions of the P27S mutant peptide have similar binding affinities

because of enthalpy-entropy compensation (Dastidar et al.,

2008). A later study attempted the mutation of C-terminal Pro27

in a truncated form of the p53 peptide to Ser, Thr, Ala, and Asn,

all of which improved the binding affinity (Brown et al., 2011b).

The kinetics of the binding of these peptides to MDM2 was sub-

sequently studied using BD (ElSawy et al., 2016). It was found

that there is a direct correlation between the peptide’s resi-

dence time around MDM2 and its binding affinity, with the

tightest-binding P27S mutant peptide having the longest resi-

dence time.

Stapled peptides. The emergence of the peptide stapling technique

in the last two decades has prompted a radical change in mindset

regarding the use of peptide-based drugs. Peptide stapling essen-

tially involves the covalent linkage of two appropriately-spaced and

functionalised residues to form a cyclic peptide. The most popular

stapling technique is hydrocarbon stapling, in which two olefin-

bearing residues are crosslinked by a ruthenium-catalyzed ring-

closing metathesis reaction to form an all-hydrocarbon staple

(Schafmeister et al., 2000). Hydrocarbon-stapled peptides have

been shown to exhibit enhanced α-helicity, potency, protease resist-
ance, and cell permeability compared to their linear counterparts

(Verdine and Hilinski, 2012), making them highly promising candi-

dates for the therapeutic inhibition of PPIs. The p53–MDM2 inter-

action was one of the first to be targeted by stapled peptides, the

most successful of which has reached clinical trials (Figure 2B)

(Chang et al., 2013). Computational methods have played promin-

ent roles in the elucidation of the mechanism of stapled peptide

binding to MDM2 and the design of new stapled peptide inhibitors

of MDM2 (Tan et al., 2016a).

The first stapled peptide inhibitors of MDM2 were reported by

Bernal et al. in 2007. A hydrocarbon staple was installed on a

series of p53-based peptides at the i-th and i + 7-th positions to

improve their α-helicities. The most drug-like stapled peptide,

SAH-p53-8, exhibits improved α-helicity, MDM2-binding affinity,

and cell penetration over the wild-type p53 peptide. MD simula-

tions of the stapled peptide complexes suggest that the hydro-

carbon staple of SAH-p53-8 actually lies very close to the MDM2

surface, such that they form extensive hydrophobic contacts

with each other, which further improve the binding affinity of
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the stapled peptide compared to the linear p53 peptide (Joseph

et al., 2010a). The computational model was subsequently val-

idated by an X-ray crystal structure of the SAH-p53-8–MDM2

complex (Baek et al., 2012), which revealed the intimate con-

tacts between the hydrocarbon staple and the MDM2 surface. A

subsequent study used multiple MD simulations of peptides dis-

placed from the p53 binding pocket to understand the effect of

hydrocarbon stapling on peptide binding to MDM2 (Sim et al.,

2014). The wild-type p53 peptide was found to preferentially

rebind by tilting towards the Phe19 binding site, while the

stapled peptide has equal chance of tilting towards the Phe19

or Leu26 binding site during the rebinding process. This is

attributed to the rigidity introduced by the staple and the

absence of an extended C-terminal region. The simulations also

show the formation of an ordered water network between the

staple and protein surface as the stapled peptide rebinds to

MDM2. An ensuing MD simulation study restrained the dis-

placed peptides at their initial positions instead of allowing

rebinding (Sim and Verma, 2015). These simulations suggest

that the hydrogen-bonded interfacial water molecules facilitate

binding by lowering the energy penalty associated with dehy-

dration of the peptide–protein interface, which could have impli-

cations on the binding kinetics of the stapled peptide.

The potential of MD simulations to inform the rational design

of stapled peptide inhibitors of MDM2 was highlighted by Tan

et al. in their work on ligand-mapping molecular dynamics

(LMMD). First implemented in 2012, LMMD involves the use of

benzene molecules in explicit-solvent MD simulations to probe

for hydrophobic binding sites on proteins (Tan et al., 2012). The

method was later validated on several proteins with hydropho-

bic peptide binding sites and hydrocarbon staple interaction

sites, including MDM2 (Tan et al., 2015). The simulations also

yielded novel binding sites that have not been exploited for lig-

and binding. Indeed, two such putative binding sites near the

p53-binding cleft were identified. Hydrocarbon-stapled peptides

were rationally designed to target one of them (Tan et al.,

2016b). However, X-ray crystal structures of the complex show

the peptides interacting with the other putative site instead.

This is because of the unexpected folding of the peptides’ C-

termini into an α-helix. Nevertheless, this work has led to the

development of a new series of MDM2-binding stapled peptides

with improved binding affinities compared to the parent stapled

peptide, and provides a proof of concept for the use of LMMD in

the prediction of novel binding sites.

Reactivation of mutant p53

The majority of mutations in the DBD of p53 are missense

mutations. These point mutations can be classified as either

contact or structural mutations. Contact mutations occur at the

DNA binding interface and disrupt the binding of the mutant

p53 to DNA. Otherwise, the overall structure of the contact

mutant is similar to that of the wild-type protein. Conversely,

structural mutations prevent proper folding of the domain,

which causes conformational changes that either destabilize the

mutant or prevent it from binding to DNA. Destabilized

structural mutants may be able to bind small molecules that sta-

bilize the functional conformation of the domain, thus restoring

p53 activity. These molecules can target either several mutants

or a specific mutant only. Computational tools have proven

instrumental in the identification of druggable pockets within

the mutant proteins and the discovery of ligands that bind to

these pockets.

Rescuing the Y220C mutant. The Y220C mutation is the ninth

most frequent p53-associated cancer mutation and the most

common core domain structural mutation (Olivier et al., 2002),

accounting for ∼75000 new cancer cases each year (Petitjean

et al., 2007). The mutation creates an exposed cleft that destabi-

lizes the DNA binding domain (Joerger et al., 2006). This pocket

was found to be druggable after a virtual screening of >2.5 mil-

lion compounds from the ZINC database followed by NMR

screening yielded a micromolar (150 μM) carbazole-based lead

compound, PhiKan083 (Boeckler et al., 2008). The stabilizing

effect of PhiKan083 was demonstrated in thermal stability experi-

ments, which showed that PhiKan083 raises the melting tem-

perature and slows the denaturation rate of the Y220C mutant. A

new lead compound was subsequently discovered by screening

a library of halogen-enriched small molecules (Wilcken et al.,

2012). Lead optimization was guided by docking and involved

the extension of the lead compound into two subsites within the

Y220C binding pocket. This eventually led to the discovery of a

low micromolar (9.7 μM) hit compound, PhiKan5196, which

induced apoptosis in Y220C-containing human cancer cells.

The crystal structure of PhiKan083 in complex with the Y220C

mutant reveals small conformational changes of the Y220C cav-

ity upon ligand binding (Figure 2C) (Boeckler et al., 2008). To

explore the structural plasticity of the cavity and identify binding

subsites within the cavity, MD simulations of the Y220C mutant

in a solution of water and 20% (v/v) isopropanol were per-

formed (Basse et al., 2010). This method is related to LMMD

and was first described by Seco et al. (2009). However, unlike

LMMD, isopropanol probes were used to identify both polar and

nonpolar binding sites. The simulations show that the cavity is

highly flexible and fluctuates significantly in size. MD simula-

tions of the Y220C mutant complexed with some of the fragment

hits identified from fragment-based screening show that the

fragments significantly reduce the flexibility of proline-rich loops

lining the pocket, thus stabilizing the local protein structure.

Analysis of the crystal structures of the Y220C mutant bound

to these fragment hits indicates the presence of a cryptic sub-

pocket within the Y220C cavity. This subpocket is modulated by

the Cys220 side chain and utilized by some of the fragments for

binding. To obtain insights into this cryptic subpocket, long MD

simulations (300 ns) of the apo mutant protein were performed

(Joerger et al., 2015). The open and closed states of the sub-

pocket were populated with comparable frequency in the simu-

lations, which suggests that it is highly accessible for ligand

binding.

Quantum mechanical calculations have been used to rational-

ize the reduced affinity caused by bioisosteric replacement in
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one of the p53-Y220C small-molecule stabilisers, PK5176

(Wilcken et al., 2015). This compound has an aromatic iodine

atom that forms a halogen bond with a backbone oxygen within

the Y220C cavity. Substitution of this atom with an ethynyl moi-

ety led to a 13-fold loss in binding affinity. The ab initio calcula-

tions show that the complex formation energy for the ethynyl

analogue is unfavourable. This is likely because of a combin-

ation of iodine’s superior polarisability, its more suitable inter-

action geometry, and the better fitting of the iodo analogue

within the binding pocket.

Mutant stabilization via cysteine alkylation. Besides targeting a

mutation-induced cavity, mutant p53 can also be stabilized by

alkylation of solvent-exposed cysteines. Ligands that form cova-

lent adducts with p53 and increase the thermal stability of sev-

eral p53 mutants have been identified by fragment screening

(Kaar et al., 2010). These alkylating agents were shown to react

with several cysteines, of which Cys124 and Cys141 were found

to be the most reactive by mass spectrometry experiments.

However, crystal structures of the human p53 DBD show that

the sulphydryl group of Cys124 is partially buried and not read-

ily accessible to small molecules (Cho et al., 1994; Wang et al.,

2007). MD simulations of wild-type p53 and three frequent can-

cer mutants reveal the formation of a transient pocket bounded

by loop L1 and sheet S3, which exposes the side chain of

Cys124 to the solvent (Wassman et al., 2013). Alkylating com-

pounds known to cause p53 reactivation were docked into the

open L1/S3 pocket of representative structures taken from the

simulations. All of them were able to attain low-energy docked

poses with their reactive methylene group in close proximity to

the side chain of Cys124, thus supporting the existence of a

druggable pocket in the L1/S3 region. To identify putative

ligands of this pocket, an ensemble-based virtual screen based

on the relaxed complex scheme (Lin et al., 2002) was carried

out. These compounds were docked into representative struc-

tures taken from the MD trajectory of the R273H cancer mutant.

Out of the 45 compounds selected for biological assay, stictic

acid was the only one that reactivated mutant p53 in human

cancer cells.

Conclusion

As the guardian of the genome, p53 plays a vital role in sup-

pressing tumour formation. The elucidation of its first structures

in the mid-1990s kick-started intense efforts to develop p53-

reactivating drugs for anticancer treatment. These efforts were

aided by the use of computational modelling methods that

leveraged the growing database of high-resolution structures of

p53 itself and its complexes to provide valuable insights into

their structure, mechanics, energetics, and dynamics. Notably,

the discovery of several therapeutic molecules that restore p53

function, some of which are in clinical trials, were driven by

computational models.

The rise of machine learning in recent years portends a

change in the way we study p53 in our computers. Machine

learning methods are expected to play increasingly prominent

roles in drug discovery, especially with the emergence of deep

learning as a game-changer in many fields of science (Ekins,

2016; Gawehn et al., 2016; Chen et al., 2018). They have proven

beneficial in the early stages of drug discovery, particularly in

the development of QSAR models and prediction of absorption,

distribution, metabolism, excretion, and toxicity (ADMET) prop-

erties (Panteleev et al., 2018). They have also been applied to

the development of scoring functions for docking (Ragoza et al.,

2017) and de novo design (Olivecrona et al., 2017). Although

the application of machine learning methods to the study of p53

has been limited so far (Danziger et al., 2007; Ramani and

Jacob, 2013a, b), we anticipate that they will play significant

roles in the development of new therapeutics to target p53 in

the near future. Together with the more traditional computa-

tional modelling methods outlined in this review, they will allow

us to unlock even more secrets of the guardian of the genome.

Funding

This work was supported by A*STAR (IAF-PP H17/01/a0/010

to Y.S.T. and Singapore International Graduate Award [SINGA]

to Y.M.).

Conflict of interest: C.S.V. is the founder/scientific consultant of

Sinopsee Therapeutics, a biotechnology company developing

molecules for therapeutic purposes; the current work has no

conflict with the company.

References
Allen, W.J., Capelluto, D.G., Finkielstein, C.V., et al. (2010). Modeling the rela-

tionship between the p53 C-terminal domain and its binding partners

using molecular dynamics. J. Phys. Chem. B 114, 13201–13213.
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