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Abstract

nucleotide conversions.

Background: Methods to read out naturally occurring or experimentally introduced nucleic acid modifications are
emerging as powerful tools to study dynamic cellular processes. The recovery, quantification and interpretation of
such events in high-throughput sequencing datasets demands specialized bioinformatics approaches.

Results: Here, we present Digital Unmasking of Nucleotide conversions in K-mers (DUNK), a data analysis pipeline
enabling the quantification of nucleotide conversions in high-throughput sequencing datasets. We demonstrate
using experimentally generated and simulated datasets that DUNK allows constant mapping rates irrespective of
nucleotide-conversion rates, promotes the recovery of multimapping reads and employs Single Nucleotide
Polymorphism (SNP) masking to uncouple true SNPs from nucleotide conversions to facilitate a robust and sensitive
quantification of nucleotide-conversions. As a first application, we implement this strategy as SLAM-DUNK for the
analysis of SLAMseq profiles, in which 4-thiouridine-labeled transcripts are detected based on T > C conversions.
SLAM-DUNK provides both raw counts of nucleotide-conversion containing reads as well as a base-content and
read coverage normalized approach for estimating the fractions of labeled transcripts as readout.

Conclusion: Beyond providing a readily accessible tool for analyzing SLAMseq and related time-resolved RNA
sequencing methods (Timelapse-seq, TUC-seq), DUNK establishes a broadly applicable strategy for quantifying
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Background

Mismatches in reads yielded from standard sequencing
protocols such as genome sequencing and RNA-Seq ori-
ginate either from genetic variations or sequencing errors
and are typically ignored by standard mapping ap-
proaches. Beyond these standard applications, a growing
number of profiling techniques harnesses nucleotide con-
versions to monitor naturally occurring or experimentally
introduced DNA or RNA modifications. For example,
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bisulfite-sequencing (BS-Seq) identifies non-methylated
cytosines from cytosine-to-thymine (C>T) conversions
[1]. Similarly, photoactivatable ribonucleoside-enhanced
crosslinking and immunoprecipitation (PAR-CLIP) en-
ables the identification of protein-RNA-interactions by
qualitative assessment of thymine-to-cytosine (T > C) con-
versions [2]. Most recently, emerging sequencing tech-
nologies further expanded the potential readout of
nucleotide-conversions in high-throughput sequencing
datasets by employing chemoselective modifications to
modified nucleotides in RNA species, resulting in specific
nucleotide conversions upon reverse transcription and se-
quencing [3]. Among these, thiol (SH)-linked alkylation for
the metabolic sequencing of RNA (SLAMseq) is a novel se-
quencing protocol enabling quantitative measurements of
RNA kinetics within living cells which can be applied to
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determine RNA stabilities [4] and transcription-factor
dependent transcriptional outputs [5] in vitro, or, when
combined with the cell-type-specific expression of uracil
phosphoribosyltransferase, to assess cell-type-specific tran-
scriptomes in vivo (SLAM-ITseq) [6]. SLAMseq employs
metabolic RNA labeling with 4-thiouridine (4SU), which is
readily incorporated into newly synthesized transcripts.
After RNA isolation, chemical nucleotide-analog derivatiza-
tion specifically modifies thiol-containing residues, which
leads to specific misincorporation of guanine (G) instead of
adenine (A) when the reverse transcriptase encounters an
alkylated 4SU residue during RNA to cDNA conversion.
The resulting T > C conversion can be read out by high-
throughput sequencing.

Identifying nucleotide conversions in high-throughput
sequencing data comes with two major challenges: First,
depending on nucleotide conversion rates, reads will
contain a high proportion of mismatches with respect to
a reference genome, causing common aligners to mis-
align them to an incorrect genomic position or to fail
aligning them at all [7]. Secondly, Single Nucleotide
Polymorphisms (SNPs) in the genome will lead to an
overestimation of nucleotide-conversions if not appro-
priately separated from experimentally introduced genu-
ine nucleotide conversions. Moreover, depending on the
nucleotide-conversion efficiency and the number of
available conversion-sites, high sequencing depth is
required to reliably detect nucleotide-conversions at
lower frequencies. Therefore, selective amplification of
transcript regions, such as 3 end mRNA sequencing
(QuantSeq [8]) reduces library complexity ensuring high
local coverage and allowing increased multiplexing of
samples. In addition, QuantSeq specifically recovers only
mature (polyadenylated) mRNAs and allows the identifi-
cation of transcript 3’ ends. However, the 3’ terminal re-
gions of transcripts sequenced by QuantSeq (typically
250 bp; hereafter called 3" intervals) largely overlap with
3’ untranslated regions (UTRs), which are generally of
less sequence complexity than coding sequences [9],
resulting in an increased number of multi-mapping
reads, i.e. reads mapping equally well to several genomic
regions. Finally, besides the exact position of nucleotide
conversions in the reads, SLAMseq down-stream ana-
lysis requires quantifications of overall conversion-rates
robust against variation in coverage and base compos-
ition in genomic intervals e.g. 3" intervals.

Here we introduce Digital Unmasking of Nucleotide-
conversions in k-mers (DUNK), a data analysis method
for the robust and reproducible recovery of nucleotide-
conversions in high-throughput sequencing datasets.
DUNK solves the main challenges generated by
nucleotide-conversions in high-throughput sequencing
experiments: It facilitates the accurate alignment of
reads with many mismatches and the unbiased
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estimation of nucleotide-conversion rates taking into account
SNPs that may feign nucleotide-conversions. As an applica-
tion of DUNK, we introduce SLAM-DUNK - a SLAMseq-
specific pipeline that takes additional complications of the
SLAMseq approach into account. SLAM-DUNK allows to
address the increased number of multi-mapping reads in
low-complexity regions frequently occurring in 3" end se-
quencing data sets and a robust and unbiased quantification
of nucleotide-conversions in genomic intervals such as 3" in-
tervals. SLAM-DUNK enables researchers to analyze SLAM-
seq data from raw reads to fully normalized nucleotide-
conversion quantifications without expert bioinformatics
knowledge. Moreover, SLAM-DUNK provides a comprehen-
sive analysis of the input data, including visualization, sum-
mary statistics and other relevant information of the data
processing. To allow scientists to assess feasibility and accur-
acy of nucleotide-conversion based measurements for genes
and/or organisms of interest in silico, SLAM-DUNK comes
with a SLAMseq simulation module enabling optimization
of experimental parameters such as sequencing depth and
sample numbers. We supply this fully encapsulated and easy
to install software package via BioConda, the Python Package
Index, Docker hub and Github (see http://t-neumann.github.
io/slamdunk) as well as a MultiQC (http://multiqc.info) plu-
gin to make SLAMseq data analysis and integration available
to bench-scientists.

Results
Digital unmasking of nucleotide-conversions in k-mers
DUNK addresses the challenges of distinguishing nucleotide-
conversions from sequencing error and genuine SNPs in
high-throughput sequencing datasets by executing four main
steps (Fig. 1): First, a nucleotide conversion-aware read map-
ping algorithm facilitates the alignment of reads (k-mers)
with elevated numbers of mismatches (Fig. 1a). Second, to
provide robust nucleotide-conversion readouts in repetitive
or low-complexity regions such as 3" UTRs, DUNK option-
ally employs a recovery strategy for multi-mapping reads. In-
stead of discarding all multi-mapping reads, DUNK only
discards reads that map equally well to two different 3" inter-
vals. Reads with multiple alignments to the same 3" interval
or to a single 3" interval and a region of the genome that is
not part of a 3’ interval are kept (Fig 1b). Third,
DUNK identifies Single-Nucleotide Polymorphisms
(SNPs) to mask false-positive nucleotide-conversions
at SNP positions (Fig. 1c). Finally, the high-quality
nucleotide-conversion signal is deconvoluted from se-
quencing error and used to compute conversion fre-
quencies for all 3" intervals taking into account read
coverage and base content of the interval (Fig. 1d).

In the following, we demonstrate the performance and
validity of each analysis step by applying DUNK to sev-
eral published and simulated datasets.
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Fig. 1 Digital Unmasking of Nucleotide-conversions in k-mers: Legend: Possible base outcomes for a given nucleotide-conversion: match with
reference (white), nucleotide-conversion scored as mismatch (red), nucleotide-conversion scored with nucleotide-conversion aware scoring (blue),
low-quiality nucleotide conversion (black) and filtered nucleotide-conversion (opaque) a Naive nucleotide-conversion processing and
quantification vs DUNK: The naive read mapper (left) maps 11 reads (grey) to the reference genome and discards five reads (light grey), that
comprise many converted nucleotides (red). The DUNK mapper (right) maps all 16 reads. b DUNK processes multi-mapping reads (R5, R6, R7, left)
such that the ones (R3, R6) that can be unambiguously assigned to a 3" interval are identified and assigned to that region, R5 and R7 cannot be
assigned to a 3" interval and will be deleted from downstream analyses. R2 is discarded due to general low alignment quality. ¢ False-positive
nucleotide conversions originating from Single-Nucleotide Polymorphisms are masked. d High-quality nucleotide-conversions are quantified
normalizing for coverage and base content
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Nucleotide-conversion aware mapping improves
nucleotide-conversion quantification

Correct alignment of reads to a reference genome is a cen-
tral task of most high-throughput sequencing analyses. To
identify the optimal alignment between a read and the ref-
erence genome, mapping algorithms employ a scoring
function that includes penalties for mismatches and gaps.
The penalties are aimed to reflect the probability to ob-
serve a mismatch or a gap. In standard high throughput
sequencing experiments, one assumes one mismatch pen-
alty independent of the type of nucleotide mismatch
(standard scoring). In contrast, SLAMseq or similar proto-
cols produce datasets where a specific nucleotide conver-
sion occurs more frequently than all others. To account
for this, DUNK uses a conversion-aware scoring scheme
(see Table 1). For example, SLAM-DUNK does not
penalize a T > C mismatch between reference>read.

We used simulated SLAMseq data with conversion rates
of 0% (no conversions), 2.4 and 7% (conversion rates ob-
served in mouse embryonic stem cell (mESC) SLAMseq data
[4] and HeLa SLAMseq data (unpublished) upon saturated
4SU-labeling conditions), and an excessive conversion rate of
15% (see Table 2) to evaluate the scoring scheme displayed in
Table 1. For each simulated dataset, we compared the in-
ferred nucleotide-conversion sites using either the standard
scoring or the conversion-aware scoring scheme to the simu-
lated “true” conversions and calculated the median of the
relative errors [%] from the simulated truth (see Methods).
For a “conversion rate” of 0% both scoring schemes showed
a median error of <0.1% (Fig. 2a, Additional file 1: Figure
S1). Of note, the mean error of the standard scoring scheme
is lower than for the conversion-aware scoring scheme
(0288 vs 0297 nucleotide-conversions) thus favoring
standard-scoring for datasets without experimentally intro-
duced nucleotide-conversions. For a conversion rate of 2.4%
the standard and the conversion-aware scoring scheme
showed an error of 4.5 and 2.3%, respectively. Increasing the
conversion rate to 7% further increased the error of the
standard scoring to 5%. In contrast, the error of the
SLAM-DUNK scoring function stayed at 2.3%. Thus,
conversion-aware scoring reduced the median conversion

Table 1 Columns represent reference nucleotide, rows read
nucleotide. If a C occurs in the read and a T in the reference,
the score is equal to zero. The other possible mismatches
receive a score of — 15. A match receives a score of 10

Reference genome

A T G C
Read position A 10 -15 -15 -15
T =15 10 =15 -15
G =15 =15 10 =15

C =15 0 =15 10
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quantification error by 49-54% when compared to standard
scoring scheme.

DUNK correctly maps reads independently of their
nucleotide-conversion rate

Mismatches due to SNPs or sequencing errors are one
of the central challenges of read mapping tools. Typical
RNA-Seq datasets show a SNP rate between 0.1 and
1.0% and a sequencing error of up to 1%. Protocols
employing chemically induced nucleotide-conversions
produce datasets with a broad range of mismatch fre-
quencies. While nucleotide-conversion free (unlabeled)
reads show the same number of mismatches as
RNA-Seq reads, nucleotide-conversion containing (la-
beled) reads contain additional mismatches, depending
on the nucleotide-conversion rate of the experiment and
the number of nucleotides that can be converted in a
read. To assess the effect of nucleotide-conversion rate
on read mapping we randomly selected 1000 genomic 3’
intervals of expressed transcripts extracted from a pub-
lished mESC 3’ end annotation and simulated two data-
sets of labeled reads with a nucleotide-conversion rate of
2.4 and 7% (see Table 2). Next, SLAM-DUNK mapped the
simulated data to the mouse genome and we computed the
number of reads mapped to the correct 3" interval per data-
set. Figure 2b shows that for a read length of 50bp and a
nucleotide-conversion rate of 2.4% the mapping rate (91%) is
not significantly different when compared to a dataset of un-
labeled reads. Increasing the nucleotide-conversion rate to
7% caused a moderate drop of the correctly mapped reads to
88%. This drop can be rectified by increasing the read length
to 100 or 150 bp where the mapping rates are at least 96%
for nucleotide-conversion rates as large as 15% (Fig. 2b).

While we observe a substantial drop in the percentage of
correctly mapped reads for higher conversion rates (> 15%)
for shorter reads (50 bp), SLAM-DUNK’s mapping rate for
longer reads (100 and 150bp) remained above 88% for
datasets with up to 15 and 30% conversion rates, respect-
ively, demonstrating that SLAM-DUNK maps reads with
and without nucleotide-conversion equally well even for
high conversion frequencies.

To confirm this finding in real data, we used
SLAM-DUNK to map 21 published (7 time points with
three replicates each) SLAMseq datasets [4] from a
pulse-chase time course in mESCs (see Table 3) with esti-
mated conversion rates of 2.4%. Due to the biological na-
ture of the experiment we expect that the SLAMseq data
from the first time point (onset of 4SU- wash-out/chase)
contain the highest number of labeled reads while the data
from the last time point has virtually no labeled reads.

Figure 2c shows the expected positive correlation
(Spearman’s rho: 0.565, p-value: 0.004) between the frac-
tion of mapped reads and the time-points if a conversion
unaware mapper is used (NextGenMap with default
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Table 2 Simulated datasets and their corresponding analyses in this study

3" intervals Nucleotide-conversion Read Coverage Labeled  Analysis Figure

rate [%] length [bp] transcripts

1 k mESC expressed 3" intervals of 1000 0,24,7,15, 30,60 50, 100, 100 100% Nucleotide-conversion aware 2a,C,

randomly selected transcripts expressed in 150 read mapping S1

mESC)

1 k mESC expressed 0,24,7 50, 100, 100 100% Multimapper recovery strategy ~ 3b
150 evaluation

22,281 (mESC) 0,24,7 100 60x 100% SNP masking evaluation 4b

1 k mESC expressed 24,7 50, 100, 100x 50% Evaluation of T > C read 5a, S4
150 sensitivity / specificity

18 example genes (MESQ) 24,7 50, 100, 200x 50% Comparison of labeled fraction  5¢
150 of transcript estimation

methods

1 k mESC expressed 24,7 50, 100, 25x- 200x in - 0-100% Evaluation of labeled fraction of 5d, S6

150 25x intervals transcript estimation

values). Next, we repeated the analysis using SLAM-
DUNK. Despite the varying number of labeled reads in
these datasets, we observed a constant fraction of 60—
70% mapped reads across all samples (Fig. 2c) and did
not observe a significant correlation between the time
point and the number of mapped reads (Spearman’s rho:
0.105, p-value: 0.625). Thus, DUNK maps reads inde-
pendent of the nucleotide-conversion rate also in experi-
mentally generated data.

Multi-mapper recovery increases number of genes
accessible for 3’ end sequencing analysis

Genomic low-complexity regions and repeats pose major
challenges for read aligners and are one of the main
sources of error in sequencing data analysis. Therefore,
multi-mapping reads are often discarded to reduce mis-
leading signals originating from mismapped reads: As
most transcripts are long enough to span sufficiently long
unique regions of the genome, the overall effect of dis-
carding all multi-mapping reads on expression analysis is
tolerable (mean mouse (GRCm38) RefSeq transcript
length: 4195 bp). By only sequencing the ~ 250 nucleotides
at the 3’ end of a transcript, 3" end sequencing increases
throughput and avoids normalizations accounting for
varying gene length. As a consequence, 3" end sequencing
typically only covers 3" UTR regions which are generally
of less complexity than the coding sequence of transcripts
[9] (Additional file 1: Figure S2a). Therefore, 3" end se-
quencing produces a high percentage (up to 25% in 50 bp
mESC samples) of multi-mapping reads. Excluding these
reads can result in a massive loss of signal. The core pluri-
potency factor Oct4 is an example [10]: Although Oct4 is
highly expressed in mESCs, it showed almost no mapped
reads in the 3" end sequencing mESC samples when dis-
carding multi-mapping reads (Additional file 1: Figure
S3a). The high fraction of multi-mapping reads is due to a
sub-sequence of length 340 bp occurring in the Oct4 3’
UTR and an intronic region of Rfwd?2.

To assess the influence of low complexity of 3" UTRs
on the read count in 3’ end sequencing, we computed
the mappability scores [11] for each 3" UTR. A high
mappability score (ranging from 0.0 to 1.0) of a k-mer in
a 3" UTR indicates uniqueness of that k-mer. Next, we
computed for each 3" UTR the %-uniqueness, that is the
percentage of its sequence with mappability score of 1.
The 3" UTRs were subsequently categorized in 5% bins
according to their %-uniqueness. For each bin we then
compared read counts of corresponding 3" intervals (3 x
4SU Oh samples, see Table 3) with the read counts of
their corresponding gene from a RNA-Seq dataset [4].
Figure 3a shows the increase in correlation as the
%-uniqueness increases. If multi-mappers are included
the correlation is stronger compared to counting only
unique-mappers. Thus, the recovery strategy of
multi-mappers as described above efficiently and cor-
rectly recovers reads in low complexity regions such as
3" UTRs. Notably, the overall correlation was consist-
ently above 0.7 for all 3" intervals with more than 10%
of unique sequence.

To further evaluate the performance of the
multi-mapper recovery approach, we resorted to simu-
lated SLAMseq datasets: We quantified the percentages of
reads mapped to their correct 3" interval (as known from
the simulation) and the number of reads mapped to a
wrong 3’ interval, again using nucleotide-conversion rates
of 0.0, 2.4 and 7.0% and read lengths of 50, 100 and 150
bp (see Table 2): The multi-mapper recovery approach in-
creases the number of correctly mapped reads between 1
and 7%, with only a minor increase of < 0.03% incorrectly
mapped reads (Fig. 3b).

Next, we analysed experimentally generated 3" end se-
quencing data (see Table 3) in the nucleotide-conversion
free mESC sample. For each 3’ interval, we compared
read counts with and without multi-mapper recovery
(Fig. 3c). When including multimappers, 82% of the
19,592 3" intervals changed the number of mapped reads
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Table 3 Real SLAMseq datasets and their corresponding analyses in this study

Samples Description Analysis Figure

GSM2666819-GSM2666839 Chase-timecourse samples at 0, 0.5,1, 3,6, 12 Percentages of retained reads after mapping with standard 2b
and 24 h with 3 replicates at each time point  and nucleotide-conversion aware scoring with DUNK.

GSM2666816 Single no 4SU 0 h replicate Multimapper recovery count scatter vs unique mappers 3¢,
S2b,c,
S3
GSM2666816-GSM2666818 3 no 4SU 0 h replicates Multimapper recovery correlation with RNAseq 3a
GSM2666816-GSM2666821 0h no 4SU samples and 0 h chase samples Evaluation of SNP calling and masking 4a, c-d
with 3 replicates each
GSM2666816-GSM2666821, 0h no 4SU, 0, 3, 6, 12 and 24 h chase samples  Evaluation of QC diagnostics 6

GSM2666828-GSM2666837 (3 replicates each)
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by less than 5%. However, for many of the 18%
remaining 3" intervals the number of mapped reads was
highly increased with the multi-mapper-assignment
strategy. We found that these intervals show a signifi-
cantly lower associated 3" UTR mappability score, con-
firming that our multi-mapper assignment strategy

specifically targets intervals with low mappability
(Additional file 1: Figure S2b,c).

Figure 3c also shows the significant increase of the
Oct4 read counts when multi-mappers are included (3 x
no 4SU samples, mean unique mapper CPM 2.9 vs mean
multimapper CPM 1841.1, mean RNA-seq TPM 1673.1,
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Additional file 1, Figure S3b) and scores in the top 0.2%
of the read count distribution. Simulation confirmed that
these are indeed reads originating from the Oct4 locus:
without multi-mapper assignment only 3% of simulated
reads were correctly mapped to Oct4, while all reads
were correctly mapped when applying multi-mapper
recovery.

Masking single nucleotide polymorphisms improves
nucleotide-conversion quantification

Genuine SNPs influence nucleotide-conversion quantifica-
tion as reads covering a T > C SNP are mis-interpreted as
nucleotide-conversion containing reads. Therefore, DUNK
performs SNP calling on the mapped reads to identify
genuine SNPs and mask their respective positions in the
genome. DUNK considers every position in the genome a
genuine SNP position if the fraction of reads carrying an
alternative base among all reads exceeds a certain thresh-
old (hereafter called variant fraction).

To identify an optimal threshold, we benchmarked vari-
ant fractions ranging from 0 to 1 in increments of 0.1 in
three nucleotide-conversion-free mESC QuantSeq data-
sets (see Table 3). As a ground truth for the benchmark
we used a genuine SNP dataset that was generated by gen-
ome sequencing of the same cell line. We found that for
variant fractions between 0 and 0.8 DUNK’s SNP calling
identifies between 93 and 97% of the SNPs that are
present in the truth set (sensitivity) (Fig. 4a, —-4SU). Note
that the mESCs used in this study were derived from hap-
loid mESCs [12]. Therefore, SNPs are expected to be fully
penetrant across the reads at the respective genomic pos-
ition. For variant fractions higher than 0.8, sensitivity
quickly drops below 85% consistently for all samples. In
contrast, the number of identified SNPs that are not
present in the truth set (false positive rate) for all samples
rapidly decreases for increasing variant fractions and starts
to level out around 0.8 for most samples. To assess the in-
fluence of nucleotide-conversion on SNP calling, we re-
peated the experiment with three mESC samples
containing high numbers of nucleotide-conversions (24 h
of 4SU treatment). While we did not observe a striking
difference in sensitivity between unlabeled and highly la-
beled replicates, the false-positive rates were larger for low
variant fractions suggesting that nucleotide-conversions
might be misinterpreted as SNPs when using a low variant
fraction threshold. Judging from the ROC curves we
found a variant fraction of 0.8 to be a good tradeoff be-
tween sensitivity and false positive rate with an average of
94.2% sensitivity and a mean false-positive rate of 16.8%.

To demonstrate the impact of masking SNPs before
quantifying nucleotide-conversions, we simulated SLAM-
seq data (Table 2): For each 3" interval, we computed the
difference between the number of simulated and detected
nucleotide-conversions and normalized it by the number of
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simulated conversion (relative errors) — once with and once
without SNP masking (Fig. 4b). The relative error when ap-
plying SNP-masking was significantly reduced compared to
datasets without SNP masking: With a 2.4% conversion
rate, the median relative error dropped from 53 to 0.07%
and for a conversion rate of 7% from 17 to 0.002%.

To investigate the effect of SNP masking in real data,
we correlated the number of identified nucleotide con-
versions and the number of genuine T > C SNPs in 3" in-
tervals. To this end, we ranked all 3" intervals from the
three labeled mESC samples (24 h 4SU labeling) by their
number of T > C containing reads and inspected the dis-
tribution of 3’ intervals that contain a genuine T >C
SNP within that ranking (Fig. 4c and d, one replicate
shown). In all three replicates, we observed a strong en-
richment (p-values <0.01, 0.02 and 0.06) of SNPs in 3’
intervals with higher numbers of T >C reads (Fig. 4c,
one replicate shown). Since T > C SNPs are not assumed
to be associated with T > C conversions we expect them
to be evenly distributed across all 3" intervals if properly
separated from nucleotide conversions. Indeed, applying
SNP-masking rendered enrichment of SNP in 3’ inter-
vals with higher numbers of T > C containing reads not
significant (p-values 0.56, 0.6 and 0.92) in all replicates
(Fig. 4d, one replicate shown).

SLAM-DUNK: quantifying nucleotide conversions in
SLAMseq datasets

The main readout of a SLAMseq experiment is the
number of 4SU-labeled transcripts, hereafter called la-
beled transcripts for a given gene in a given sample.
However, labeled transcripts cannot be observed directly,
but only by counting the number of reads showing con-
verted nucleotides. To this end, SLAM-DUNK provides
exact quantifications of T > C read counts for all 3" in-
tervals in a sample. To validate SLAM-DUNK’s ability to
detect T > C reads, we applied SLAM-DUNK to simu-
lated mESC datasets (for details see Table 2) and quanti-
fied the percentage of correctly identified T > C reads i.e.
the fraction stemming from a labeled transcript (sensi-
tivity). Moreover, we computed the percentage of reads
stemming from unlabeled transcripts (specificity). For a
perfect simulation, where all reads that originated from
labeled transcripts contained a T >C conversion,
SLAM-DUNK showed a sensitivity >95% and a specifi-
city of >99% independent of read length and conversion
rate (Additional file 1: Figure S4). However, in real data-
sets not all reads that stem from a labeled transcript
contain T > C conversions. To showcase the effect of
read length and conversion rate on the ability of SLAM-
seq to detect the presence of labeled transcripts, we per-
formed a more realistic simulation where the number of
T > C conversions per read follows a binomial distribu-
tion (allowing for 0 T > C conversions per read).
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As expected, specificity was unaffected by this change
(Fig.5a). However, sensitivity changed drastically depend-
ing on the read length and T > C conversion rate. While
we observed a sensitivity of 94% for 150 bp reads and a
conversion rate of 7%, with a read length of 50 bp and
2.4% conversion rate it drops to 23%. Based on these
findings we next computed the probability of detecting
at least one T > C read for a 3" interval given the fraction
of labeled and unlabeled transcripts for that gene
(labeled transcript fraction) for different sequencing
depths, read lengths and conversion rates (see Methods)
(Fig. 5b, Additional file 1: Figure S5). Counterintuitively,
shorter read lengths are superior to longer read lengths
for detecting at least one read originating from a labeled
transcript, especially for low fractions of labeled tran-
scripts. While 26 X coverage is required for 150 bp reads

to detect a read from a labeled transcript present at a
fraction of 0.1 and a conversion rate of 2.4%, only 22 X
coverage is required for 50 bp reads (Additional file 1:
Table S1). This suggests that the higher number of short
reads contributes more to the probability of detecting
reads from a labeled transcript than the higher probabil-
ity for observing a T > C conversion of longer reads. In-
creasing the conversion-rate to 7% reduces the required
coverage by ~ 50% across fractions of labeled transcripts,
again with 50 bp read lengths profiting most from the
increase. In general, for higher labeled transcript frac-
tions such as 1.0 the detection probability converges for
all read lengths to a coverage of 2-3 X and 1 X for conver-
sion rates of 2.4 and 7%, respectively (Additional file 1:
Figure S5). Although, these results are a best-case approxi-
mation they can serve as guideline on how much coverage
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is required when designing a SLAMseq experiment that
relies on T > C read counts to detect labeled transcripts.
While estimating the number of labeled transcripts
from T>C read counts is sufficient for experiments
comparing the same genes in different conditions and
performing differential gene expression-like analyses, it
does not account for different abundancies of total tran-
scripts when comparing different genes. To address this
problem, the number of labeled transcripts for a specific
gene must be normalized by the total number of tran-
scripts present for that gene. We will call this the

fraction of labeled transcripts. A straight forward ap-
proach to estimate the fraction of labeled transcripts is
to compare the number of labeled reads to the total
number of sequenced reads for a given gene (see
Methods). However, this approach does not account for
the number of Uridines in the 3" interval. Reads origin-
ating from U-rich transcript or a T-rich part of the cor-
responding genomic 3" interval have a higher probability
of showing a T >C conversion. Therefore, T >C read
counts are influenced by the base composition of the
transcript and the coverage pattern. Thus, the fraction of
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labeled transcripts will be overestimated for T-rich and
underestimated for T-poor 3" intervals. To normalize for
the base composition, SLAM-DUNK implements a
T-content and read coverage normalized approach for
estimating the fractions of labeled transcripts (see
Methods). To evaluate both approaches we picked 18
example genes with varying T content in their 3" inter-
vals, 3" interval length and mappability (see Additional
file 1: Table S2 for full list), simulated 1000 SLAMseq
datasets (see Table 2) for each gene and compared the
recovered fraction of labeled transcripts with the simu-
lated truth (Fig. 5¢). On average the read-count based
method showed a mean relative error of 15%. In con-
trast, SLAM-DUNK’s T-content normalized approach
showed a mean relative error of only ~ 2%. Inspection of
the 18 genes revealed high variability in the estimates of
the read-count based method. While both methods per-
form equally well for TepI, the median error of the other
17 genes varies between 6 and 39% for the read-based
method and only between 1 and 4% for SLAM-DUNK.
We observed a strong correlation of relative error and
T-content using the read-count based method (Pearson’s
r: 0.41) and only a very weak association when using
SLAM-DUNK’s T-content normalized approach (Pear-
son’s r: —0.04). Expanding the analysis from 18 to 1000
genes confirmed the result. For the T > C read-based ap-
proach, 23% of the 3’ intervals showed a relative error
larger 20%. For SLAM-DUNK’s T-content normalized
approach it was only 8%.

Important factors for how confidently we can assess the
fraction of labeled transcripts of a given gene are the T > C
conversion rate, read length and sequencing depth. To as-
sess how much SLAMseq read coverage is required for a
given read length, we computed the relative error in frac-
tion of labeled transcripts using SLAM-DUNK’s T content
normalized approach estimation for datasets with a con-
version rate of 2.4 and 7%, read lengths of 50, 100 and
150 bp and sequencing depth of 25 to 200 (Fig. 5d). First,
we looked at datasets with a T >C conversion rate of
2.4%. With a read length of 50 bp, SLAM-DUNK underes-
timated the fractions of labeled transcripts by about 10%.
This is caused by multi-mapping reads that cannot be
assigned to a single 3’ interval. Increasing the read length
to 100 or 150bp allows SLAM-DUNK to assign more
reads uniquely to the genome. Therefore, the median rela-
tive error is reduced to 3% for these datasets. Sequencing
depth showed no influence on the median relative error.
However, it influences the variance of the estimates. With
a read length of 100 bp and a coverage of 50X, 18% of the
3’ intervals show a relative error of >20%. Increasing the
coverage to 100X or 150X, reduces this number to 6 and
0.8%, respectively.

Increasing the T >C conversion rate to 7% improved
overall fraction of labeled transcripts estimations noticeably.
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For 100 bp reads and a coverage of 50X, 100X and 200X the
percentage of 3" intervals with relative error > 20% is reduced
to 3, 0.2 and 0%, respectively. Independent of read length,
coverage and T > C conversion rate, the T > C read based
fraction of labeled transcripts estimates performed worse
than the SLAM-DUNK estimates (see Additional file 1:
Figure S6).

Both fraction of labeled transcripts estimates as well as
raw T > C read counts are affected by sequencing error,
especially when the T >C conversion rate is low. To
mitigate the impact of sequencing error on the respect-
ive quantification measures, SLAM-DUNK optionally
applies a base-quality filter on conversion calls. As
shown in Fig. 6¢, this strategy substantially reduces the
signal from erroneous sequencing cycles. In addition,
SLAM-DUNK allows the quantifications of fraction of
labeled transcripts estimates as well as raw T > C read
counts to be restricted to reads that carry >1
nucleotide-conversions. Muhar et al. [5] showed that
using this strategy, the contribution of background
signal from reads with 1T >C conversion was almost
completely eradicated when using reads with 2T >C
conversions. Alternatively, the background signal of no
4SU could be subtracted to address sequencing error as
performed by Herzog et al. [4].

Quality control and interpretation of SLAMseq datasets
To facilitate SLAMseq sample interpretation, we imple-
mented several QC modules into SLAM-DUNK on a
per-sample basis. To address the need for interpretation
of samples in an experimental context, we provide Mul-
tiQC support [13] for SLAM-DUNK. SLAM-DUNK’s
MultiQC module allows inspection of conversion rates,
identification of systematic biases and summary statistics
across samples.

To demonstrate SLAM-DUNK’s QA capabilities, we
applied it to 6 representative mESC timecourse datasets
with expected increasing nucleotide-conversion content
(see Table 3). First, we compared the overall nucleotide
conversions rates of all timepoints and observed the ex-
pected decrease of T > C nucleotide-conversions in later
time-points (Fig. 6a, one replicate shown). Next, we per-
formed a PCA based on T >C conversion containing
reads using all three replicates. We found that replicates
cluster together as expected. Furthermore, 24 h chase
and no 4SU samples formed one larger cluster. This can
be explained since at 24 h of chase, samples are expected
to be T > C conversion free (Fig. 6b).

By inspecting mismatch rates along read positions for
two representative samples, we could identify read cycles
with increased error rates (Fig. 6¢). To reduce read cycle
dependent nucleotide mismatch noise, we implemented
a base-quality cutoff for T>C conversion calling in
SLAM-DUNK. Applying the base-quality cutoffs
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generally reduced T-content in the last bases of 3' UTRs

significantly increased overall data quality, mitigating or
even eradicating error-prone read positions. Finally, we vi-
sualized average T > C conversion rates across the last 250
nucleotides of each transcript to inspect positional T > C
conversion biases across the 3’ intervals. We found no
conversion bias across the static 250 bp windows except
for a dip in T > C conversions ~ 20 nucleotides upstream
of the 3" end, which is most likely caused by lower gen-
omic T-content, a characteristic feature of mRNA 3" end
sequences (see Additional file 1: Figure S7).

Discussion and conclusions

We present Digital Unmasking of Nucleotide-conversions
in k-mers (DUNK) for mapping and quantifying nucleotide
conversions in reads stemming from nucleotide-conversion

based sequencing protocols. As a showcase application of
DUNK, we applied it to T > C nucleotide-conversion con-
taining datasets as produced by the novel SLAMseq proto-
col. Using real and simulated datasets, we establish DUNK
as method that allows nucleotide-conversion rate inde-
pendent read mapping for nucleotide-conversion rates of
up to 15% when analyzing 100 bp reads. Since the most in-
formative proportion of the overall signal stems from
nucleotide-conversion containing reads, the correct map-
ping of such reads is crucial and resulted in a reduction of
the nucleotide-conversion quantification error by ~ 50%.
DUNK tackles the problem of low-complexity and repeti-
tive sequence content which is severely aggravated in 3’
end sequencing by employing a multi-mapper recovery
strategy: We demonstrate that DUNK specifically recovers
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read mapping signal in 3’ intervals of low mappability that
would otherwise be inaccessible to 3’ end sequencing ap-
proaches, enhancing the correlation with complementary
RNAseq data. Globally, we recover an additional 1-7% of
correctly mapped reads at a negligible cost of wrongly
mapped reads. We used genome-sequencing datasets to es-
tablish optimized variant calling settings, a crucial step of
DUNK to separate true- from false-positive nucleotide-
conversion stemming from SNPs. Applying these established
settings, we demonstrated the advantage of SNP masking
over naive nucleotide-conversion quantification which
uncouples SNPs from nucleotide-conversion content and re-
sults in a more accurate nucleotide-conversion quantifica-
tion, reducing the median quantification error for SNP
harboring 3" intervals from 53 to 0.07% and 17 to 0.002% for
conversion rates of 2.4 and 7%, respectively.

We provide the SLAM-DUNK package, an application of
DUNK to SLAMseq datasets: SLAM-DUNK provides abso-
lute read-counts of T > C conversion containing reads which
can directly be used for comparing the same transcripts in
different conditions and to perform differential gene
expression-like analyses with a sensitivity of 95%. Since
absolute-read counts between genes are dependent on
T-content and sequencing depth, SLAM-DUNK implements
a T-content and read coverage normalized approach for esti-
mating the fractions of labeled transcripts. This quantification
routine has clear advantages over read-count based fraction
of labeled transcripts estimates, reducing the proportion of
genes with relative errors >20% from 23% with the
read-based approach to only 8% with SLAM-DUNK’
T-content normalized approach. In addition to absolute
T > C read counts and fractions of labeled transcript esti-
mates, SLAM-DUNKs modular design also allows to
plug-in statistical frameworks such as GRAND-SLAM
[14] which utilizes a binomial mixture-model for estimat-
ing proportions of new and old RNA to directly estimate
RNA half-lives.

While SLAM-DUNK is a showcase application of DUNK
to unpaired, stranded and unspliced (QuantSeq) data, Next-
GenMap — our mapper of choice — is a general-purpose
alignment tool that also facilitates paired-end, unstranded
datasets. Therefore, NextGenMap can be readily parame-
trized to process datasets produced by novel applications
such as NASC-seq (https://www.biorxiv.org/content/early/
2018/12/17/498667) and scSLAM-seq (https://www.bior-
xiv.org/content/10.1101/486852v1) with the downstream
SLAM-DUNK pipeline. Due to SLAM-DUNK’s modular
design, one can also entirely swap the alignment tool to
other standard RNA-seq aligners as long as they output the
BAM-tags we introduced for speedy conversion detection
(see Additional file 1: Supplementary information).

SLAM-DUNK’s simulation framework allows assessing
error rates for given parameters such as read length,
conversion rate and coverage in silico prior to setting up
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experiments in vitro. This allows bench scientists to in-
spect simulation results to check whether they are able to
reliably interpret nucleotide-conversion readouts for given
genes using a certain experimental setup and annotation.

Ensuring scalability as well as feasible resource consump-
tions is vital for processing large multisample experiments
such as multi-replicate time courses. SLAM-DUNK
achieves this with its modular design and efficient imple-
mentation enabling a 21-sample time course experiment to
run in under 8 h hours with 10 CPU threads on a desktop
machine with a peak memory consumption of 10 GB main
memory (see Additional file 1: Supplementary information).

We demonstrated that SLAM-DUNK visualizations
and sample-aggregation via MultiQC are valuable tools
to unravel biases in and characteristics of SLAMseq
datasets thus facilitating rapid and easy quality checks of
samples and providing measures to correct for systemic
biases in the data.

Deployment of SLAM-DUNK on multiple software plat-
forms and through Docker images ensures low effort instal-
lation on heterogeneous computing environments. Verbose
and comprehensive output of SLAM-DUNK makes results
reproducible, transparent and immediately available to
bench-scientists and downstream analysis tools.

Methods

Mapping reads with T > C conversions

NextGenMap [7] maps adapter- and poly(A)-trimmed
SLAMseq reads to the user specified reference genome.
Briefly, NextGenMap searches for seed words - 13-mers
that match between a given read and the reference se-
quence - using an index data structure. All regions of the
reference sequence that exceed a certain seed-word count
threshold are candidate mapping regions (CMR) for the
read. Subsequently, NextGenMap identifies the CMR with
the highest pairwise Smith-Waterman alignment score as
the best mapping position of the read in the genome. If a
read has more than one CMR NextGenMap reports up to
100 locations in the genome. Reads with more than 100
mapping locations are discarded.

We extended NextGenMap’s seed-word identification
step to allow for a single T > C mismatch in a seed word.
Finally, we changed the scoring function of the pairwise
sequence alignment algorithms to assign neither a mis-
match penalty nor a match score to T > C mismatches:

Furthermore, we extended NextGenMap to output
additional SAM tags containing all necessary informa-
tion (e.g. list of all mismatches in a read) required by
subsequent steps of SLAM-DUNK (see Additional file 1:
Supplementary information for details).

Filtering reads and multi-mapper assignment
Only read alignments with a sequence identity of at least
95% and a minimum of 50% of the read bases aligned
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were kept for the subsequent analysis. Since 3" end sequen-
cing should generate fragments at 3" end mRNAs, we dis-
card all read mappings located outside of a user-defined set
of 3" UTR intervals. Still, remaining multi-mapper reads
are processed as follows: For a read that maps to two or
more locations of the same 3" UTR, one location is ran-
domly picked, the others are removed. All reads that map
to two or more distinct 3" UTRs are entirely discarded (see
Additional file 1: Figure S8 for details).

SNP masking

SLAM-DUNK uses VarScan 2.4.1 [15] to call SNPs in
the set of filtered reads requiring a minimum coverage
of 10x and a minimum alternative allele frequency of 0.8
for all published and sequenced haploid samples. Thus,
if VarScan identified a C as a new SNP at a T nucleotide
in the genome, this will not be counted as T > C conver-
sion in downstream analysis.

For genome-sequencing data, SNPs were called using
VarScan 2.4.1 default parameters only outputting homo-
zygous variant positions. Only SNPs that exceed the
minimum coverage of the respective Varscan 2.4.1 runs
in the benchmarked 3 intervals are considered for sen-
sitivity and false-positive rate calculations.

We used an adaption of the barcodeplot function of
the limma package to visualize the distribution of SNPs
along 3’ intervals ordered by their number of T >C
reads: To make sure the SNP calls are not coverage
biased, we only use the upper quartile of 3" intervals in
terms of read coverage, excluding 3’ intervals not meet-
ing the coverage cutoffs of the variant calling process for
this analysis. We produce one plot using unmasked T >
C containing reads and a separate plot using
SNP-masked T >C containing reads. In addition, we
apply the Mann-Whitney-U test on both sets to give a
measure of how biased the SNPs are distributed in
unmasked vs SNP-masked 3 intervals. Ideally, a strong
association of T > C containing reads with SNPs in the
unmasked data and no association of T > C containing
reads with SNPs in the masked data is expected, show-
ing the SNP calling actually uncoupled T >C conver-
sions and SNPs. These plots allow to visually assess the
quality/performance of SNP calling on the data without
presence of actual controls.

Estimating the fraction of labeled transcripts

Let psi; be the unknown fraction of labeled transcripts
for a 3 " interval. With 0 < p, <1 we denote the efficiency
that a transcript contains a 4SU, the 4SU residue is alky-
lated and that alkylated 4SU base-pairs with G instead of
U during reverse transcription, that can be identified as
aT > C conversion in high-throughput sequencing. Note,
we assume p, is constant for a given experiment.
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T> C read counts based estimator
The probability that a read from a labeled transcript
does not show a T > C conversion equals

by = (l_pe)t

where ¢ is the number of thymidines in the read match-
ing genomic sequence. Accordingly, the probability to
find a read with at least one T > C conversion from a la-
beled transcript equals

Proc =1-py

In a sample of #n reads given an unknown frequency
psu of labeled transcripts we expect to find

E(SU) = psy * prc*n

reads with at least one conversion site. Note, we assume
that ¢ is the same for all reads. Based on the observed
number of converted reads R;_,- and the number of
reads n, we get

RT—>C

Psu * Pr_c =

In a time course experiment, we can use a time-point
with a labeling time long enough that all transcripts are
labeled (ps;=1) for all 3' intervals to retrieve Py, c. Since
we assume that Py, ¢ is constant for a given experiment
we obtain

1 RT~>C
*—

Psu = PT—)C n

for all other time points.

T-content and coverage normalized estimator

Since assuming ¢ to be the same for all reads is an over-
simplification we want to estimate pg; without using
T > C read counts by looking at T-positions individually.
For a specific T-position i in the 3' interval, let X; denote
the number of reads that show a conversion and let ¢;
define the number of reads that cover position i. Then

Ci ci—k;
Pr(X; = ki | psy,pe) = (k) (st * 2.) (A-pgy + p) ™,

If p. is unknown, we can compute the maximum like-
lihood estimate of the confounded probability pg;; * p. as

ki

Psuy *Pe = —
Ci

If the interval contains n 75 then the maximum likeli-
hood estimate of pg;; * p. equals
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— Z?:lki
Psuy*Pe ==
s D i1

By retrieving p, from an experiment with pg /=1 we
obtain

1 Z?:lki
Dsu=—*Sn -
su pe Z:IZICi

—

Computing the probability of detecting at least one T>C
read for a 3’ interval

Based on the notation developed above, we can compute
the expected number of reads showing a T > C conver-
sion given pg; and pr.c for a 3' interval with n se-
quenced reads as

E(SU) = psy *Prc * 1

When taking into account empirically determined sen-
sitivity of SLAMDUNK §, i.e. the probability of detecting
a read with T > C conversion as a labeled read, we com-
pute the probability of detecting at least one labeled read
for a 3" interval given pg;; and pr_, c as:

Pperecr = 1-B(0; E(SU), S)

Simulating SLAMseq datasets

All datasets were simulated using SLAM-DUNK’s simu-
lation module. The input parameters are a reference
genome sequence and a BED file containing 3" interval
annotations. First, SLAM-DUNK removes overlapping
3’ intervals in the BED file and assigns a labeled tran-
script fraction between 0 and 1 (uniformly distributed)
to each 3" interval. Alternatively, the user can either
supply a fixed fraction of labeled transcripts that is the
same for all genes or add gene specific fraction to the
initial BED file. Next, SLAM-DUNK extracts the 3’
interval sequences from the supplied FASTA file and
randomly adds homozygous SNPs, including but not
limited to T > C SNPs, based on a user specified prob-
ability (default: 0.1%). For each of the modified 3" inter-
val SLAM-DUNK simulates RNA reads using the
RNASeqReadSimulator  (https://github.com/davidliwei/
RNASeqReadSimulator) package. To mimic Quant-Seq
datasets, only the last 250 bp of the 3 interval are used
for the simulation. Finally, SLAM-DUNK adds T>C
conversions to the reads to simulate transcripts labeling.
The number of T > C conversions for each labeled read
is computed using a binomial distribution B(%, p.) with ¢
the number of Ts in the read and p, the conversion
probability. All simulated reads are stored in a BAM file.
The name of each read contains the name of the 3’
interval the read was simulated from and the number of
T >C conversions added. Furthermore, SLAM-DUNK
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provides a T>C count file containing the number of
simulated reads and simulated fraction of labeled tran-
scripts for all 3" interval.

Relative error

Let Nygyre be the number of true events and Npgrecr
the number of detected events. Then the relative error
E,.; of a detected quantity compared to the known truth
calculates as follows:

Nrrue—NpeTECT
Epy=—"-"+——"7""
N rrue

Mappability assessment

We used the GEM library [11] to calculate 50mer and
100mer mappability tracks for the GRCm38 mouse gen-
ome (-e 0). We then used BEDTools [16] coverage to
define mappable regions within the 3" UTR set pub-
lished by Herzog et al. [4] to calculate 3" UTR mappabil-
ity fractions 3" UTRs. The same procedure was applied
to RefSeq exons (obtained on May 2, 2016) mapped to
Entrez genes for exon mappability fractions (note: these
also include 3" UTRs). Entrez genes were mapped to 3’
UTRs and only 3" UTRs with a mappability fraction
below 90% were analyzed.

Datasets

For in silico validations with simulated datasets, we used
the set of mESC 3 intervals by Herzog et al. [4] as refer-
ence. The datasets simulated during this study are listed
in Table 2.

For validation, we used real SLAMseq data generated
by performing 4SU pulse-chase experiments in mESCs
(GEO accession: GSE99970) [4]. The subsets used dur-
ing this study are listed in Table 3.

For validation of the multimapper recovery strategy, we
used RNA-seq data from the same mESC line (GEO acces-
sion: GSE99970, samples: GSM2666840-GSM2666842) [4].

Additional information
Supplementary information, Figures and Tables refer-
enced in this study are provided as .pdf file DUNK_SIL.

Genomic DNA sequencing of AN3-12 cells

AN3-12 mouse embryonic stem cells [12] were lysed in
Lysis buffer (10 mM Tris, pH 7.5; 10 mM EDTA, pH 8;
10 mM NaCl; 0.5% N-Laurosylsarcosine) and incubated
at 60 °C overnight. DNA was ethanol precipitated using
0.2M NaCl and the DNA was resuspended in 1x TE.
Isolated gDNA was phenol-chloroform purified followed by
ethanol precipitation. 2 pg of purified gDNA was sheared in
130 ul of 1xTE in a microTUBE AFA Fiber Crimp-Cap
(6x16mm) using the E220 Focused-ultrasonicator
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(Covaris®) with the following settings: 140 W peak incident
power, 10% Duty Factor, 200 cycles per burst, 80s treat-
ment time. The sheared DNA was bead-purified using
Agencourt” AMPure® XP beads (Beckman Coulter) to se-
lect fragments between 250 and 500 nt. DNA library prep-
aration was performed using NEBNext® Ultra® DNA
Library Prep Kit for Illumina® (NEB) and the library was se-
quenced in the paired-end 50 mode on a HiSeq 2500 in-
strument (Illumina).

Additional file

Additional file 1: Supplementary information, figures and tables.
(PDF 6280 kb)

Abbreviations

4SU: 4-thiouridine; CPM: Counts-per-million; DUNK: Digital Unmasking of
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