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Abstract

The ability to inhibit motor response is crucial for daily activities. However, whether brain net-

works connecting spatially distinct brain regions can explain individual differences in motor

inhibition is not known. Therefore, we took a graph-theoretic perspective to examine the

relationship between the properties of topological organization in functional brain networks

and motor inhibition. We analyzed data from 141 healthy adults aged 20 to 78, who under-

went resting-state functional magnetic resonance imaging and performed a stop-signal task

along with neuropsychological assessments outside the scanner. The graph-theoretic prop-

erties of 17 functional brain networks were estimated, including within-network connectivity

and between-network connectivity. We employed multiple linear regression to examine how

these graph-theoretical properties were associated with motor inhibition. The results

showed that between-network connectivity of the salient ventral attention network and dor-

sal attention network explained the highest and second highest variance of individual differ-

ences in motor inhibition. In addition, we also found those two networks span over brain

regions in the frontal-cingulate-parietal network, suggesting that these network interactions

are also important to motor inhibition.

Introduction

The ability to refrain from the action when a readied response is no longer adequate is one of

the crucial survival skills for an individual. Therefore, it is important to evaluate an individual’s

ability to withhold an action [1]. In the laboratory, one of the conventional paradigms devel-

oped to evaluate an individual’s such inhibition efficacy is the stop-signal task (SST) [2, 3]. The

SST assesses the motor inhibition by instructing participants to withhold a motor response,

and how effectively the participants can withhold this response can be calculated as the stop-

signal reaction time (SSRT) [4]. Utilizing this paradigm, researchers have observed decreased
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motor inhibition in various clinical disorders, such as attention deficit hyperactivity disorder

[5] and substance use disorders [6, 7]. The deficiency in motor inhibition can also be found in

normal aging [8–13].

Neuroimaging research has identified brain regions associated with motor inhibition, such

as the right inferior frontal cortex (rIFC; [14, 15]), right frontal-opercular regions (including

the right inferior frontal cortex and the right anterior insula; [16]), subcortical regions (thala-

mus and basal ganglia; [17]), and presupplementary motor areas [18]. These studies employed

the task-evoked functional magnetic resonance image (fMRI) technique, in which an individu-

al’s brain activations were quantified and correlated with task performance. However, in some

scenarios, individuals, such as clinical patients or the elderly, may have difficulties in complet-

ing the SST, a time-consuming computer task, in a scanner. Therefore, developing an alterna-

tive neuroimaging technique to evaluate an individual’s performance variance without time-

consuming SST inside an MRI scanner is useful for clinical applications (e.g., [19, 20]) as well

as for the assessment of individual differences among the normal population (e.g., [21, 22]).

The resting-state fMRI measures brain activity in a task-free setting, estimates an individual’s

intrinsic functional organization of the brain [23]. Acquisition of neuroimaging data at rest

(i.e., resting-state fMRI) may be helpful to capture the individual differences of performance

variance in cognitive performance (e.g., [24]).

Resting-state fMRI (rs-fMRI) reflects the spontaneous but organized synchrony of the low-

frequency fluctuations in the blood oxygen level-dependent (BOLD) signals emerging from

some brain regions at rest [25]. The analysis of temporal correlations between the spontaneous

BOLD-signals in different brain regions allows for the quantification of functional connectivity

[26] and the investigation of intrinsic connectivity networks [27]. Important advantages of the

rs-fMRI approach are that rs-fMRI can minimize confounds of differences in the level of task

engagement, be used to detect differences in brain function between certain patients and nor-

mal populations, and correlate the differences in functional connectivity to clinical

applications.

Given the advantages of the rs-fMRI approach, some (but not many) prior research has

employed this method to correlate the intrinsic functional connectivity derived from rs-fMRI

data with motor inhibition performance measured by the SST. However, this research used

different analysis methods. For example, Tian and Ren [28] used regional homogeneity

(ReHo) as a method to examine the relationship between performances of motor inhibition

and changes of spontaneous fluctuations in brain activity. ReHo is a voxel-based measure of

brain activity that evaluates the similarity or synchronization between the time series of a

given voxel and its nearest neighbors [29, 30]. Tian and Ren [28] found local synchronization

of the spontaneous fluctuations in brain activity changes in three brain regions within the

default mode network––that is, the bilateral medial prefrontal cortex, the bilateral precuneus,

and the left inferior parietal lobule were associated with performance measured by SST. Their

results based on ReHo can be understood as an index of network centrality for characterizing

the voxel-wise consistency of signals in a region in the human functional connectome.

Other analysis methods, such as the fractional amplitude of low-frequency spontaneous

fluctuations (fALFF) in brain activity have also been employed and associated with SSRT. For

example, Hu and Chao [31] used the fALFF analysis method and found that the pre-supple-

mentary motor area (pre-SMA) and sensorimotor area were negatively correlated to SSRT.

More recently, Lee and Hsieh [12] further jointly combined these two analysis methods (i.e.,

ReHo and fALFF) and have reported that bilateral inferior frontal gyrus and parts of the

default mode network were correlated with individual differences in SSRT.

In addition to within-cluster and whole-brain spontaneous fluctuations, changes corre-

spondingly measured by ReHo and fALFF––or other methods, such as independent
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component analysis (ICA), which decomposes the signal from whole-brain voxels to spatially

and temporally independent components––were also reported regarding the association

between individual brain differences and the motor inhibition. For example, Tian and Kong

[32] applied the ICA method and found the components of the motor network, motor control

network, visual network, dorsal attention network, and task-activation network were associ-

ated with individual differences of SSRT. Their results suggest that spontaneous fluctuations in

brain activity changes are associated with individual performance differences in motor inhibi-

tion. However, neither intrinsic brain activity in clusters of voxels (e.g., ReHo) [28] nor whole-

brain spontaneous fluctuations (e.g., fALFF and ICA) [12, 31, 32] offer information regarding

the organization of the functional network. Comprehension of the organizational principles in

brain networks may provide a key to understanding the interplay between functional segrega-

tion and integration of large-scale networks and ultimately the emergence of cognition and

adaptive behaviors. Investigations of large-scale dynamic functional networks derived from

brain imaging data (e.g., see Fig 1A) have revealed valuable insights about the topological orga-

nization of the human brain in health and disease [33]. The application of graph-theoretic

methods can identify the topological organization of brain networks for assessing the brain

organization and the functional network properties [34, 35]. In a recent study by Kumar and

colleagues [24], they used the graph-theory quantity (i.e., maximum flow between nodes,

whose capacities are defined with transfer entropy) to predict the attention ability of SST.

However, their study did not investigate the association between functional network

Fig 1. Experimental method. (a) Nodes in the atlas: nodes used from Schaefer and Kong [36] atlas. (b) Indexes extraction: indexes calculation for each node, including

within-module-degree (WMD) and participation coefficient (PC). WMD represents the degree of a node’s connectome level within a module, while the PC represents

the degree of a node’s connectome level between other networks. (c) Multiple linear regression: we set PCs/WMDs of each network as a pattern and used multiple linear

regression to find the relationship between the linear combination of network property pattern and the SSRT. (d) Result assessment: all the prediction models were

tested by Pearson’s correlation between predicted stop-signal reaction time (SSRT) and the actual SSRT.

https://doi.org/10.1371/journal.pone.0242985.g001
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organization properties and motor inhibition. As such, the goal of this study is to investigate

whether functional networks organization properties are associated with the performance of

motor inhibition.

Graph-theoretic network analysis [37] provides a set of calculations to estimate and analyze

the properties and functions of complex networks (see Fig 1B). The brain can be modeled as a

complex network for graph-theoretic analysis, in which brain regions are treated as nodes in

the network, and between-regional connections are treated as edges. Graph-theoretic network

analysis can assess network properties and functions of different brain regions. For example,

the PCs of each node in each network represent the degree of the between-network connectiv-

ity. The nodes with high PC are called “connector hub” and the networks having more and

stronger “connector hubs” are presumed to mediate interactions between networks. In con-

trast, the node that has more within-networks connectivity, which is assessed by the WMD, is

called the “provincial hub”, and the network with more provincial hubs is presumed to pro-

mote the within-network interaction for conducting the particular function of the network

[38]. These two indexes (i.e., PC and WMD) can not only reveal the connectivity properties of

networks in healthy, normal population (e.g., [39]) but also distinguish normative brain origi-

nation from the abnormal ones, such as frontal lobe epilepsy [40]. The principal contribution

of our study is to examine the within- and between-module network connectivity in relation

to motor inhibition. To this end, we implemented multiple linear regression (see Fig 1C) to

identify the relationship between brain network properties and motor inhibition.

The goal of this study was to examine the relationship between the properties of topological

organization in the functional brain network and inter-individual differences in motor inhibi-

tion. Specifically, we first performed a graph-theoretic network analysis on rs-fMRI data for

measuring functional network organization properties. We then used multiple linear regres-

sion with leave-one-out cross validation to estimate the relationship between graph metrics

and SSRT (see Fig 1C). Finally, we performed Pearson’s correlation to estimate if, across sub-

jects, the predicted SSRT is correlated to the actual SSRT (see Fig 1D). The result was also veri-

fied by permutation test with 10000 iterations to calculate the p-value from the empirically

derived null distribution. We aimed to test whether within-network or between-network mod-

ule connectivity in a large-scale functional network explains the performance variances on

individual differences of motor inhibition.

Method and materials

This study protocol was approved by the Human Research Ethics Committee of the National

Cheng Kung University, Tainan, Taiwan, R.O.C. [Contract No. 104–004] to protect the partic-

ipants’ right according to the Declaration of Helsinki and the rule of research at the University.

All participants signed an informed consent form before participating in the experiments.

Participants

One hundred eighty-three right-handed participants without a history of psychological and

neurological disorders were recruited. Montreal Cognitive Assessment (MoCA; [41]) and

Beck Depression Inventory-II (BDI-II; [42]) were assessed for participants, and those with

scores lower than 22 in MoCA (n = 4) or higher than 13 in BDI-II (n = 7) were excluded before

the final analysis. Additionally, 31 participants were excluded due to MRI technical problems,

failed to learn the behavioral task (SST), incomplete data, or outlier calculated by Whisker

method (below 25th percentile– 1.5 x interquartile range or over 75th percentile + 1.5 x inter-

quartile range) in behavioral performance. Therefore, a total of 141 healthy volunteers aged

20–78 years (67 females, mean age 46.34, SD = 16.18) were included in the final analysis.
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Table 1 showed the demographic information on the participants included in the final analysis.

All participants acquired their behavioral task and rs-fMRI during day time and were asked to

star at a white cross during rs-fMRI acquisition.

Behavioral task: Stop-signal task

Participants were instructed to respond as quickly and correctly as possible to the on-screen

target stimuli “O” and “X” by correspondingly pressing the “z” and “/” buttons on a keyboard

with their left and right index fingers, respectively. Also, they were asked to inhibit their

responses if they heard auditory stop signal “beeps”, which were 500 Hz and lasted for 300 ms

after the stimulus. The target stimulus was colored white with a size of 2 cm and at a visual

angle of 0.64˚ in the center of a black screen.

Two practice blocks were conducted before the formal experiment started. In the first prac-

tice block, participants were instructed to perform a choice reaction-time task and tried their

best to respond to the stimulus as soon and accurately as possible. The “beep” sounds were still

presented in the background, but participants were asked to ignore this sound. In the second

practice block, participants were instructed to react to the “beep” sound following the stimulus

onset by stopping the response immediately. Participants were told not to slow down their

reaction to waiting for the stop signal to occur.

After the practice, the formal experiment commenced, and all of the settings and rules were

the same as for the second practice block. In the formal experiment, 5 blocks were included

(40 stop-trials and 100 go-trials per block). The start stop-signal delay (SSD) was first selected

from one of two interleaved staircases, 150 ms and 350 ms. The SSD then varied according to

the participants’ response on stop-trials, which made the following SSD increased by 50 ms

while one successfully stopped and made the SSD decreased by 50 ms while one did not suc-

cessfully stop [43]. The SSD range was fixed between 0 and 800 ms. The staircase procedure

ensured that the subject’s likelihood of stopping converged to a 50% chance. The inter-stimu-

lus interval varied from 1,300 to 4,800 ms, and the completion time was approximately 30 min,

including instruction and practice time.

The block-wised integration method [44] was used for the SSRT calculation. Recently, Ver-

bruggen and Chambers [44] suggested that a block-wise integration method for SSRT calcula-

tion could reduce bias from skewness and slow the degree of response. In light of the

improvement of this method, a block-wise calculation was performed in this study, which is

the least biased approach currently available for SSRT calculation. We subtracted the nth go RT

from the mean SSD block by block, where n was the number of RTs in the go-RT distribution

multiplied by the p(response|stop). The mean of the five-block values was the block-wise inte-

gration SSRT.

Table 1. 141 participants’ demographic information.

Age group (years) Age (mean/SD) Sample size (male/female) MoCA (mean/SD) BDI-II (mean/SD)

20–30 24.09/2.91 19/13 28.56/0.98 5.06/3.75

30–40 33.64/2.82 9/9 27.39/2.00 6.39/4.38

40–50 44.70/3.01 14/9 26.39/2.15 6.35/4.05

50–60 55.19/3.06 14/21 26.86/1.88 5.23/4.02

60–70 64.50/2.36 12/13 27.12/1.90 4.08/4.30

70–80 73.13/2.52 6/2 25.88/2.30 2.88/2.36

SD: standard deviation; MoCA: Montreal Cognitive Assessment; BDI-II: Beck Depression Inventory II

https://doi.org/10.1371/journal.pone.0242985.t001

PLOS ONE Between-module functional connectivity is associated with motor inhibition

PLOS ONE | https://doi.org/10.1371/journal.pone.0242985 December 3, 2020 5 / 15

https://doi.org/10.1371/journal.pone.0242985.t001
https://doi.org/10.1371/journal.pone.0242985


Image parameters and data analysis

Image acquisition. MRI images were acquired using a GE MR750 3T scanner (GE

Healthcare, Waukesha, WI, USA) at the Mind Research Imaging center at National Cheng

Kung University. Resting-state functional images were acquired with a gradient-echo echo-

planar imaging (EPI) pulse sequence (TR = 2,000 ms, TE = 30 ms, flip angle = 77, 64 × 64

matrices, FOV = 22 × 22 cm2, slice thickness = 4 mm, no gap, voxel size = 3.4375 mm × 3.4375

mm × 4 mm, 32 axial slices covering the entire brain). A total of 245 volumes were acquired;

the first five served as dummy scans and were discarded to avoid T1 equilibrium effects. Partic-

ipants were instructed to remain awake with their eyes open and to fixate on a central white

cross shown on the screen during the scans. High-resolution anatomical T1 images were

acquired using fast-SPGR which consisted of 166 axial slices (TR = 7.6 ms, TE = 3.3 ms, flip

angle = 12˚, 224 × 224 matrices, slice thickness = 1 mm) lasting 218 seconds.

For quality control, the subjects with 2.5 mm and 2.5 degrees in max head motion were

asked to be scanned again. No maximum numbers of censored volumes were set as criteria for

including a subject, but volumes of the scrubbing over 0.9 mm subject-motion were included

as a covariate for avoiding confounding.

Image pre-processing. Functional images were preprocessed using CONN toolbox 18a

(www.nitrc.org/projects/conn) and SPM 12 (http://www.fil.ion.ucl.ac.uk/spm) imple-

mented in Matlab (The MathWorks, Inc., Natick, MA, USA). We employed a pre-process-

ing protocol modified from Geerligs and Tsvetanov [45]. First, slice timing, realignment,

normalization, and smoothing with an 8-mm Gaussian kernel were conducted. Second, we

calculated nuisance covariates (denoted as R), including movement parameters (translations

along the x, y, and z axes and translations in three rotation angles: roll, yaw, and pitch),

white matter signal (WM), and cerebral spinal fluid (CSF). Third, we regressed out bad

frames at the subject level detected by “head motion censoring” [46] and [R R2 Rt-1 R2
t-1],

where t and t-1 refer to the current and immediately preceding timepoint, and R refers to

nuisance covariates [47]. Finally, a band-pass filter at 0.008–0.1 Hz was applied to nuisance

covariates and fMRI data simultaneously [48]. To further control for potential motion con-

founds, we ran partial Pearson correlations between observed scores with predicted scores

while controlling for head motion (defined as the average of the mean frame-to-frame

motion).

Identifying functional networks and organization and their properties. We used a

whole-brain parcellation template [36] to define cortical regions of interests (ROI), and calcu-

lated functional connectivity between these ROIs. It contains 400 nodes of brain regions, and

these nodes can be further categorized into 17 networks, including four subnetworks of the

default mode network, two subnetworks of the somatomotor network, three subnetworks of

the control network, two subnetworks of the visual network, two subnetworks of the dorsal

attention network, two subnetworks of the salient ventral attention network, and two subnet-

works of the limbic network (see S1 Table for more detail). The PC and WMD of each node

were calculated by the method mentioned by Guimera and Amaral [49]. For a review of these

four measures, please see Rubinov and Sporns [50].

Specifically, PC can be estimated as the degree to which a node is connected to external net-

works, with values ranging from 0 to 1. Nodes that are associated solely with other nodes

within a single network would have a PC of 0, while nodes with many distributed associates

with many different networks would have a PC closer to 1 [51]. PC is normalized by the degree

of the node. The PC value of a region is defined as follows: PC ¼ 1 �
PNM

s¼1

Kis
Ki

� �2

, where Ki is

the sum of the connectivity weight of i, K is the sum of the connectivity weight between i and
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the cortical networks, and NM is the total number of networks [38, 39]. Moreover, WMD is

calculated as follows: binarized correlation matrices were setting weights above the density

threshold to 1. WMD values were calculated across a range of density thresholds (ranged from

0.1 to 0.15), and averaged across thresholds. WMD is calculated as: WMD ¼ Ki �
CWs
sCWs

, where

CWs is the average number of connections among all cortical ROIs within cortical network s,

and σCWs is the SD of the number of connections of all ROIs in networks. Ki is the number of

connections between i and all cortical ROIs in networks [38, 39]. WMD scores of each net-

work’s ROI were calculated using the mean and SD of the within-network degree (number of

intra-network connections) calculated from each cortical functional network. WMD is nor-

malized by the number of regions within the associated functional network. Higher WMD val-

ues reflect more within-network connections of the voxels within the network it was assigned

to.

Multiple linear regression

For the organization and properties of functional networks in the whole brain, the participa-

tion coefficient (PC) and within-module-degree (WMD) measures of each node in each net-

work were independently extracted as predictors and used with multiple linear regression. For

example, there were 12 nodes in the Control C network, with 12 PCs and 12 WMDs contained

in the Control C network and these PCs and WMDs in each network were individually calcu-

lated by multiple linear regression (Eq 1). The multiple linear regression model was conducted

repeatedly for each of the 34 network properties, including 17 PC and 17 WMD networks. The

equation for each network model is as follows:

yN ¼ β0 þ β1Node1;N;P þ β2Node2;N;P þ � � � þ βkNodek;N;P þ �N;P ðEq 1Þ

where yN is the SSRT to be predicted with the N network, and Node1,N,P, . . ., Nodek,N,P are the

property P of k nodes in the N network. The property P represents either PC or WMD. The K

nodes represent one of the nodes in the N network, which represents one of the 17 networks.

Each of the predictor variables is numerical. The coefficients β1, . . ., βk measure the effect of

each predictor after considering the effects of all the other predictors in the model. Thus, the

coefficients measure the marginal effects of the predictor variables.

We conducted post-hoc power analysis for all the regression models to estimate the

observed power of our analyses. For this analysis, the degree of freedoms and R-squared was

extracted from each multiple linear regression model, and the alpha was set as 0.05. The

desired observed power for the motion-controlled partial correlation models should conven-

tionally be at least higher than 0.80 [52]. Also, all the predictions in each network were assessed

with Pearson’s correlation (head-motion was partialled out) to estimate if, across subjects, the

predicted SSRT is correlated with the actual SSRT (see Fig 1D). Leave-one-out cross-validation

was applied to the model training for each individual, using n-1 subjects for model training

and predicting the leaved-out subject’s behavior [53]. To assess the significance between actual

SSRT and predicted SSRT generated from leave-one-out cross-validation, the non-parametric

p-value using a permutation test with 10000 iterations with an alpha of 0.05 for significance.

For the permutation test, we ran a leave-one-out cross-validation 10000 times, and for each

time, random-shuffled actual SSRT was used for model training, and then the Pearson’s r

value was calculated as mentioned above. This resulted in a null distribution composed of

10000 r values, and the p values were calculated by the percentile where the generated r values

were equal to or larger than the null values [54]. Only the networks that had a significant result

in the permutation test and a positive correlation result were retained, which was considered

to be a robust and successful prediction and would be interpreted in the Discussion section.
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Also, for those retained networks, the Bayes Factor (BF10) was further conducted to evaluate

the strength of evidence for the presence or absence of correlation between predicted and

observed SSRT [55]. The BF10 is the ratio of the likelihood of an alternative hypothesis (the

presence of correlation) to the likelihood of the null hypothesis (the absence of correlation).

For instance, BF10 = 4 may be interpreted as the data being 4 times more likely to occur under

the alternative hypothesis than under the null hypothesis. The interpretation of BF10 can base

on Wetzels and Wagenmakers [56], which were built from methods proposed by Jeffreys [57].

They suggested that the criteria of 1< BF10 < 3 can only be anecdotal evidence for the alterna-

tive hypothesis, while the criteria of 3< BF10 < 10 can be interpreted as moderate evidence

sufficiently supporting the alternative hypothesis. For a detailed explanation of BF10, see [58].

Results

Behavior performance

Table 2 displays behavioral data. For the go trials, the mean accuracy was 90.98 ± 0.81%, and

the mean nth RT was 611.51 ± 9.21 ms. For stop trials, the stop inhibition rate (stop success

rate) was 54.57 ± 0.60%, which was close to the 50% aimed at the staircase algorithm. The aver-

age of SSRT was 219.56 ± 7.02 ms.

Multiple linear regression

Table 3 and Fig 2 showed the result of Pearson’s correlation and permutation test. The top two

highest correlations between predicted and actual SSRT were participation coefficients (PCs)

of salient attention A network and PCs of dorsal attention A network. The permutation test

showed that Pearson’s correlation results were statistically significant. The results implied that

the individual network property of salient ventral attention A network (BF10 = 4.01) and dorsal

attention A network (BF10 = 1.96) could predict motor inhibition ability.

Discussion

The current study aimed to examine whether brain functional network properties, within-net-

work connectivity (i.e., within-module-degree, WMD), or between-network connectivity (i.e.,

participation coefficient, PC), among whole brain 17 networks in rs-fMRI are associated with

performance on motor inhibition. Our results showed that the between-networks connectivity

in the regions of the salient attention A network and in the dorsal attention A network

explained the most individual variances in motor inhibition. Specifically, results showed signif-

icant correlations with SSRT performance in nodal PCs of those two networks. This suggests

that functional connectivity for salient attention A and dorsal attention A networks with the

other functional networks exhibited a strong association with inhibitory control. Noted that

Table 2. Behavioral data.

Go trials % of accuracy RT (ms) Choice Error (%) Omission (%)

90.98 (0.81) 611.51 (9.21) 1.53 (0.12) 7.49 (0.75)

Stop trials % of inhibit False inhibit RT (ms) SSD (ms) SSRT (ms)

54.57 (0.60) 563.55 (8.78) 391.95 (13.38) 219.56 (7.02)

(standard error (SE) between parentheses) (1) Mean reaction time of five blocks’ nth go reaction times (RT), percentage of choice error (%) and omission (%) associated

with go-trials; (2) mean percentage of inhibition (%), mean RT associated with stop-failure trials, mean stop-signal delay of five blocks’ mean stop-signal delay (SSD; ms)

and stop-signal RT (SSRT; ms) associated with stop-success trials.

https://doi.org/10.1371/journal.pone.0242985.t002
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according to the Bayes Factor, evidence for salient attention A network was stronger for sup-

porting the presence of correlation, while for the dorsal attention A network evidence is rela-

tively weak. On the other hand, we found top highest positive correlations results, including

nodal PCs of salient ventral attention A network, nodal PCs of dorsal attention A network,

nodal WMDs of somatomotor A network, nodal PCs of default B network, and nodal WMDs

of Control C network, covered most regions within the frontal-cingulate-parietal cortices,

which contributes to cognitive control [16, 59].

Table 3. Summary of correlation results.

Property Network r value Permutation p-value Observed Power (%)

PC ContA -5.76 x10-2 6.01 x10-1 59.52

ContB -1.51 x10-1 8.48 x10-1 48.58

ContC 3.82 x10-2 2.72 x10-1 39.69

DefaultA -2.20 x10-2 5.14 x10-1 86.36

DefaultB 1.11 x10-1 1.31 x10-1 91.81

DefaultC -2.10 x10-3 3.94 x10-1 36.66

DefaultD -2.47 x10-2 4.79 x10-1 43.32

DorsAttnA� 1.85 x10-1 4.07 x10-2 90.36

DorsAttnB -4.07 x10-2 5.63 x10-1 60.74

LimbicB -3.31 x10-1 9.80 x10-1 10.52

LimbicA -1.00 x10-1 6.86 x10-1 29.38

SalVentAttnA� 2.11 x10-1 2.39 x10-2 94.47

SalVentAttnB -2.91 x10-1 9.74 x10-1 20.80

SomMotA 3.82 x10-2 3.28 x10-1 90.88

SomMotB -4.47 x10-3 4.60 x10-1 77.95

VisCent -1.21 x10-1 7.88 x10-1 43.48

VisPeri -2.14 x10-1 9.33 x10-1 32.03

WMD ContA 7.86 x10-2 1.94 x10-1 80.44

ContB -3.00 x10-2 5.27 x10-1 64.50

ContC 8.65 x10-2 1.55 x10-1 41.37

DefaultA -1.09 x10-1 7.72 x10-1 73.60

DefaultB -4.67 x10-2 5.78 x10-1 80.26

DefaultC -4.27 x10-2 5.20 x10-1 29.56

DefaultD -1.87 x10-1 8.85 x10-1 23.55

DorsAttnA -1.24 x10-1 7.94 x10-1 52.21

DorsAttnB -1.75 x10-1 8.80 x10-1 41.63

LimbicB 2.53 x10-2 3.06 x10-1 31.71

LimbicA 3.42 x10-2 2.77 x10-1 34.17

SalVentAttnA 7.18 x10-2 2.43 x10-1 89.71

SalVentAttnB -3.84 x10-1 9.95 x10-1 15.66

SomMotA 1.69 x10-1 5.60 x10-2 97.22

SomMotB -1.51 x10-1 8.55 x10-1 63.90

VisCent -9.28 x10-2 7.08 x10-1 56.96

VisPeri -3.81 x10-2 5.45 x10-1 55.58

Note: (1) Network: Cont: control network; Default: default mode network; DorsAttn: dorsal attention network; Limbic: limbic network; SalVentAttn: salience ventral

attention network; SomMot: somatomotor network; VisCent: visual central network; VisPeri: visual peripheral; (2) assessment: r value, Pearson’s correlation coefficient;

Permutation p-value, the p value was estimated by permutation test with 10000 iterations; observed power, the power of the correlation.

� represent the significance of uncorrected p-value at alpha level < 0.05.

https://doi.org/10.1371/journal.pone.0242985.t003
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The between-network connectivity of the salient ventral attention network

and dorsal attention network is associated with motor inhibition

Frontal-cingulate-parietal network. Previous studies investigating the association

between rs-fMRI and SSRT showed mixed results regarding which brain networks in the rest-

ing state are most likely involved in motor inhibition. These networks include the control net-

work (frontoparietal regions), default mode network (medial frontal and posterior cingulate

gyrus), motor control network (pre-supplementary motor area (pre-SMA) and sensorimotor),

visual network, and dorsal attention network [12, 27, 31, 32]. Those studies used the methods

contained in the independent component analysis, fALFF, and ReHo that were similar to the

present study, indicating that not only one network but multiple networks are associated with

the motor inhibition. However, despite the discrepancy of methodology and results, we found

the highest correlations with motor inhibition for properties in salient ventral attention A net-

work, dorsal attention A network, somatomotor A network, default B network, and Control C

network, although only salient ventral attention A network and dorsal attention A network

showed significance. These five networks cover most regions within the frontal-cingulate-pari-

etal cortices, which is considered important to cognitive control [16, 59], and most of these

five networks properties resulted in their between-network connectivity (i.e., PC), suggesting

that as motor inhibition is a high-level cognitive control function, the interactions across these

five networks within the frontal-cingulate-parietal network are keys to motor inhibition.

Salient ventral attention a network. The salient ventral A attention covered the brain

regions of the salience network and ventral attention network. The salience network plays an

Fig 2. Result plot. (a) Pearson’s r of networks: summary of the Pearson’s correlation between prediction stop-signal reaction time (SSRT) and the actual SSRT. Error

bars were plotted with 0.95 CI of 10000-iteration bootstrapping estimation and the asterisks (i.e., “�”) showed the significant result of the permutation test. Here, PCs of

salient ventral attention A network (SalVentAttnA) and dorsal attention A network (DorsAttnA) showed significant correlation between the predicted and actual SSRT

in the permutation test. (b) Brain regions of salient attention A network (SalVentAttnA) and dorsal attention A network (DorsAttnA).

https://doi.org/10.1371/journal.pone.0242985.g002
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important role in the tasks involving attention and response to unexpected but salient stimuli

(e.g., stop signal) [60, 61], while the ventral attention network plays an important role in the

bottom-up attentional process [62]. Therefore, salient attention A network may be responsible

for the unexpected but salient stimuli from the environment, such as the stop signal in SST.

Also, our result, which the between-network connectivity (e.g., PC) in the salient ventral atten-

tion A network is associated with motor inhibition, echoes a previous study conducted by

Seely and Menon [27]. Using the ICA method, Seely and Menon [27] further separated the

intrinsic connectome of the frontal-cingulate-parietal network into two networks: salient net-

work and executive-control network, which are anchored in the prefrontal, insular, cingulate,

and parietal cortexes. Our result echoed their result, suggesting that the salient network is also

important to the motor inhibition [16, 59], and further suggested that the importance of the

salient network in motor inhibition is contributed by its connectivity to the other networks.

Dorsal attention a network. The dorsal attention network is responsible for the top-

down attentional process [62]. Our another significant result in the present study, which the

between-network connectivity (i.e., PC) of dorsal attention A network is associated with motor

inhibition, may imply the top-down attentional control with other network is important for

motor inhibition. Also, this result of the present study echoes a previous study conducted by

Tian and Kong [32]. Tian and Kong [32] applied the ICA method and found the components of

the motor network, motor control network, visual network, dorsal attention network, and task-

activation network were associated with individual differences of SSRT. For motor inhibition,

our result showed not only the importance of the dorsal attention A network but also the contri-

bution of between-network connectivity of dorsal attention A network to the other networks.

Limitations and contributions

In this study, a few limitations of experimental design may undermine the results. First, the

indirect link between spontaneous brain activity and behavior performance needs to be con-

firmed by task fMRI. Future studies may use task fMRI combined with network analysis to test

if our results would be replicated using task-evoked functional connectivity. Second, the scope

of interpretability on the machine learning prediction model is limited by feature selection and

training dataset, hence another learning model may provide an alternative insight into predic-

tion results. This requires further study to clarify. Third, the generalizability of the prediction

model may be varied by the number of datasets, sample sizes and populations that completely

separated from ours. Despite these limitations, our results provide a new perspective of the

clinical implication that application of machine learning prediction of task-free fMRI data on

motor inhibition, accelerating screening impulsive behavior related neurological and psychiat-

ric disorders. Our findings suggested that whole-brain functional integration and between-

network connection instead of functional segregation and within-network connection could

predict motor inhibition.

Conclusion

In conclusion, we investigated the relationship between network properties with graphic-theo-

retic metrics and applied a multiple linear regression model to predict SSRT using resting-

state fMRI data. Our findings showed that the between-network connectivity of the salient

ventral attention network and dorsal attention network explain the majority of individual dif-

ferences in motor inhibition. In addition, the between-network connectivity within the fron-

tal-cingulate-parietal network can also moderately explain individual differences in motor

inhibition. Our study provides new insight into the predictive value of rs-fMRI and its implica-

tion for assessing motor inhibition deficit in the clinical population.
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