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Abstract

This work introduces the phenomenon of Collective Almost Synchronisation (CAS), which describes a universal way of how
patterns can appear in complex networks for small coupling strengths. The CAS phenomenon appears due to the existence
of an approximately constant local mean field and is characterised by having nodes with trajectories evolving around
periodic stable orbits. Common notion based on statistical knowledge would lead one to interpret the appearance of a local
constant mean field as a consequence of the fact that the behaviour of each node is not correlated to the behaviours of the
others. Contrary to this common notion, we show that various well known weaker forms of synchronisation (almost, time-
lag, phase synchronisation, and generalised synchronisation) appear as a result of the onset of an almost constant local
mean field. If the memory is formed in a brain by minimising the coupling strength among neurons and maximising the
number of possible patterns, then the CAS phenomenon is a plausible explanation for it.

Citation: Baptista MS, Ren H-P, Swarts JCM, Carareto R, Nijmeijer H, et al. (2012) Collective Almost Synchronisation in Complex Networks. PLoS ONE 7(11): e48118.
doi:10.1371/journal.pone.0048118

Editor: Matjaz Perc, University of Maribor, Slovenia

Received June 19, 2012; Accepted September 20, 2012; Published November 8, 2012

Copyright: � 2012 Baptista et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: MSB acknowledges the EPSRC grant EP/1032606/1 and the partial financial support of the Northern Research Partnership. R. Carareto acknowledges
the financial support of FAPESP. HPR acknowledges the partial financial support of National Natural Science Foundation of China Grant 60804040 and 61172070.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: murilo.baptista@abdn.ac.uk

Introduction

Spontaneous emergence of collective behaviour is common in

nature [1–3]. It is a natural phenomenon characterised by a group

of individuals that are connected in a network by following a

dynamical trajectory that is different from the dynamics of their

own. Since the work of Kuramoto [4], the spontaneous emergence

of collective behaviour in networks of phase oscillators with full

bidirectionally connected nodes or with nodes connected by some

special topologies [5] is analytically well understood. Kuramoto

considered a fully connected network of an infinite number of

phase oscillators. If hi is the variable describing the phase of an

oscillator i in the network, and h represents the mean field defined

as h~
1

N

XN

i~1
hi, collective behaviour appears in the network

because every node becomes coupled to the mean field. Peculiar

characteristics of this collective behaviour is that not only hi=h
but also nodes evolve in a way that cannot be described by the

evolution of only one individual node, when isolated from the

network.

In contrast to collective behaviour, another widely studied

behaviour of a network is when all nodes behave equally, and their

evolution can be described by an individual node when isolated

from the network. This state is known as complete synchronisation

[6]. If xi represents a scalar state variable of an arbitrary node i of

the network and xj of another node j, and x represents the mean

field of a network calculated with this scalar state variable,

complete synchronisation appears when xi~xj~x, for all time.

The main mechanisms responsible for the onset of complete

synchronisation in dynamical networks were clarified in [7–9]. In

networks whose nodes are coupled by non-linear functions, such as

those that depend on time-delays [9] or those that describe how

neurons chemically connect [10], the evolution of the synchronous

nodes might be different from the evolution of an individual node,

when isolated from the network. However, when complete

synchronisation is achieved in such networks, xi~xj~x.

In natural networks as biological, social, metabolic, neural

networks, etc, [11], the number of nodes is often large but finite;

the network is not fully connected and heterogeneous. The later

means that each node has a different dynamical description or the

coupling strengths are not all equal for every pair of nodes, and

one will not find two nodes, say it xi and xj , that have equal

trajectories. For such heterogeneous networks, as in [12–14],

found in natural networks and in experiments [15], one expects to

find other weaker forms of synchronous behaviour, such as

practical synchronisation [16], phase synchronisation [15], time-

lag synchronisation [17], generalised synchronisation [18].

We report a phenomenon that may appear in complex networks

‘‘far away’’ from coupling strengths that typically produce

complete synchronisation or these weaker forms of synchronisa-

tion. However, the reported phenomenon can be characterised by

the same conditions used to verify the existence of these weaker

forms of synchronisation. We call it Collective Almost Synchro-

nisation (CAS). It is a consequence of the appearance of an

approximately constant local mean field and is characterised by

having nodes with trajectories evolving around stable periodic

orbits, denoted by Jpi
(t), and regarded as a CAS pattern. The

appearance of an almost constant mean field is associated with a
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regime of weak interaction (weak coupling strength) in which

nodes behave independently [19,20]. In such conditions, even

weaker forms of synchronisation are ruled out to exist. But,

contrary to common notion based on basic statistical arguments,

we show that actually it is the existence of an approximately

constant local mean field that paves the way for weaker forms of

synchronisation (such as almost [16], time-lag, phase, or gener-

alised synchronisation) to occur in complex networks.

Denote all the d variables of a node i by xi, then we define that

this node presents CAS if the following inequality

Dxi(t){Jpi
(t{ti)Dvei ð1Þ

is satisfied for all the time. The double vertical bar DD represents that

we are taking the absolute difference between vector components

appearing inside the bars (L1 norm). However, this equation could

be rewritten in terms of each vector component. ei is a small

quantity, not arbitrarily small, but reasonably smaller than the

envelop of the oscillations of the variables xi(t). Its magnitude

depends on the variance around the local mean field of node i.
Jpi

(t) is the d-dimensional CAS pattern. It is determined by the

effective coupling strength pi, a quantity that measures the

influence on the node i of the nodes that are connected to it, and

the expected value of the local mean field at the node i, denoted by

Ci. The local mean field, denoted by �xxi, is defined only by the

nodes that are connected to the node i. The CAS pattern is the

solution of a simplified set of equations describing the network

when �xxi~Ci. According to Eq. (1), if a node in the network

presents the CAS pattern, its trajectory stays intermittently close to

the CAS pattern but with a time-lag between the trajectories of the

node and of the CAS pattern. This property of the CAS

phenomenon shares similarities with the way complete synchro-

nisation appears in networks of nodes coupled under time-delay

functions [9]. In such networks, nodes become completely

synchronous to a solution of the network that is different from

the solution of an isolated node of the network. Additionally, the

trajectory of the nodes present a time-lag to this solution.

The CAS phenomenon inherits the three main characteristics of

a collective behaviour: (a) the variables of a node i (xi) differ from

both the mean field �xx and the local mean field �xxi; (b) if the local

mean fields of a group of nodes and their effective coupling are

either equal or approximately equal, that causes all the nodes in

this group to follow the same or similar behaviours; (c) there can

exist an infinitely large number of different behaviours (CAS

patterns).

There is a wide belief in the academic community that patterns

appearing in a complex network due to a collective behaviour

cannot exist if nodes interact by extremely weak couplings.

Contrary to this line of thinking, in Refs. [21–23], was shown that

quantities that measure the level of collective behaviour in

networks can be far from zero even when the coupling strength

among nodes is small. This work shows that in fact there exists an

enormous amount of patterns in such networks, infinitely many if

the network has infinite nodes. These patterns were probably not

observed before because not only they appear in a large number

but also similar patterns appear with a time-lag, a characteristic

that endows the network with its stochastic behaviour. This

stochastic behaviour allows us to use the Central Limit Theorem

to explain why the local mean field defined in the observable

variable �xxi is approximately constant. Consequently, it is possible

to arrive at an approximate equation for every node of the network

as if they were detached from it. This framework of dealing with

the network effect as a local mean field and applying the Central

Limit approach has been proposed in Ref. [24] to show that the

local mean field defined by the coupling term was shown to be

approximately zero when the phenomenon of hub synchronisation

appears.

As examples of how common this phenomenon could be, we

have asserted its appearance in heterogenous networks of nodes

coupled diffusively in the thermodynamic limit, in large networks

of chaotic maps, Hindmarsh-Rose neurons, and Kuramoto

oscillators, and finally in systems that are models for the

appearance of collective motion in social, economical, and animal

behaviour. In addition, we have performed a series of numerical

experiments in these systems to support our claims.

Methods

The CAS phenomenon
Consider a network of N nodes described by

_xxi~Fi(xi)zs
XN

j~1

AijE½H(xj{xi)�, ð2Þ

where xi[<d is a d-dimensional vector describing the state

variables of the node i, Fi is a d-dimensional vector function

representing the dynamical system of the node i, Aij is the adjacent

connection matrix, E is the coupling function as defined in [7], H
is an arbitrary differentiable transformation. The degree of a node

can be calculated by ki~
PN

j~1 Aij . Assume in the following that

H(xi)~xi. To extend the analysis to a nonlinear function H, see

the results for the Kuramoto network (Eq. (11)). In such a case, we

need to rewrite the coupling term in Eq. (2) as a function of the

local mean field.

The CAS phenomenon appears when the local mean field of a

node i, defined as

�xxi(t)~1=ki

X
j

Aijxj ð3Þ

is approximately constant and

�xxi(t) �& Ci: ð4Þ

Then, the equations for the network can be described in terms

of the local mean field by

_xxi~Fi(xi){piE(xi)zpiE(Ci)zdi, ð5Þ

where pi~ski and the residual term is di~pi(xi(t){Ci). The

CAS pattern of the node i (a stable periodic orbit) is calculated in

the variables that produce a finite bounded local average field. If

all components of xi are bounded, then the CAS pattern is given

by a solution of

_JJpi
~Fi(Jpi

){piE(Jpi
)zpiE(Ci): ð6Þ

which is just the same set of equations (5) without the residual

term. So, if �xxi(t)~Ci, the residual term di~0, and if Eq. (6) has no

positive Lyapunov exponents (Jpi
is a stable periodic orbit), then

the node xi describes a stable periodic orbit. If �xxi(t){Ci is larger

than zero but Jpi
is a stable periodic orbit, then the node xi

describes a perturbed version of Jpi
.

CAS in Complex Networks
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Notice from Eq. (6) that for piw0, the CAS pattern will not be

described by F(xi) and therefore does not belong to the

synchronisation manifold. On the other hand, Ji is induced by

the local mean field as typically happens in synchronous

phenomenon due to collective behaviour. This property of the

CAS phenomenon shares similarities with the way complete

synchronisation appears in networks of nodes coupled under time-

delay functions [9]. In such networks, nodes become completely

synchronous to a solution of the network that is different from the

solution of an isolated node of the network. Additionally, the

trajectory of the nodes present a time-lag to this solution, as shown

in Eq. (1).

To understand the reason why the CAS phenomenon appears

when Ji(t) is a sufficiently stable periodic orbit, we study the

variational equation of the CAS pattern (6)

_jji~½DFi(ji){piE�ji: ð7Þ

obtained by linearising Eq. (6) around Ji by making ji~xi{Ji.

This equation is assumed to produce no positive Lyapunov

exponents. We also assume here that the Lyapunov exponents are

regular [25], meaning that perturbations do not destroy the

periodic orbit. Therefore, small fluctuations of the local mean field

do not cause the trajectory to scape the neighbourhood of the CAS

pattern. As a consequence, neglecting the existence of the time-lag

between xi(t) and J(t)i, the trajectory of the node i oscillates about

Ji, and Dxi{Ji Dƒei, for all the time, satisfying Eq. (1), where ei

depends on the variance of the local mean field and also on di. If

there are two nodes i and j, which feel similar local mean fields

and Ji �& Jj (so, pi~pj ), then xi �& xj , for all the time.

To understand why the nodes that present CAS have also

between them a time-lag type of synchronisation, notice that there

is a transient time in order for Eq. (6) to describe well in an

approximate sense the solutions of Eq. (5), if we consider a typical

situation where initial conditions are not equal and are not placed

along the asymptotic limiting set of the CAS pattern. At the time

the trajectory of all nodes approach their CAS pattern, even two

nodes i and j that have identical CAS patterns (pi~pj and Ci~Cj )

have trajectories that arrive in different places of J(t). The CAS

pattern is a stable periodic orbit and we obtain it by considering in

Eq. (6) an arbitrary initial condition. Therefore, the asymptotic

trajectory obtained in Eq. (5) will be typically in a different place

than the asymptotic trajectory obtained in Eq. (6). This fact has

taken us to include the time-delay ti in Eq. (1) in order to have an

equation that can be used in typical experimental situations. When

dealing with numerical experiments, the time-delay ti could be

removed from Eq. (1) by resetting the integration time for the CAS

pattern after the trajectory of the node arrives to its neighbour-

hood. But this would only be possible when we have access to the

integration time. As a result, nodes that are collectively almost

synchronous obey Eq. (1). In addition, two nodes that present CAS

have also a time-lag between their trajectories for the same reason.

If the network has unbounded state variables (as it is the case of

Kuramoto networks [4]), the CAS pattern is the periodic orbit of

period Ti defined in the velocity space such that
_JJpi

(t)~ _JJpi
(tzTi).

Notice that whereas Eqs. (2) and (5) represent a Nd-dimensional

system, Eq. (6) has only dimension d .

The existence of this approximately constant local mean field is

a consequence of the Central Limit Theorem, applied to variables

with correlation (for more details, see the following section). The

expected value of the local mean field can be calculated by

Ci~ lim
t??

1

t

ð
�xxi(t)dt, ð8Þ

where in practice we consider t to be large, but finite. The larger

the degree of a node, the higher is the probability for the local

mean field to be close to an expected value and smaller its

variance. If the probability to find a certain value for the local

mean field of the node i does not depend on the higher order

moments of �xxi(t), then this probability tends to be Gaussian for

sufficiently large ki. As a consequence, the variance m2 of the local

mean field is proportional to k{1
i .

There are two criteria for the node i to present the CAS

phenomenon:

Criterion 1. The Central Limit Theorem can be applied, i.e.,

m2
i !k{1

i . Therefore, the larger the degree of a node, the smaller

the variation of the local mean field xi(t) about its expected value

Ci.

Criterion 2. The CAS pattern Ji(t) describes a stable

periodic orbit exponentially and uniformly attractive, such that

the perturbation di in Eq. (5) does not take the trajectory of the

node i away from its CAS pattern. The node trajectory can be

considered to be a perturbed version of its CAS pattern. The more

stable the faster trajectories of nodes come to the neighbourhood

of the periodic orbits (CAS patterns).

Whenever the Central Limit Theorem applies, the random

variables involved are independent. But, the Central Limit

Theorem can also be applied to variables with correlation. If

nodes that present the CAS phenomenon are locked to the same

CAS pattern, their trajectories still arrive to the CAS pattern at

different ‘‘random’’ times, allowing for the Central Limit Theorem

to be applied. Assume a time when all nodes reach their

asymptotic state and the nodes that present the CAS pattern

have trajectories that are close to their CAS pattern. Imagine a

group of nodes that have the same CAS pattern. Their trajectories

can be approximately described by xi(t)~J(t{ti), where ti

represents what we call ‘‘random’’ times, meaning that for every

two nodes ti and tj are decorrelated.

The time-lag between two nodes (tij~ti{tj ) is approximately

constant, since the CAS pattern has a well defined period, and the

trajectories of these nodes are locked into it.

The CAS phenomenon exists when a node has an approx-

imately constant local mean field and its CAS pattern is a stable

periodic orbit. If the equation for the CAS pattern (Eq. (6))

presents coexistence of attractors, nodes will still be in a CAS state

if the CAS conditions are satisfied. In our simulations, the range of

initial conditions that have trajectories that go asymptotically to

the same stable periodic orbit is large. Likely because the CAS

pattern equation has global stable attractors for the parameters we

have studied numerically.

Results

This session is dedicated to illustrate and explain the appear-

ance of the CAS phenomenon in 5 different systems.

CAS in heterogeneous and homogeneous networks of
nodes coupled diffusively in the thermodynamic limit
(infinite nodes fully connected)

The equations for a heterogenous network of nodes coupled

diffusively can be described by

CAS in Complex Networks
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_xxi~Fi(xi)zs
0XN

j~1

AijE(xj{xi), ð9Þ

where we have renormalised s~s
0
=k.

In the thermodynamics limit, when N?? and ki~k?? (fully

connected network), the network can be imagined as describing a

discretised spatially coupled network. If the renormalised coupling

is sufficiently small such that the central limit theorem can be

applied, the expected value of the local mean field is constant and

equals �xxi(t)~C, for all i.

Rewriting Eq. (9) as a function of the expected value of the local

mean field, we arrive at

_xxi~Fi(xi){s
0 ½E(xi){E(Ci)�: ð10Þ

The CAS pattern Ji(t) of a node i is also described by Eq. (10).

Every node Fi that describes a stable periodic orbit is in a CAS

state. Every two nodes that are in a CAS state are phase-locked

and will present other types of weak synchronisation.

If the network is homogeneous and the dynamics of every node

is described by the same function Fi~F , then every node will be

described by the same set of d-dimensional ODEs. We assume that

initial conditions are not identical. If Eq. (10) describes a stable

periodic orbit, then every node’s trajectory is described by the

same stable periodic orbit, the CAS pattern. That will result in a

network that has no positive Lyapunov exponents, but because of

the time-lag among the node’s equal periodic trajectories, the

network will appear not to present patterns due to collective

behaviours, because the nodes will be out of phase with respect to

each other.

On the constancy of expected value of the local mean field

with respect to a varying s. The expected value will depend

on s, but for every value of s, all the nodes will present the same

constant expected value of the local mean field C. If the alteration

in s does not produce positive Lyapunov exponents in Eq. (10) for

every two nodes, then the existence of the CAS phenomenon for

these two nodes is not destroyed, if s is altered.

CAS in a network of coupled maps
As another example to illustrate how the CAS phenomenon

appears in a complex network, we consider a network of maps

whose node dynamics is described by Fi(xi)~2xi mod(1). The

network composed, say, by N~1000 maps, is represented by

x
(nz1)
i ~Fi(x

(n)
i )zs

PN
j~1 Aij(x

(n)
j {x

(n)
i ) mod(1), where the upper

index n represents the discrete iteration time, and Aij is the

adjacency matrix of a scaling-free network. The degree distribu-

tion of the scaling-free networks considered in this work follow a

power law with coefficient close to 22.621.

The map has a constant probability density. When such a map

is connected in a network, the probability measure of the

trajectory is no longer constant, but still symmetric and having

an average value of 0.5. As a consequence, nodes that have a

sufficient amount of connections (k§10) feel a local mean field,

say, within ½0:475,0:525�, (deviating of 5% about Ci = 0.5) and

m2
i !k{1

i (criterion 1), as shown in Fig. 1(a). Therefore, such

nodes have propensity to present the CAS phenomenon. In (b) we

show a bifurcation diagram of the CAS pattern, Ji, obtained from

Eq. (6) by using Ci~C~0:5, as we vary pi. Nodes in this network

that have propensity to present the CAS phenomenon will present

it if additionally pi[½1,3�; the CAS pattern is described by a period-

2 stable orbit (criterion 2). This interval can be calculated by

solving D2{pi Dƒ1. In (c) we show the probability density function

of the trajectory of a node that present the CAS phenomenon. The

density is centred at the position of the period-2 orbit of the CAS

pattern and for most of the time Eq. (1) is satisfied. The filled

circles are fittings assuming that the probability density is given by

a Gaussian distribution. Therefore, there is a high probability that

ei in Eq. (1) is small. In (d) we show a plot of the trajectories of two

nodes that have the same degree which is equal to 80. We chose

nodes which present no time-lag between their trajectories and the

trajectory of the pattern. If there was a time-lag, the points in (d)

would not be only aligned along the diagonal (identity) line, but

they would also appear off-diagonal.

On the constancy of expected value of the local mean field

with respect to a varying s. The expected value for the local

mean field for all the nodes is constant, Ci?0:5 (Ci~0:5, in the

thermodynamic limit), and does not depend on the coupling

strength s. That is a consequence of the symmetrical properties of

the probability measure of the trajectory. Therefore, changes in

the coupling strength do not alter Ci. If D2{pi Dƒ1, the CAS state

of the nodes is maintained and the synchronous phenomena

observed in the network might be maintained as well, if s is

altered.

CAS in the Kuramoto network
An illustration of this phenomenon in a network composed by

nodes having heterogeneous dynamical descriptions and a

nonlinear coupling function is presented in a random network of

N = 1000 Kuramoto oscillators. This network was constructed

such that the average degree is (N{1)p, where p~0:01 is the

probability of each two nodes to be connected. This probability is

slightly larger than ln (n)
n

, resulting in a network that is almost surely

connected.

We rewrite the Kuramoto network model in terms of the local

mean field, hi~
1

ki

XN

j~1
Aijhj . Using the coordinate transforma-

tion 1
ki

PN
j~1 Aij expi(hj{hi) ~~rri expi(hi{hi), the dynamics of node i

is described by

_hhi~vizpi~rrisin(hi{hi), ð11Þ

where vi is the natural frequency of the node i, taken from a

Gaussian distribution centred at zero and with standard deviation

of 4. If ~rri = 1, all nodes coupled to node i are completely

synchronous with it. If ~rri = 0, there is no synchronisation between

the nodes that are coupled to the node i. Since the phase is an

unbounded variable, the CAS phenomenon should be verified by

the existence of an approximate constant local mean field in the

frequency variable _hhi. If _hhi(t)%Ci, which means that hi~ _hhit%Cit,
then Eq. (11) describes a periodic orbit (the CAS pattern),

regardless the values of vi, pi, and ~rri, since it is an autonomous

two-dimensional system; chaos cannot exist. Therefore, criterion
2 is always satisfied in a network of Kuramoto oscillators. We have

numerically verified that criterion 1 is satisfied for this network

for sƒsCAS(N~1000), where sCAS(N~1000)%0:075. Com-

plete synchronisation is achieved in this network for

s§sCS~1:25. So, the CAS phenomenon is observed for a

coupling strength that is 15 times smaller than the one that

produces complete synchronisation.

For the following results, we choose s~0:001. Since the natural

frequencies have a distribution centred at zero, it is expected that,

for nodes with higher degrees, the local mean field is close to zero

CAS in Complex Networks
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(see Fig. 2(a)). In (b), we show the variance of the local mean field

of the nodes with degree ki. The fitting produces m2
i !k{1:055

i

(criterion 1). In (c), we show the relationship between the value of

pi~rri and the value of the degree ki. In order to calculate the CAS

pattern of a node with degree ki, we need to use the value of pi~rri

(which is obtained from this figure) and the measured Ci as an

input in Eq. (11). We pick two arbitrary nodes, i and j, with

degrees ki~96 and kj~56, respectively, with natural frequencies

vi �& {5:0547 and vj �& {5:2080. In (d), we show that phase

synchronisation is verified between these two nodes assuming that

p=q~vi=vj . We also show the phase difference dwj~hj{Jhj

between the phases of the trajectory of the node j with degree

kj~96 and the phase of its CAS pattern, for a time interval

corresponding to approximately 2500/P cycles, where the period

of the cycles in node i is calculated by P~
2p

5:0547
. Phase

synchronisation between nodes i and j is a consequence of the fact

that the phase difference between the nodes and their CAS

patterns is bounded.

Phase synchronisation will be rational and stable whenever

nodes with different natural frequencies vi become locked to

Arnold tongues [26,27] induced by the coupling pi~rrisin(hi{hi).
Notice that whereas the instantaneous frequency of oscillation of a

node isolated from the network (pi~0) is given by its natural

frequency vi of rotation (which can be an irrational number), a

node i that is in CAS has an instantaneous frequency that is given

by limt?? hi(t)=t, assumed to be a rational rotation and for that

reason typically differs from vi. Irrational phase synchronisation

will appear between two nodes in this network if we allow the CAS

pattern to be described by a quasi-periodic rotation.

On the constancy of expected value of the local mean field

with respect to a varying s. In the thermodynamic limit,

when a fully connected network has an infinite number of nodes,

Ci does not change as one changes the coupling s, since it only

depends on the mean field of the frequency variable ( _hh). As a

consequence, if there is the CAS phenomenon and phase

synchronisation between two nodes with a ratio of p=q for a

given value of s, changing s does not change the ratio p=q.

Therefore phase synchronisation is stable under alterations in s.

CAS in a network of Hindmarsh-Rose neurons
As an example to illustration how the CAS phenomenon

appears in a complex network, we consider a scaling-free network

formed by, say, N~1000 Hindmarsh-Rose neurons, with neurons

coupled electrically. The network is described by

_xxi~yiz3x2
i {x3

i {zizIzs
XN

j~1

Aij(xj{xi)

_yyi~1{5x2
i {yi

_zzi~{rziz4r(xiz1:618)

ð12Þ

where I = 3.25 and r = 0.005. The first coordinate of the equations

that describe the CAS pattern is given by

Figure 1. Results for a network of coupled maps. (a) Expected value of the local mean field of the node i against the node degree ki . The error
bar indicates the variance (m2

i ) of xi . (b) A bifurcation diagram of the CAS pattern [Eq. (6)] considering Ci~0:5. (c) Probability density function of the
trajectory of a node with degree ki = 80 (therefore, pi~ski~1:3, s~1:3=80). (d) A return plot considering two nodes (i and j) with the same degree
ki~kj~80.
doi:10.1371/journal.pone.0048118.g001
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_JJxi
~Jyi

z3J2
xi

{J3
xi

{Jzi
zIi{piJxi

zpiCi: ð13Þ

The others are given by _JJyi
~1{J2

xi
{Jyi

,
_JJzi

~{rJzi
z4r(Jxi

z1:618). In this network, we have numeri-

cally verified that criterion 1 is satisfied for neurons that have

degrees k§10 if sƒs�, with s�%0:001. In Fig. 3(a), we show the

expected value Ci of the local mean field of the first coordinate xi

of a neuron i with respect to the neuron degree (indicated in the

horizontal axis), for s~0:001. The error bar indicates the variance

of Ci which fits to !k{1:0071
i . In Fig. 3(b), we show a parameter

space to demonstrate that the CAS phenomenon is a robust and

stable phenomenon. Numerical integration of Eqs. (12) for

pi[½0:001,1� produces Ci[½{0:9,0:7�. We integrate Eq. (13) by

using Ci[½{0:9,0:7� and pi[½0,0:2�, to show that the CAS pattern

is stable for most of the values. So, variations in Ci of a network

caused by changes in a parameter do not modify the stability of the

CAS pattern calculated by Eq. (13). For s~0:001, Eqs. (12) yields

many nodes for which �xxi%{0:82. So, to calculate the CAS

pattern for these nodes, we use Ci~{0:82 and s~0:001 in Eqs.

(13). The CAS pattern obtained, as we vary pi, is shown in the

bifurcation diagram in Fig. 3(c), by plotting the local maximal

points of the CAS patterns. Criterion 2 is satisfied for most of the

range of values of pi that produces a stable periodic CAS pattern.

A neuron that has a degree ki is locked to the CAS pattern

calculated by integrating Eqs. (13) using kis~pi and the measured

expected value for the local mean field, Ci. In Fig. 3(d), we show

the periodic orbit corresponding to a CAS pattern associated to a

neuron i with degree ki~25 (for s = 0.001) and in the inset the

sampled points of the trajectories of this same neuron i and of

another neuron j that has not only equal degree (kj = 25), but it

feels also a local mean field of Cj%{0:82. In Fig. 3(e), we show

that these two neurons have a typical time-lag synchronous

behavior. In Fig. 3(f), we observe p=q~1 phase synchronisation

between these two neurons for a long time, considering that the

phase difference remains bounded by S~6|2p as defined in Eq.

(17), where the number 6 is the number of spikings within one

period of the slower time-scale. In order to verify Eq. (17) for all

time, we need to choose a ratio that is approximately equal to 1

(p=q%1), but not exactly 1 to account for slight differences in the

local mean field of these two neurons. Phase was measured by

integrating the differential phase equation proposed in the work of

Ref. [28] that measures the amount of rotation of the tangent

vector.

Since Ci depends on s for networks that have neurons

possessing a finite degree, we do not expect to observe a stable

phase synchronisation in this network. Small changes in s may

Figure 2. Results for the Kuramoto network. Results for s~0:001. (a) Expected value of the local mean field _hhi of a node with degree ki , picked
randomly. Nodes with the same degree present nearly identical local mean fields. (b) The variance m2

i of the local mean field. (c) Relationship between
the value of pi~rri and ki . (d) Phase difference Dwij~hi{p=qhj between two nodes, one with degree ki~96 and the other with degree kj~56; the

phase difference dwi~hi{Jhi
between the phases of the trajectory of the node i with degree ki~96 and the phase of its CAS pattern.

doi:10.1371/journal.pone.0048118.g002
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cause small changes in the ratio p=q. Notice however that Eq. (17)

might be satisfied for a very long time, for p=q~1. If neurons are

locked to different CAS patterns (and therefore have different local

mean field), Eqs. (1) and (17) are both satisfied, but phase

synchronisation will not be 1:1, but with a ratio of p=q (see Sec. E

in Supplementary Information for an example).

If neurons in this scaling-free network become completely

synchronous, it is necessary that s(N)§2sCS(N~2)=Dl2D (Ref.

[7]). sCS(N~2)%0:5 represents the value of the coupling strength

when two bidirectionally coupled neurons become completely

synchronous. l2~{2:06 is the largest non-positive eigenvalue of

the Laplacian matrix defined as Aij{diag(ki). So,

sCS(N)§1=2:06%0:5. The CAS phenomenon appears when

sCAS(N~1000)ƒ0:001, a coupling strength 500 times smaller

than the one which produces complete synchronisation. Similar

conclusions would be obtained when one considers networks of

different sizes, with nodes having the same dynamical descriptions

and same connecting topology.

On the constancy of expected value of the local mean field

with respect to a varying s. We have numerically verified that

changes in the coupling strength s only slightly alter the value of

the local mean field Ci. Therefore, we expect that the synchronous

phenomena observed for a particular value of the coupling

strength can be maintained by an alteration of s, if the CAS is

present in the network.

CAS in systems of driven particles
The CAS phenomenon can also appear in a system of driven

particles [29] that is a simple but powerful model for the onset of

pattern formation in population dynamics [2], economical systems

[30] and social systems [3]. In the work of Ref. [29], it was

assumed that individual particles were moving at a constant speed

but with an orientation that depends on the local mean field of the

orientation of the individual particles within a local neighbour-

hood and under the effect of additional external noise. Writing an

equivalent time-continuous description of the Vicsek particle

model [29], the equations of motion for the direction of movement

of a particle i, can be written as

_xxi~{xizxizDai, ð14Þ

where xi represents the local mean field of the orientation of the

particle i within a local neighbourhood and Dai represents a small

noise term. When xi is approximately constant, the CAS pattern is

described by a solution of _xxi~{xizxi, which will be a stable

steady state (xi~xi) as long as Dai is sufficiently small. From the

Figure 3. Results for a network of Hindmarsh-Rose neurons. (a) Expected value of the local mean field of the node i against the node degree
ki . The error bar indicates the variance (m2

i ) of xi . (b) Black points indicate the value of Ci and pi for Eq. (13) to present a stable periodic orbit (no
positive Lyapunov exponents). The maximal values of the periodic orbits obtained from Eq. (13) is shown in the bifurcation diagram in (c) considering
Ci~{0:82 and s~0:001. (d) The CAS pattern for a neuron i with degree ki = 25 (with s~0:001 and C~{0:82). In the inset, the same CAS pattern of
the neuron i and some sampled points of the trajectory for the neuron i and another neuron j with degree kj~25. (e) The difference between the
first coordinates of the trajectories of neurons i and j, with a time-lag of tij~34:2. (f) Phase difference between the phases of the trajectories for
neurons i and j.
doi:10.1371/journal.pone.0048118.g003
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Central Limit Theorem, xi will be approximately constant as long

as the neighbourhood considered is sufficiently large or the density

of particles is sufficiently large.

Analysis

CAS and other weaker forms of synchronisation
If the CAS phenomenon is present in a network, other weaker

forms of synchronisation can be detected. This link is fundamental

when making measurements to detect the CAS phenomenon.

In Ref. [16], the phenomenon of almost synchronisation is

introduced, when a master and a slave in a master-slave system of

coupled oscillators have equal phases but their amplitudes can be

different. If a node i presents the CAS phenomenon [satisfying Eq.

(1)] and ti~0 in Eq. (1), then the node i is almost synchronous to

the pattern Jpi
.

Time-lag synchronisation [17] is a phenomenon that describes

two identical signals, but whose variables have a time-lag with

respect to each other, i.e. xi(t)~xj(t{t). In practice, however, an

equality between xi(t) and xj(t{t) should not be expected to be

typically found, but rather

xi(t)%xj(t{t), ð15Þ

meaning that there is not a constant t that can be found such that

xi(t)~xj(t{t). Another suitable way of writing Eq. (15) is by

Dxi(t){xj(t{t)Dƒc. If two nodes i and j that present the CAS

phenomenon, have the same CAS pattern, and ti=tj=0, then

Dxi(t){xj(t{tij)Dƒeij ð16Þ

or alternatively xi(t)%xj(t{tij), for most of the time, tij~ti{tj

representing the time-lag between xi and xj . Equation (16) is

satisfied for all the time, when the network is composed by

elements that have only one time-scale, such as the Kuramoto

oscillator. In neural networks whose neurons have more than one

time-scale the delay ti as well as tj vary in time and therefore we

do not find a tij such that Eq. (16) is satisfied for all the time. This

means that almost time-lag synchronisation occurs for two nodes

that present the CAS phenomenon and that are almost locked to

the same CAS pattern. Even though nodes that have equal or

similar local mean field (which usually happens for nodes that have

equal or similar degrees) become synchronous with the same CAS

pattern (a stable periodic orbit), the value of their trajectories at a

given time might be different, since their trajectories reach the

neighbourhood of their CAS patterns in different places of the

orbit. As a consequence, we expect that two nodes that exhibit the

same CAS should present between themselves a time-lag

synchronous behavior. For some small amounts of time, the

difference Dxi(t){xj(t{tij)D can be large, since ti=tj and ei=ej ,

in Eq. (1). The closer xi and xj are to Ci, the smaller is eij in Eq.

(16).

Phase synchronisation [15] is a phenomenon where the phase

difference, denoted by Dwij , between the phases of two signals (or

nodes in a network), wi(t) and wj(t), remains bounded for all time

Dwij~Dwi(i){
p

q
wj(t)DƒS: ð17Þ

In Ref. [15] S~2p and p and q are two rational numbers. If p and

q are irrational numbers and S is a reasonably small constant, then

phase synchronisation can be referred as to irrational phase

synchronisation [31]. The value of S is calculated in order to

encompass oscillatory systems that possess either a time varying

time-scale or a variable time-lag. Simply make the constant S to

represent the growth of the phase in the faster time scale during

one period of the slower time scale. Phase synchronisation between

two coupled chaotic oscillators was explained as being the result of

a state where the two oscillators have all their unstable periodic

orbits phase-locked [15]. Nodes that present the CAS phenom-

enon have unstable periodic orbits that have periods that are

approximately given by multiples of the period of the stable

periodic orbits described by Ji(t). If Ji(t) has a period Pi and the

phase of this CAS pattern changes Dwi within one period, so the

angular frequency is vi~Dwi=Pi. If Jj(t) has a period Pj and the

phase of its CAS patter changes Dwj within one period, so the

angular frequency is vj~Dwj=Pj . Then, the CAS patterns of

these nodes are phase synchronous by a ratio of
p

q
~vi=vj . Since

the trajectories of these nodes are bounded to these patterns, the

nodes are phase synchronous by this same ratio, which can be

rational or irrational. If two nodes i and j have the same CAS

pattern, making observations in one node once every time another

node crosses a Poincaré section results in a discrete set of points

that are localised in the subspace of the nodes whose observations

are being made. Such a localised set was demonstrated in [28] to

be a direct consequence of phase synchronisation.

Assume additionally that, as one changes the coupling strengths

between the nodes, the expected value Ci of the local mean field of

a group of nodes remains the same. As a consequence, as one

changes the coupling strengths, both the CAS pattern and the

ratio
p

q
~

pjDwi

piDwj

remain unaltered, and the observed phase

synchronisation between nodes in this group is stable under

parameter alterations.

In Ref. [24], synchronisation was defined in terms of the node

xN that has the largest number of connections, when xi(t)%xN

(which is equivalent to stating that Dxi(t){xN Dve), where xN is

assumed to be very close to the synchronization manifold s defined

by _ss~F(s). This type of synchronous behaviour was shown to exist

in scaling free networks whose nodes have equal dynamics and

that are linearly connected. This was called hub synchronisation.

The link between the CAS phenomenon with the hub

synchronisation phenomenon [24], and generalised synchronisa-

tion can be explained as in the following. It is not required for

nodes that present the CAS phenomenon for their error dynamics

xj{xi to be small. But for the following comparison, assume that

Jij~xj{xi is small so that we can linearise Eq. (2) about another

node j. Assume also that Fi~F. The variational equations of the

error dynamics between two nodes i and j that have equal degrees

are described by

_qqij~½DF(xi){piE�qijzgi: ð18Þ

In Ref. [24], hub synchronisation exists if Eq. (18), neglecting the

coupling term gi, has no positive Lyapunov exponents. That is

another way of stating that hub synchronisation between i and j

occurs when the variational equations of the modified dynamics

½ _xxi~F(xi){piE(xi)� presents no positive Lyapunov exponent. In

other words, in order to have hub synchronisation it is necessary

that the modified dynamics of both nodes be describable by stable

periodic oscillations. Hub synchronisation is the result of a weak

form of generalised synchronisation, defined in terms of the linear

stability of the error dynamics between two highly connected

nodes. Unlike generalised synchronisation, hub synchronisation
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offers a way to predict, in an approximate sense, the trajectory of

the synchronous nodes.

In contrast, the CAS phenomenon appears when the CAS

pattern, which is different from the solution of the modified

dynamics, becomes periodic. Another difference between the CAS

and the hub synchronisation phenomenon is that whereas xi �& C
in the CAS phenomenon, xi �& xi in the hub synchronisation, in

order for hi to be very small, and xi to be close to the

synchronisation manifold. So, whereas hub synchronisation can

be interpreted as being a type of practical synchronisation [16],

CAS is a type of almost synchronisation.

In the work of Refs. [32,33], it was numerically reported a new

desynchronous phenomenon in complex networks. The network

has no positive Lyapunov exponents but it presents a desynchro-

nous non-trivial collective behaviour. A possible situation for the

phenomenon to appear is when di and Ci in Eq. (5) are either zero

or sufficiently small such that the stability of the network is

completely determined by Eq. (7), and this equation produces no

positive Lyapunov exponent. Assume now that pi in Eq. (6) is

appropriately adjusted such that the CAS pattern for every node i
is a stable periodic orbit. The variational Eqs. (7) for all nodes have

no positive Lyapunov exponents. If additionally, xi(t) �& C, then

the network in Eq. (5) possesses no positive Lyapunov exponent.

Therefore, networks that present the CAS phenomenon for all

nodes might present the desynchronous phenomenon reported in

Refs. [32,33]. The CAS phenomenon becomes different from the

phenomenon of Refs. [32,33] if for at least one node, Eq. (6)

produces a chaotic orbit.

In the works of Refs. [34,35] it was reported the phenomenon of

explosive synchronisation in networks of oscillators whose natural

frequency is correlated to its degree. This phenomenon is

characterised by the abrupt appearance of synchronisation when

the coupling strength among the nodes is varied. For a large range

of small values of the coupling strength, the level of synchrony

(measured by the order parameter or phase synchronisation)

remains small. It abruptly increases following a typical first-order

transition at some critical coupling. This suggests that in such

networks the CAS phenomenon can appear for a large range of

the coupling strengths, the same range that produces a low level of

synchrony in the network.

CAS and generalised synchronisation
Generalised synchronisation [18,36] is a common behaviour in

complex networks [37–39], and should be expected to be found

typically. This phenomenon is defined as xi~W(yi), where W is

considered to be a continuous function. As explained in Refs.

[18,36], generalised synchronisation appears due to the existence

of a low-dimensional synchronous manifold, often a very

complicated and unknown manifold.

An important contribution to understand why generalised

synchronisation is a ubiquitous property in complex network is

given by the numerical work of Ref. [38] and the theoretical work

of Ref. [39]. In Refs. [38,39] the ideas of Ref. [40] are extended to

complex networks. In Ref. [38], it is shown that generalised

synchronisation in heterogeneous degree complex networks is

behind the appearance of a synchronisation behaviour where hub

nodes provides a skeleton about which synchronisation is

developed. The work of Ref. [39] shows that generalised

synchronisation occurs whenever there is at least one node whose

modified dynamics is periodic. The modified dynamics is a set of

equations constructed by considering only the variables of the

response system. All the nodes that have a stable and periodic

modified dynamics become synchronous in the generalised sense

with the nodes that have a chaotic modified dynamics. The

general theorem presented in Ref. [39] is a powerful tool for the

understanding of weak forms of synchronisation or desynchronous

behaviours in complex networks. However, identifying the

occurrence of generalised synchronisation does not give much

information about the behaviour of the network, since the function

that relates the trajectory among the nodes that are generalised

synchronous is usually unknown. The CAS phenomenon allows

one to calculate, at least in an approximate sense, the equations of

motion that describes the pattern to which the nodes are locked to.

More specifically, we can derive the set of equations governing, in

an approximate sense, the time evolution of the nodes, not covered

by the theorem in Ref. [39].

Finally, if there is a node whose modified dynamics describes a

stable periodic behaviour and its CAS pattern is also a stable

periodic stable behaviour, then the CAS phenomenon appears

when the network presents generalised synchronisation.

About the expected value of the local mean field: the
Central Limit Theorem

The Theorem states that, given a set of t observations, each set

of observation containing k measurements (x1,x2,x3,x4, . . . ,xk),

the sum SN~
Pk

i~1 xi(N) (for N~1,2, . . . ,t), with the variables

xi(N) drawn from an independent random process that has a

distribution with finite variance m2 and mean x, converges to a

Normal distribution for sufficiently large k. As a consequence, the

expected value of these t observations is given by the mean x

(additionally, x~
1

t

Xt

N~1
SN ), and the variance of the expected

value is given by
m2

k
. The larger the number k of variables being

summed, the larger is the probability with which one has a sum

close to the expected value. There are many situations when one

can apply this theorem for variables with some sort of correlation

[41], as it is the case for variables generated by deterministic

chaotic systems with strong mixing properties, for which the decay

of correlation is exponentially fast. In other words, a deterministic

trajectory that is strongly chaotic behaves as an independent

random variable in the long-term. For that reason, the Central

Limit Theorem holds for the time average value x(t) produced by

summing up chaotic trajectories from nodes belonging to a

network that has nodes weakly connected. Consequently, the

distribution of xi(t)~
1

N

X
j
Aijxj(t) for node i should converge to

a Gaussian distribution centred at Ci~
1

t

ðt

0

xi(t)dt as the degree of

the node is sufficiently large. In addition, the variance m2
i of the

local mean field x(t)i decreases proportional to k{1
i , as we have

numerically verified for networks of Hindmarsh-Rose neurons

(m2
i !k{1:0071

i ) and networks of Kuramoto oscillators

(m2
i !k{1:055

i ).

If the network has no positive Lyapunov exponents, we still

expect to find an approximately constant local mean field at a

node i, as long as the nodes are weakly connected and its degree is

sufficiently large. To understand why, imagine that every node in

the network stays close to a CAS pattern and one of its coordinates

is described by sin(vit). Without loss of generality we can make

that every node has the same frequency vi~v. The time-lag

property in the node trajectories, when they exhibit the CAS

pattern, results in that every node is close to sin(vit) but they will

have a random time-lag in relation to the CAS pattern (due to the

decorrelated property between the node trajectories). So, the

selected coordinate can be described by sin(vtzw0
i )zdi(t), where
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w0
i is a random initial phase and di(t) is a small random term

describing the distance between the node trajectory and the CAS

pattern. Neglecting the term di(t), the distribution of the sumPk
i~1 sin(vtzw0

i ) converges to a normal distribution with a

variance that depends on the variance of sin(w0
i ).

From previous considerations, if the degree of some of the nodes

tend to infinite, the variance of the local mean field for those nodes

tends to zero and, in this limit, the residual term di in Eq. (5) is

zero and the local mean field of these nodes is a constant. As a

consequence, the node is perfectly locked with the CAS pattern

(e~0 in Eq. (1)).

Preserving the CAS pattern in different networks: a way
to predict the onset of the CAS phenomenon in larger
networks

Consider two networks, n1 and n2, whose nodes have equal

dynamical descriptions, the network n1 with N1 nodes and the

network n2 with N2 nodes (N2wN1), and two nodes, i in the

network n1 and j in the network n2. Furthermore, assume that

both nodes have stable periodic CAS patterns (criteria 1 is

satisfied), and assume that the nodes have sufficiently large degrees

such that the local mean field of node i is approximately equal to

node j. Then the CAS pattern of node i will be approximately the

same as the one of node j if

sCAS(n1)ki(n1)~sCAS(n2)kj(n2): ð19Þ

sCAS(n1) and sCAS(n2) represent the largest coupling strengths for

which the variance of the local mean field of a node decays with

the inverse of the degree of the node (criterion 2 is satisfied) in

the networks, respectively, and ki(n1) and kj(n2) are the degrees of

the nodes i and j, respectively. In other words, the CAS

phenomenon occur in the network if sƒsCAS .

Therefore, if sCAS(N1) is known, sCAS(N2) can be calculated

from Eq. (19). In other words, if the CAS phenomenon is observed

at node i for sƒsCAS(N1), the CAS phenomenon will also be

observed at node j for s(n2)ƒsCAS(n2), where sCAS(n2) satisfies

Eq. (19).

Conclusions
Concluding, in this work we introduce the phenomenon of

Collective Almost Synchronisation (CAS), a phenomenon that is

characterised by having nodes possessing approximately constant

local mean fields. The appearance of an approximately constant

mean field is a consequence of a regime of weak interaction

between the nodes responsible to place the node trajectory around

stable periodic orbits.

The larger is the degree (k) of a node, the higher is the

probability that the local mean field is close to an expected value

and the smaller the variance (m2) of the local mean field. In fact,

the CAS phenomenon appears if m2!k{1, meaning that the

Central Limit Theorem is verified for nodes that present the CAS

phenomenon. Despite this fact, nodes that present the CAS

phenomenon will also be almost, time-lag, phase, and generalised

synchronised (see Supplementary information for conditions when

generalised synchronisation appears). A peculiar characteristic of

networks that present this phenomenon is that nodes can behave

in an infinitely large number of different ways, being that the

coupling strength among them is very small. If the brain creates

memory by minimising the coupling strength and by maximising

the number of patterns, this phenomenon might be a possible

explanation for the way the brain manages and forms short-term

and long-term memory.

A network has the CAS phenomenon if the Central Limit

Theorem can be applied and it exists an approximately constant

mean field. Alteration in parameters might change the absolute

value of the expected value of the local mean field. However, if the

Central limit Theorem can still be applied, changes in parameters

are not able to destroy the presence in the network of either the

CAS phenomenon or weak forms of synchronisation among the

nodes.
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