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The rising prevalence of antibiotic resistant microbial pathogens presents an ominous
health and economic challenge to modern society. The discovery and large-scale
development of antibiotic drugs in previous decades was transformational, providing
cheap, effective treatment for what would previously have been a lethal infection. As
microbial strains resistant tomany or even all antibiotic drug treatments have evolved, there
is an urgent need for new drugs or antimicrobial treatments to control these pathogens.
The ability to sequence and mine the genomes of an increasing number of microbial strains
from previously unexplored environments has the potential to identify new natural product
antibiotic biosynthesis pathways. This coupled with the power of synthetic biology to
generate new production chassis, biosensors and “weaponized” live cell therapeutics may
provide new means to combat the rapidly evolving threat of drug resistant microbial
pathogens. This review focuses on the application of synthetic biology to construct
probiotic strains that have been endowed with functionalities allowing them to identify,
compete with and in some cases kill microbial pathogens as well as stimulate host
immunity. Weaponized probiotics may have the greatest potential for use against
pathogens that infect the gastrointestinal tract: Vibrio cholerae, Staphylococcus
aureus, Clostridium perfringens and Clostridioides difficile. The potential benefits of
engineered probiotics are highlighted along with the challenges that must still be met
before these intriguing and exciting new therapeutic tools can be widely deployed.
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1 INTRODUCTION

The discovery and application of antibiotic drugs is among the most significant accomplishments of
medical science. Alexander Fleming’s discovery of penicillin (Fleming, 1929) and subsequent
discovery and development of multiple classes of natural product antibiotics have been
transformational to modern society. These compounds have yielded cheap and effective
treatments for diseases caused by common bacterial infections that would previously have
proven fatal. The advent of effective antibiotic drugs has made it possible to survive complex
surgical procedures like open heart surgery and organ transplants and extended the average human
life-span (Riley, 2005; Kaviani et al., 2020). The benefits of readily available antibiotic drugs have
extended into agriculture and aquaculture, making it possible to increase productivity of farmed
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animals (Park et al., 1994; Patel et al., 2020). Indeed, the
application of prophylactic antibiotics was recognized as
growth promoting for farm animals in the 1940s and this has
had a significant economic benefit to the agriculture industry
(Moore et al., 1946; Graham et al., 2007).

The first widely employed antibiotics introduced in the early
1900s were synthetic compounds identified by Paul Ehrlich. The
compound arsphenamine was one of the first, employed as a
treatment for syphilis (Ehrlich, 1913; Gelpi et al., 2015). This was
followed by the development of sulfonamides (Domagk, 1935;
Bickel, 1988). A variety of other synthetic compounds were
subsequently identified through systematic screening efforts
and these have been previously reviewed (Hutchings et al.,
2019). The synthetic antibiotic drugs were largely displaced by
penicillin and the natural product antibiotics that were
subsequently identified and developed (Jones et al., 1944;
Bryer et al., 1948; Duggar, 1948; Walksman and Lechevalier,
1949; Newton and Abraham, 1955). Most of the major classes of
antibiotic drugs were discovered during the period from the
1950s to the 1970s which was considered a “golden era” for
antibiotic drug development (Nicolaou and Rigol, 2018). Many of
these including streptomycin, neomycin and tetracycline remain
in use today and virtually all widely used antibiotics either are or
are derived from natural products produced by soil bacteria and
fungi, a testament to the chemical diversity explored by these
organisms in their natural environments (Waksman et al., 2010).
The full realm of natural product and synthetic antibiotic drugs
has been extensively reviewed (Durand et al., 2019; Hutchings
et al., 2019). Since that time there has been a decline in the
discovery of natural product antibiotics and an increased reliance
on the modification of existing drug compounds to respond to the
rising antibiotic resistance of pathogens (Olsufyeva and
Yankovskaya, 2020; Acharya et al., 2022). High throughput
screening of chemical libraries has met with limited success in
identification and development of new antibiotic drugs,
reinforcing how powerful a force natural selection has been in
generating antibiotic natural products in microbial cells (Chopra
et al., 2002; Durand et al., 2019).

The decline in discovery of new antibiotic drugs has become
an issue of increasing concern reflecting a rise in the frequency of
infections caused by pathogens resistant to most or even all of the
currently used antimicrobial drugs. It has been estimated that
antibiotic resistant bacterial infections were responsible for
greater than one million deaths in 2019 (Murray et al., 2022).
It has further been projected, that deaths directly attributable to
antibiotic resistant infections could reach 10 million per year by
2050 (Murray et al., 2022). The growing occurrence of antibiotic
resistance poses not only a global health threat but a potential
economic crisis that could cost up to $1 trillion per year by 2050
(O’Neil, 2016).

Bacterial strains with resistance to virtually all currently
employed antibiotic drugs have been identified (Chang et al.,
2003). Widespread use and misuse of antibiotic drugs for both
humans and animals has been touted as a key factor in the
development of antibiotic resistance (Ventola, 2015; Pulingam
et al., 2022). However, given that most antibiotic drugs are
produced by bacteria and fungi resident in soil, it is not

surprising that resistant strains exist in the environment
independent of clinical or agricultural exposure to antibiotics
(D’Costa et al., 2006; Larsen et al., 2022). The answer to this
ongoing problem lies in developing processes to identify and
produce new antibiotic drugs and therapies. These processes need
to keep pace with the ability of pathogens to acquire resistance to
these measures.

2 SYNTHETIC BIOLOGY APPROACHES TO
ANTIMICROBIAL DRUG RESISTANCE

Advances in genomics technology have allowed for a near
exponential increase in the number of new microbial genome
sequences (Medema and Fischbach, 2015). This wealth of genome
sequence data, coupled with powerful computational search
capabilities, has revealed new biosynthetic gene clusters that
may potentially encode natural product biosynthetic pathways
(Figure 1A), (Sekurova et al., 2019). However, a significant
portion of newly discovered gene clusters are silent under
laboratory conditions (Blin et al., 2019). This has led to
extensive efforts to identify conditions that can activate silent
natural product pathways in the native organisms in the hopes of
discovering novel antibiotic molecules (Gehrke et al., 2019;
Tomm et al., 2019). While it is likely that new antibiotic
compounds will continue to be revealed by this strategy, it is
an untargeted process whose outcomes are difficult to predict.

Synthetic biology can be described as the application of
engineering principles to biological systems. The key power of
synthetic biology lies in the ability to program cells to produce
desired compounds or perform specific tasks. Therefore,
synthetic biology and metabolic engineering can offer tools
and means to reveal or to generate new antibiotic compounds.
An early example of this strategy was the generation of hybrid
gene clusters from distinct Streptomyces species to yield the
production of novel natural product compounds (Hopwood
et al., 1985). More contemporary applications of metabolic
engineering to the production of antibiotics include the use of
biosensors combined with mutagenesis to induce and detect
activation of a silent gene cluster for the production of the
antibiotic coelimycin in Streptomyces lividans (Sekurova et al.,
2021). Further directed strategies have taken advantage of genetic
and genomic data to express known or predicted transcriptional
regulators to induce the expression of silent gene clusters
encoding mayamycin, warkmycin and chartreusin-like
compounds or engineer promoter elements to into a
phenazine biosynthesis gene cluster to yield new derivatives of
phenazine-1-carboxilic acid (Figure 1B) (Saleh et al., 2012;
Mingyar et al., 2021). The ability to manipulate the individual
gene components of biosynthetic gene clusters or generate hybrid
proteins from closely related enzymes with distinct specificities
also adds to the potential for engineering and mixing genetic
sequence elements to generate novel small molecules with
antibiotic potential, in effect accelerating evolution that might
happen through naturally occurring gene transfer and/or genetic
recombination events (Figure 1C) (Mao D. et al., 2018; Awakawa
et al., 2018; Zhang et al., 2019).
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An alternative to engineering the native producer of
antimicrobial natural products is to transplant the biosynthetic
gene clusters into heterologous production hosts (Figure 1D).
These approaches have become possible through the application
of recombination mediated engineering (recombineering) and
transformation-associated recombination (TAR) strategies
(Yamanaka et al., 2014; Li et al., 2015). Expression of
heterologous biosynthetic gene clusters in favorable production
hosts has been further enhanced by our ability to rapidly
synthesize codon optimized open reading frame sequences.
This has allowed for the assembly and optimal expression of
complex natural product pathways in manipulable microbial host
organisms like Saccharomyces cerevisiae (Ro et al., 2006). The
recreation of complex pathways in heterologous production hosts
bypasses the challenge of culturing and engineering poorly
characterized microbes, and even allows pathway synthesis
based upon metagenomic data (Wu et al., 2019).

2.1 Probiotics as Live Cell Therapeutics
The gut is a common site of infection by pathogenic bacteria and
colonization can lead to serious disorders (Lamps, 2009).

Infection and illnesses occur when a pathogen or toxins
produced by a pathogen are ingested and the pathogen
establishes itself within the host (Bintsis, 2017; Mousavi
Khaneghah et al., 2020). Some notable bacterial pathogens
include Vibrio cholera, Salmonella, Clostridium species,
Staphylococcus aureus, Shigella and Listeria. Upon ingestion
these pathogens can adhere to the mucosal layer and colonize
the intestine (Martens et al., 2018). In some cases aggressive
infectious microbes secrete toxins and enzymes that allow them
to invade further into the epithelial layer where they can induce
extensive tissue damage, inflammation and potentially gain access
to other organs and the bloodstream (Fasano, 2002; Lamps,
2009).

Food-borne pathogens typically enter into a gut environment
that has a fully established resident microbial community (Khan
et al., 2021). Competition with the endogenous community,
coupled with the host’s immune system, can often control
infections. Indeed, some opportunistic pathogens are
commonly resident in the gut of most mammals but do not
trigger disease unless the endogenous microbial community is
disrupted by stress or more often in response to antibiotic drugs

FIGURE 1 | Strategies to expand the diversity of natural product antibiotics. (A) Rapid genome sequencing combined with bioinformatic tools can be applied to a
broad range of bacteria and fungi isolated from unusual environments to identify natural product biosynthetic gene clusters. (B) Genome engineering applied to native
natural product producing organisms can activate silent biosynthetic gene clusters through modification of promoter elements or the introduction of transcriptional
activators. (C) Synthetic biology and DNA assembly technologies allow for the assembly of hybrid gene clusters to synthesize novel or modified natural product
antibiotic drugs. (D) Natural product biosynthetic gene clusters can be transplanted from native producers into heterologous host organisms modified to maximize
product biosynthesis. Figure constructed using Biorender.
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that decimate the resident microbes creating an opportunity for
pathogenic strains to rapidly expand (Raplee et al., 2021; Abd El-
Hack et al., 2022).

Despite development in the areas of medicine, nutrition and
food science, food-borne intestinal infections remain a global
challenge. The World Health Organization (WHO) estimated
that 22 foodborne pathogens caused about two billion illnesses,
resulting in over one million deaths in 2015 alone (Kirk et al.,
2015). The impacts of these illnesses are diverse and pose a
significant threat to public health and socio-economic
development globally. Since foodborne pathogens cause deaths
and illnesses of millions of people worldwide, developing
strategies to control and kill these microorganisms is a high
priority. Antibiotic drugs have been our most powerful tool to
prevent and treat pathogenic bacterial infection. However,
antimicrobial resistant pathogenic bacteria have been reported
with increased frequently and pose a challenge in the food
industry. Therefore, there is an urgent need for alternative
strategies to control foodborne pathogens and illnesses.

The gut environment is populated with commensal microbial
species adapted with capabilities to thrive in a competitive
environment. One strategy to combat invading pathogenic
organisms is to harness and exploit beneficial microbial species.
Probiotics are microbial organisms that safely reside in the gut and
confer a health benefit to a host with potential for treatment of
infectious diseases and inflammation of the gastrointestinal (GI)
tract. Some of the most widely employed probiotic strains include
Lactobacillus, Bifidobacterium and Saccharomyces species. These can
survive the acidic environment of the stomach and colonize the gut
to confer health benefits making them a staple throughout the food
industry and offer the potential to act as live cell therapeutic agents
(Mazzantini et al., 2021).

Probiotic microbes exhibit a diverse array of mechanisms that
have potential to modulate the gut environment and immune

system. Some of the benefits supplied by probiotic organisms are:
1) improvement of the intestinal epithelial layer barrier through
secretion of metabolites and small molecules, 2) secretion of
antimicrobial and anti-inflammatory factors, 3) ability to
enhance innate immunity and modulate pathogen-induced
inflammation. 4) competition with opportunistic pathogens for
space and nutrients, and 5) inhibition of pathogen adhesion and
translocation (Zhang et al., 2017; Wan et al., 2019; Flaugnatti
et al., 2021) (Figure 2). However, these native abilities can be
overwhelmed in response to dietary changes, stress, broad
spectrum antibiotic treatments or other causes of dysbiosis
(Gagliardi et al., 2018). Advances in genomics, DNA
sequencing, DNA synthesis, DNA assembly techniques and
probiotic research have provided the tools to engineer live
cells therapeutics capable of addressing current challenges
posed by disease causing bacteria.

2.2 Engineered Probiotics for Use in the
Control of Foodborne Pathogens
The power of synthetic biology lies in its ability to program living
cells with functionalities that may not currently exist, or not exist
in a context that can be applied to solve the desired problem.
Synthetic biology in conjunction with adaptive laboratory
evolution (ALE) strategies can be used to accelerate evolution
and sample an increased chemical space that may be necessary to
generate effective therapeutics to control antibiotic resistant
microbial pathogens (Bober et al., 2018; Pedrolli et al., 2019).
Among the possible opportunities for engineering live cell
therapeutics include: 1) Building biosensors for rapid specific
detection of pathogens. 2) Engineering probiotic strains with
improved ability to compete with or specifically kill selected
pathogens. 3) Rewiring metabolism in probiotic strains to
modulate the host immune response to improve recognition of

FIGURE 2 | Native probiotic microbes provide beneficial activities. 1) Secretion of short chain fatty acids (SCFA) and other small molecules can enhance epithelial
barrier function. 2) Probiotic strains can secrete anti-microbial peptides and other small molecules that inhibit pathogenic bacteria. 3) Probiotic strains can modulate
inflammatory responses through influence on dendritic cells and T-cells to improve immune function and dampen secretion of inflammatory cytokines. 4) Probiotics
compete with pathogens for space and nutrients thus limiting their proliferation in a crowded gut environment. 5) Resident microbiota and probiotics inhibit
pathogen adhesion and colonization of the gut walls. Figure constructed using Biorender.
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pathogens or reduce harmful inflammatory reactions. 4)
Engineering probiotic strains to neutralize toxins secreted by
pathogens or disrupt communication and virulence (Figure 3). It
is notable that these are not mutually exclusive as strains can be
engineered to includemore than one of these functionalities. Here
we will consider some recent advances that have been made in
engineering probiotics for the treatment and prevention of
foodborne illnesses induced by Vibrio cholera, Staphylococcus
aureus, Clostridium perfringens and Clostridioides difficile.

2.2.1 Vibrio cholerae
Cholera, a waterborne, life-threatening, gastrointestinal infection,
is caused by the Gram-negative bacterial pathogen Vibrio
cholerae and affects millions of individuals annually with an
estimate of 21,000 to 143,000 deaths recorded worldwide
(Zuckerman et al., 2007; Ali et al., 2015; Cho J. Y. et al.,
2021). It is characterized by watery diarrhea and vomiting
which leads to rapid dehydration, hypovolemic shock, acidosis
and death (Ali et al., 2015; Hsiao and Zhu, 2020). V. cholerae

colonizes the epithelium of the small intestine where it can form a
resistant biofilm, produces cholera toxin and toxin-coregulated
pili and employs a type 6 secretion system to kill competing native
gut bacteria (Faruque et al., 1998; Zhu and Mekalanos, 2003;
Logan et al., 2018).

Cholera toxins are responsible for altering the hosts cellular
signaling pathways causing cellular damage and the watery
diarrhea characteristic of cholera; while the toxin-coregulated
pili aids in colonization of the gut epithelium (Herrington et al.,
1988; Cho J. Y. et al., 2021). Current treatments for cholera are
centered around antibiotic therapy and while these have
dramatically reduced case fatality, resistance to antibiotics has
been demonstrated in cholera endemic and epidemic countries
creating a need for new antimicrobial strategies (Clemens et al.,
2017). Some natural probiotic microbes can aid in V. cholerae
infections. For example, oral administration of Lactobacillus
acidophilus and Bfidobacterium spp. in mouse models that
were initially infected with cholera has shown to have
enhanced mucosal and systemic immune response to the
cholera toxin (Tejada-Simon et al., 1999).

Aside from antibiotic treatment, vaccination is considered key
to controlling the spread of cholera (World Health Organization,
2018). Beyond the potential of their native therapeutic properties,
probiotic microbial cells offer a potential vehicle for vaccine
delivery to the gastric mucosa (Gardlik et al., 2012; Iqbal et al.,
2021). The budding yeast Saccharomyces boulardii has properties
including acid tolerance and good growth at 37°C that allow it to
be employed as a probiotic (Sazawal et al., 2006; Czerucka et al.,
2007; Kelesidis and Pothoulakis, 2012). This yeast has been
engineered to express the V. cholerae toxin coregulated pilin
gene tcpA, with the objective of inducing a pre-emptive immune
response to inhibit gut colonization by V. cholerae (Awad et al.,
2020). Although no data are available on whether ingestion of the
probiotic can induce a strong mucosal immune response to V.
cholerae, it is relevant that S. boulardii can be engineered to either
secrete foreign antigens or display them on the cell surface (Wang
et al., 2014; Li et al., 2021). Oral vaccination using recombinant
probiotics as the delivery system could thus be an effective means
to activate both the innate and adaptive immune responses of the
host to reduce the risk of transmission of foodborne infections
(Mathipa and Thantsha, 2017).

Many bacterial pathogens including V. cholerae employ a
quorum sensing system (QS) to induce colonization, biofilm
formation, virulence and broad dissemination in the host’s
gastrointestinal tract (Hsiao and Zhu, 2020). QS is a signaling
mechanism that bacteria use to respond to chemical hormone-
like molecules called autoinducers, secreted by bacteria of the
same species (Reading and Sperandio, 2006). The soluble QS
molecule is of necessity unique to the pathogen and thus offers a
target to allow detection of the pathogen. The V. cholerae quorum
sensing system has been transplanted into E. coli and linked to a
pathway to induce expression of a guide RNA that targeted
dCAS9 to inhibit expression of a GFP reporter gene. In the
absence of the V. cholerae quorum sensing molecule CA1, the
GFP reporter was silenced. Upon binding of CA1 the expression
of the gRNA was repressed leading to activation of the GFP
reporter signal. This biosensor was extremely sensitive and

FIGURE 3 | Probiotics can be engineered with improved functionalities
to inhibit pathogens. (A) Receptors wired to a genetic circuit capable of
providing an easily measurable response can act as biosensors to detect and
even quantitate pathogens presence. (B) Secretion of bacteriocins and
lytic enzymes can be programed into favorable strains to degrade biofilms and
allowing specific killing of pathogenic microbes. (C) Engineering expression of
pathogens surface markers on harmless probiotic strains can provide for
vaccination to increase immunity against pathogens. (D) Expression of
receptors for bacterial toxins can allow a probiotic to act as a biological
vacuum to neutralize toxins and reduce tissue damage from infection.
Additionally, probiotic strains can be programmed to secrete quorum sensor
antagonists to reduce expression of virulence factors. Figure constructed
using Biorender.
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allowed detection of V. cholerae (Holowko et al., 2016). The same
group further engineered the E. coli biosensor and constructed a
sense-and-kill suicide microbe (Jayaraman et al., 2017). Upon
detection of the V. cholerae quorum sensing molecule a synthetic
circuit was activated that induced expression of a synthetic
endolysin that was exported to the periplasm leading to lysis
of the biosensor and releasing the endolysin, leading to killing of
the V. cholerae cells. A similar synthetic biosensor circuit was
constructed in Lactococcus lactis which permitted effective
detection of V. cholerae in infected mice (Mao N. et al., 2018).
L. lactis has a natural capability to inhibit V. cholerae through
secretion of lactic acid to acidify the local environment and
consumption of a native strain is sufficient to reduce cholera-
induced morbidity in mice (Mao N. et al., 2018). In this case the
biosensor circuit was not linked to any mechanisms to kill or
inhibit V. cholerae but this is a direction that would likely yield a
powerful therapeutic tool (MaoN. et al., 2018). The power of such
a synthetic circuit lies in the specificity of response, allowing the
sense-and-kill strain to reside in the gut and only respond upon
detection of the pathogen.

Signalling molecules of the quorum sensing pathway are
critical to regulating the expression of toxins and other
virulence genes by V. cholerae. These signaling molecules
provide not only a biomarker to allow detection of the
pathogen but provide a potential means to disrupt induction
of virulence factors. An engineered E. coli strain expressing and
secreting the V. cholerae autoinducer CA1 was able to disrupt
toxin expression in mice inoculated with V. cholerae, leading to a
significant increase in survival (Duan and March, 2010). An
additional strategy to reduce the harm done by cholerae toxin
has been to engineer a probiotic E. coli to express a surface
receptor for cholera toxin. This probiotic could significantly
reduce the amount of cholera toxin binding to the gut wall
and improve recovery in a mouse model of V. cholerae
infection (Focareta et al., 2006).

The concept of recombinant probiotics improving the
inherent functions of natural probiotic strains, adding a
surveillance attribute, being used as a drug or vaccine delivery
system, or being “weaponized” to neutralize pathogen virulence
factors, is a promising direction for the development of new
therapies intervening with the pathogenic action of V. cholerae.

2.2.2 Staphylococcus aureus
Staphylococcus aureus are a species of potentially pathogenic
bacteria that are widespread in the environment. They
commonly infect the blood, respiratory and most notably,
the gastrointestinal tract of affected hosts. Staphylococcus
infection is also one of the primary causes of community
and hospital acquired infection, often resulting in severe
and sometimes life-threatening conditions (Díaz et al.,
2021). It is estimated that staphylococcal food poisoning
causes approximately 241,188 illnesses and 1,064
hospitalizations in the United States alone (Scallan et al.,
2011). S. aureus poses a serious public health hazard owing
to the ability to secrete heat resistant enterotoxins that trigger
inflammatory responses and the ability to form highly resistant
biofilms that resist the host defenses, decrease the efficiency of

antimicrobial factors, and provide resistance to antibiotics
(Otto, 2013; Bintsis, 2017; Paik et al., 2019; Díaz et al.,
2021). This pathogen infects a host and employs a quorum
sensing signaling pathway to induce expression a collection of
virulence factors including toxins, enzymes and secreted
biofilm components that allow it to colonize and become
established in the host.

The rapid appearance of antibiotic resistance in this microbe
presents a challenge for developing antimicrobial therapies to
treat and prevent infections. S. aureus acquires mutations at a rate
that is about 1,000 times faster than for E. coli (Pipiya et al., 2020).
This has allowed for the emergence of the notorious methicillin-
resistant (MRSA) strains that are resistant to the entire β-lactam
antibiotic class and created the need for improved therapies for
detection and clearance of S. aureus. This is where bioengineered
probiotics may have a pivotal role.

Several probiotic organisms including lactobacillus species,
Bacillus subtilis and S. boulardii have demonstrated inhibitory
activities toward S. aurerus though competitive exclusion,
inhibiting growth by metabolite secretion, inhibition of biofilm
formation and disruption of quorum sensing (Saidi et al., 2019;
Nataraj and Mallappa, 2021). These antimicrobial activities
coupled to the more general probiotic properties of reducing
inflammation and improving epithelial barrier function make
these organisms excellent candidates for engineering to improve
upon their existing capabilities and to add more specific
antimicrobial functionalities (Mathipa and Thantsha, 2017).

One way to improve the function of favorable probiotic strains
is to make them more competitive within the gut environment.
While these strains are all naturally tolerant of the acid conditions
of the stomach and the routine 37°C temperature, one place that
an advantage can be given is through bestowing resistance to the
natural population of bacteriophage that populate the gut.
Resistance to phage populations might permit a desirable
probiotic strain to more effectively compete with pathogens
and opportunistic pathogens that invade the human gut.
Nagarajan et al. employed mutagenesis and a selective
resistance procedure to isolate a probiotic bacterium,
Lactobacillus plantarum, that was resistant to a phage
population. In vitro competition tests between S. aureus and
the selected L. plantarum strain demonstrated that in the
presence of a phage population the probiotic was able to out
compete S. aureus thereby reducing the ability of the pathogen to
adhere to and colonize the epithelial cell layer (Nagarajan et al.,
2019). This proof of principle experiment clearly has limited
utility in that the probiotic was selected for resistance to the phage
population from a specific environment and would likely be
susceptible to phage from other environments. Additionally,
given the high rate of mutagenesis in bacteriophage it is likely
that phage capable of lysing the probiotic would readily emerge.
None-the-less improving the competitiveness of favorable
probiotic strains is a notion worthy of further investigation.
Bacterial species with fully engineered and recoded genomes
have been produced to eliminate redundant codons (Fredens
et al., 2019). These are fully resistant to phage infection as they
lack tRNA required for phage gene expression (Robertson et al.,
2021). Application of this technology to a probiotic strain could
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give that strain a competitive advantage, allowing it to easily
outgrow opportunistic pathogens in the gut.

Relatively simple genetic circuits have been engineered into
probiotic strains to detect and in some cases respond to S. aureus
infections. The probiotic bacteria strain Lactobacillus reuteri is
effective in reducing S. aureus viability in a host through the
mechanism of competitive exclusion, biosurfactant secretion and
production of lactic acid (Sikorska and Smoragiewicz, 2013;
Wang et al., 2015). An L. reuteri strain that expressed the S.
aureus AgrA and AgrC genes to provide a receptor and response
pathway for detection of the AIP1 signaling molecule was
constructed such that activation of AgrA. would repress
expression of a β-glucuronidase gene to allow colorimetric
detection (Lubkowicz et al., 2018). This mimic system can
detect the presence of the autoinducer at very low
concentrations and could be useful for high-throughput
quantitative and qualitative detection of S. aureus, especially in
hospital settings (Lubkowicz et al., 2018). This method is also
cost-effective in comparison to current mass spectrophotometry
and DNA sequencing approaches. The probiotic system can also
be fine-tuned as a chassis for the eradication of S. aureus.

Several probiotic organisms described above are capable of
competing with S. aureus in the gut environment. In an effort to
further improve the utility of probiotics to impeded S. aureus
infections several groups have sought to “weaponize” probiotic
strains through engineering them with genes encoding
antimicrobial factors with specificity for the target pathogen.
Bacteriocins are proteinaceous compounds produced by
bacteria to facilitate anti-microbial activity against other
bacteria (Bastos et al., 2010). Lysostaphin is a metallo-enzyme
that is relatively specific for the cell wall structures of
Staphylococcal species (Kokai-Kun et al., 2007; Bastos et al.,
2010). P. pastoris strains that have been engineered to produce
lysostaphin displayed efficient eradication of S. aureus during
in vitro co-culture experiments (Pipiya et al., 2020). Despite the
effectiveness of lysostaphin to kill S. aureus in vitro infections in
the human gut pose a greater challenge owing to biofilm
formation by the colonizing S. aureus.

A probiotic strategy to deal with S. aureus infections that has
emerged is the use of engineered Mycoplasma pneumoniae. This
organism has a small genome, is genetically manipulable, has an
unusual codon usage and limited recombination that limits
horizontal gene transfer (Osawa et al., 1990; Himmelreich
et al., 1996; Krishnakumar et al., 2010; Sluijter et al., 2010).
Additionally, it lacks a cell wall and so has a limited ability to
trigger an inflammatory response in mammalian hosts
(Sukhithasri et al., 2013). An M. pneumoniae with reduced
virulence owing to deletion of the mpn133 and mpn372 genes
was engineered to secrete dispersin B, a glycosyl hydrolase that
can efficiently dissolve biofilms formed by S. aureus, and the
bacteriocin lysostaphin (Garrido et al., 2021). The engineered
strain was effective in disrupting and reducing S. aureus biofilm
development in a catheterized mouse model as well as eliminating
biofilms formed ex-vivo (Garrido et al., 2021).

Staphylococcus aureus remains a challenging pathogen for
medicine to control owing to its ability to rapidly acquire drug
resistance, the tenacious nature of its protective biofilms, ability to

evade the immune system and ability to invade a variety of tissues.
Clever genetic engineering of favorable host organisms to act as
biosensors and “hunter-killers” that can disrupt biofilms may
become a key tool that can be combined with other therapies
including the use of engineered bacteriophage to combat this
common microbial pathogen.

2.2.3 Clostridium perfringens
Clostridia species are anaerobic organisms prevalent in soil.
Several of these are well known human pathogens including C.
tetani, C. difficile and C. perfringens and can induce disease in
humans and agricultural animals (Popoff and Bouvet, 2009;
Onderdonk and Garrett, 2020). The ability of these organisms
to form spores that are resistant to heat and many common
cleaning agents makes them challenging to control (Augustyn
et al., 2022). C. perfringens is common within ecosystems and
frequents the gastrointestinal tracts of livestock and poultry
(Abudabos et al., 2019; Bai et al., 2020). It is responsible for a
range of severe conditions, including food poisoning, gas
gangrene, respiratory infections and necrotizing enteritis (NE)
in both humans and animals (Lindström et al., 2011; Gervasi
et al., 2014a). C. perfringens ranks second among the causes of
foodborne illness and is responsible for greater than one million
illnesses each year in the United States alone (Bintsis, 2017).

C. perfringens infection has been associated with the
development of necrotizing enterocolitis (NEC), a
gastrointestinal disorder affecting pre-term infants with a
mortality rate of about 20% (Duchon et al., 2021). This
pathogenic species is also the leading cause of necrotic
enteritis (NE) in farm animals, costing the global poultry
industry over two billion dollars annually, mainly due to the
high prices of antibiotic treatments and therapeutic feed
supplementation (Van Immerseel et al., 2009; Paiva et al.,
2014; Smith et al., 2014). C. perfringens, like S. aureus,
employs a quorum sensing system and secretes a battery of
adhesins, proteolytic enzymes and toxins allowing it to
colonize and invade the host (Pruteanu and Shanahan, 2013;
Kiu and Hall, 2018; Navarro et al., 2018; Bai et al., 2020). They are
also able to secrete bacteriocins that inhibit some competing
bacteria to increase availability of nutrients and clear space to
colonize (Mora et al., 2020).

Antibiotic drugs are the most common means to treat and
prevent C. perfringens infection. However, the growing number of
antibiotic resistant pathogenic strains found in isolated livestock
and agricultural sources suggest their use may not be beneficial in
the long term (Slavić et al., 2011). Indeed, up to 33% of isolates
from some meat samples harbor C. perfringens with resistance to
the common antibiotics: ampicillin, tetracyclin, amoxicillin,
ciprofloxiacin and chloramphenicol. Further multidrug
resistance was found in 38% of those isolates and multidrug
resistant C. perfringens has been isolated from livestock (Zhang
et al., 2021; Hassani et al., 2022). Vaccination processes that have
been successful against C. tetani have also been developed for C.
perfringens but have yet to become widely and successfully
established (Alizadeh et al., 2021). The growing health and
economic threat posed by resistant forms of C. perfringens is
creating an urgent need to develop new approaches to controlling
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infection by this pathogen that are effective, affordable and can be
widely disseminated.

The requirements for an effective chassis for a live cell
therapeutic would include the ability to thrive in the gut
environment, being genetically manipulable, controllable,
exhibit limited horizontal gene transfer and have intrinsic
properties that make it competitive to the pathogen. A variety
of probiotic organisms including Lactobacillus, Bifidobacterium,
S. cerevisiae and S. boulardii, have been demonstrated to compete
with or inhibit the growth of C. perfringens in vitro and in vivo
(Schoster et al., 2013; Guo et al., 2017; Chuang et al., 2019; Gong
et al., 2020; Khalique et al., 2020; Wang et al., 2020). A limited
number of probiotic species have been demonstrated to secrete
bacteriocins that inhibit C. perfringens (O’Shea et al., 2009; Heo
et al., 2018; Golneshin et al., 2020; Lee et al., 2021). These
organisms and their bacteriocins may be exploited in the
future as tools to inhibit opportunistic C. perfringens infections.

Extensive effort has been expended on engineering probiotic
organisms to express C. perfringens virulence factors with the aim
of generating effective live cell vaccines. Delivering toxins to
humans or animals as a vaccine has inherent risks even if those
toxins have been inactivated with heat or formaldehyde. In
contrast, toxoids mimic toxins released by the pathogens but
are not associated with virulence. A live cell expressing target
antigens has the potential benefit of inducing immunity at the
level of the gut mucosa and provides a mechanism that allows
extended exposure to the toxoid antigen rather than single doses.
Probiotic Bacillus subtilis has been engineered to produce, in cells,
or display on spore walls, a fragment of C. perfringens toxin-α
fused to gluthatione S-transferase. Mice immunized with toxoid
displaying spores developed immunity and were protected
against lethal doses of the toxin (Hoang et al., 2008). This
approach provided immunity to only a single toxin but it
could clearly be extended to cover other toxins. Additionally,
the use of spores as a display and delivery vehicle provides a stable
vaccine that could easily be produced in large volumes.

The probiotic bacteria Lactobacilli casei has been engineered to
express a C. perfringens α-toxoid mimicking the α-toxin. Mice
vaccinated with the probiotic developed anti-α toxin antibodies
and survived challenge with a lethal dose α-toxin while the
control animals rapidly succumbed to the effects of the toxin
(Alimolaei et al., 2018; Song et al., 2018; Gao et al., 2019). Oral
administration of an ε-toxoid expressing L. casei strain or a β-
toxoid expressing L. casei strain was also able to induce an
effective antibody response to the toxin (Alimolaei et al., 2016;
Alimolaei et al., 2017). Similar results were found by Bai et al. and
Zhao et al. who also engineered L. casei to express toxoids
mimicking the C. perfringens α, ε, β1, and β2 toxins and
vaccinated rabbits with the recombinant probiotic. Challenge
experiments demonstrated that this strategy yielded an 80%
protection rate, even more effective than vaccinating with
inactivated, whole C. perfringens cells (Zhao et al., 2017; Bai
et al., 2020). An attenuated Salmonella typhimurium expressing
C. perfringens antigens NetB, α-toxoid and Fba administered to
chickens induced both serum and mucosal antibody responses
and provided partial protection from necrotizing enteritis
intestinal lesions (Wilde et al., 2019). A similar investigation

using a self-lysing S. typhimurium vector expressing α-toxoid and
NetB administered to broiler chickens yielded induction of IgA,
IgY, and IgM antibodies against the toxins and provided
significant protection from a subsequent C. perfringens
infection (Jiang et al., 2015). The yeast S. boulardii was
engineered to secrete a fusion protein including the C.
perfringens enterotoxin CPE. Oral administration of this live
cell vaccine to mice induced both IgG and IgA antibody
responses suggesting that S. boulardii may be an effective
vector for application as a live cell vaccine (Bagherpour et al.,
2018). Additionally, a “disarmed” C. perfringens strain lacking the
NetB toxin, when orally administered to vaccinate broiler
chickens, produced a significant protective effect and reduced
the incidence of necrotizing enteritis lesions upon challenge with
virulent C. perfringens (Mishra and Smyth, 2017). Recently, a
native microbial strain isolated from poultry, Ligilactobacillus
agilis La3, has been engineered to effectively produce C.
perfringens NetB (Vezina et al., 2021). Although its
effectiveness has yet to be characterized, it is likely that a
native member of the poultry gut microbiota will be an
effective delivery vehicle.

Metabolic engineering of probiotics has also been directed
toward generating live cell therapeutics capable of not just
competing with C. perfringens but able to attack and lyse C.
perfringens to promote their clearance. This work has borrowed
from the highly effective endolysin enzymes produced by
bacteriophage to penetrate the cell walls of infected host cells
to allow phage release (Schmelcher et al., 2012). Bacteriophage
derived endolysins specific for binding to and degrading the cell
walls of C. perfringens and have been identified and demonstrated
to be effective for killing those organisms in vitro (Gervasi et al.,
2014a). Additionally, protein engineering has been applied to
improve activity and increase specificity of C. perfringens killing
(Swift et al., 2015). Clostridia and other pathogenic bacteria can
acquire resistance to antibiotic drugs through modification of or
degradation of the drug or the use of efflux pumps. Endolysins
specifically bind to and cleave highly conserved peptidoglycan
structures that are essential to the integrity of the cell wall
(Fischetti, 2010). Acquiring resistance to an endolysin would
require the cells to develop changes in critical conserved cell wall
structures that would likely reduce the integrity of that structure
and so is expected to be a very rare event (Fischetti, 2006).

Synthetic biology techniques have been applied to engineer the
probiotic bacteria, Lactobacillus johnsonii, secrete an endolysin
against effective against C. perfringens. They found that this led to
an improved ability of the probiotic bacteria to lyse C. perfringens
cells and increased clearance of the pathogen in plate assays
(Gervasi et al., 2014a; Gervasi et al., 2014b; Cho J.-H. et al., 2021).
S. cerevisiae have been engineered to effectively display active C.
perfringens-specific endolysins on their cell walls (Ritter and
Hackel, 2019). These investigators used the yeast display
system to engineer the endolysin for improved stability but
they did not test them for C. perfringens killing. Such a system
could be potentially employed with a probiotic yeast for
application in vivo. While engineered C. perfringens killing
probiotics have yet to be proven in vivo they display the
potential to reduce pathogen load and aid in control of serious
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infections. Overall, these models demonstrate that probiotics can
be manipulated to produce anti-microbial factors and directly
promote the clearance of the pathogenic bacteria C. perfringens.

2.2.4 Clostridioides difficile
Clostridioides difficile, like C. perfringens, is an anaerobic Gram
positive bacteria that is widely disseminated in the environment.
It is unclear how prevalent C. difficile is within the gut
microbiome of human populations but it can be isolated from
the gut of new born and healthy children (Tullus et al., 1989; Cui
et al., 2021). C. difficile infection leads to diarrhea and colitis that
can be fatal and is responsible for greater than 29,000 deaths each
year in the United States (Lessa et al., 2015a; Lessa et al., 2015b).
Indeed, C. difficile infection is among the top ten forms of health
care associated infection and is a continuing problem in hospital
environments (Suetens et al., 2018). C. difficile, like C. perfringens,
secretes a set of toxins tcdA (toxin A), tcdB (toxin B), and CDT
that are responsible for the tissue damage and pathology
associated with infections (Kuehne et al., 2014;
Chandrasekaran and Lacy, 2017). The pathology of C. difficile
infection in humans and animals has been extensively reviewed
(Abt et al., 2016; Moono et al., 2016).

Pathogenic infections with C. difficile are associated with
conditions that yield dysbiosis including antibiotic treatments
or severe stress that provide the opportunity for C. difficile to
colonize the gut (Hooks and O’Malley, 2017; Vasilescu et al.,
2021). The use of a subset of antibiotic drugs is associated with an
increased risk of inducing C. difficile infections likely owing the
reduction of competing microbial species in the gut caused by the
treatment (Vardakas et al., 2016). Infections with C. difficile are
notoriously persistent. Most antibiotic treatments are not
successful and even following extensive antibiotic regimens
infections are recurrent in 20%–40% of patients (Pepin et al.,
2005; Vardakas et al., 2016). The high rate of recurrence may be
due to the ability of the cells to sporulate and embed spores in the
gut wall (Castro-Cordova et al., 2021). Owing to the persistent
nature of C. difficile infections the antibiotics currently used in
treatment are vancomycin, fidaxomicin and metronidazole
(McDonald et al., 2018). An ominous trend is that these
antibiotic treatments now display reduced effectiveness in
treatment of C. difficile. The effectiveness of metronidazole has
reduced from 95% to 75% since 2010. Even vancomycin has
displayed a reduced effectiveness from 95% to 85% (McDonald
et al., 2018). The increased incidence of recurrent C. difficile
infections reflects a failure of the currently employed antibiotic
treatments and reveals the need for more effective drugs or
alternative therapeutic approaches (Marra et al., 2020; Sholeh
et al., 2020).

There has long been evidence that the normal diversity and
composition of the gut microbiome is able to suppress outgrowth
of C. difficile and limit pathological colonization of the gut
(Freter, 1955). Administration of probiotic microbes including
Bifidobacterium breve and Lacticaseibacillus casei, S. boulardii,
and L. rhamnosus GG, either alone or in combination with
antibiotic regimens have seen some success in inhibiting or
resolving C. difficile induced gut pathologies in animal models
(Gorbach et al., 1987; McFarland et al., 1994; Esposito et al., 2021;

Panpetch et al., 2021; Yang and Yang, 2021; Yang et al., 2022).
Treatment with defined combinations of probiotic strains that
compete with C. difficile for mucin as a nutrient source have
shown some success (Pereira et al., 2020). More complex
combinations of probiotic strains have reached stage III
clinical trials for treatment of C. difficile induced pathology
and the application of fecal transplantation is gaining
acceptance as a treatment despite concerns over the need to
characterize the donor microbiota (Khoruts et al., 2021;
McGovern et al., 2021). The mechanism by which probiotic
administration aids in resolving C. difficile infection is likely a
combination of competition for resources coupled with the ability
of a subset of microbiota to secrete secondary bile acids,
bacteriocins, and other compounds inhibitory to C. difficile
vegetative cells, germination of C. difficile spores and
potentially disruption of C. difficile quorum sensing (Spinler
et al., 2017; Thanissery et al., 2017; Lv et al., 2020;
Gunaratnam et al., 2021).

The effective deployment of probiotic microbes to resolve and
prevent C. difficile infection has motivated efforts to engineer
probiotics for improved specific functions. The pathologies and
morbidity associated with C. difficile infection are induced by the
toxins tcdA, tcdB, and CDT. Monoclonal antibodies directed
against the toxins have proven effective in limiting the
pathology of C. difficile infection (Wilcox et al., 2017). But
thus far vaccination with toxoids has had limited success at
inducing immunity or treating C. difficile infection (Dieterle
et al., 2019; de Bruyn et al., 2021) However, engineered
microbial cells expressing C. difficile toxins can induce
effective protective immune response when orally administered
in animal models. An attenuated V. cholerae strain secreting a
toxin A fragment fusion protein induced anti-toxin A antibody
production and a protective immune response in mice that
survived a subsequent challenge with C. difficile infection
(Ryan et al., 1997). Engineered attenuated Salmonella
typhimurium and Bacillus subtilis have both been used as
vectors for secretion of toxin A fragments to demonstrate the
induction of protective immune response through mucosal
delivery of the vaccinating antigen (Ward et al., 1999;
Permpoonpattana et al., 2011). Oral vaccination with a
“disarmed” C. difficile engineered to express toxin fragments
provided substantial protective immunity to C. difficile
challenge in animal models (Donald et al., 2013; Wang et al.,
2018). Similarly, administration of an engineered Lactococcus
lactis expressing a fragment of toxin A, either secreted from the
cells or displayed on the cell wall induced a strong immune
response and provided substantial protection to C. difficile
challenge in mice (Yang et al., 2013). Engineering L. lactis to
express toxin A and toxin B fragments in combination provided
no greater protection than toxin A alone (Guo et al., 2015).
Clostridia employ surface proteins to assist with adherence to the
intestinal cell wall and promote colonization. L. casei engineered
to express and display the C. difficile SlpA on its cell wall were able
to effectively engraft in mouse intestines following inoculation
and triggered a robust immune response that protected hamsters
from death following infection with C. difficile (Vedantam et al.,
2018). Additionally, C. difficile surface antigen CD0873 involved
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in attachment to the epithelial cell wall has emerged as an effective
antigen for induction of a protective immune response and may
be a good candidate for surface display on probiotics to induce
immunity (Karyal et al., 2021). The apparent effectiveness of the
live cell vaccines in animal models is encouraging and the relative
ease with which a variety of toxin and surface antigens can be
tested for the ability to induce protective immunity means that
this approach may achieve further uptake.

One of the limitations of vaccination efforts against C. difficile
is the relatively slow sero-conversion time as well as the inherent
limitation of systemic antibodies directed against toxins in the
intestinal lumen (Greenberg et al., 2012; de Bruyn et al., 2016).
Microbial cells have been engineered to deliver therapeutic
antibodies to neutralize C. difficile toxins during infection. L.
paracasei strains were developed to express and secrete or display
on their cell walls antibody chains capable of binding toxin B.
Oral delivery of the recombinant probiotics provided protection
against infection with a toxin B expressing C. difficile strain in a
hamster model (Andersen et al., 2016). The yeast S. boulardii has
been employed to express and secrete a multidomain neutralizing
antibody directed against the major toxins of C. difficile (Chen
et al., 2020). The engineered live cell therapeutic was effective in
limiting disease caused by acute and recurrent infections by C.
difficile in a mouse model. An advantage of a S. boulardii as a
chassis for delivering antimicrobial activity is that it can be used
in combination with antibiotic drugs that would render a
bacterial probiotic ineffective. Additionally, this strategy has
potential for further enhancement through improved
expression and secretion of the therapeutic antibody. It could
also be more broadly applied through expression of antibodies
against other virulence factors.

A final consideration for deployment of live cell therapeutics
to treat C. difficile infection is the application of lytic
bacteriophage. Phage that specifically target C. difficile have
been identified but treatment with phage has had limited
success (Mayer et al., 2008; Meader et al., 2013; Nale et al.,
2016; Whittle et al., 2022). The effectiveness of a C. difficile-
specific phage was improved through engineering the phage to
provide guide RNA to induce the endogenous C. difficile CRISPR
system to target its own genome (Selle et al., 2020). Despite the
improved effectiveness in killing C. difficile vegetative cells this
phage will likely suffer the limitation of all phage therapies in that
the target cells will rapidly evolve resistance.

Bacteriophage encoded endolysins with specificity for C.
difficile cell walls have been identified (Mayer et al., 2008;
Mondal et al., 2020). Oral application of purified endolysin
has proven effective in controlling C. difficile infection in
mice but owing to limitations of protein stability the
therapeutic effect is modest (Peng et al., 2018). This
limitation might be overcome through expression of the
endolysin by a probiotic microbial strain allowing
prolonged secretion into the gut and extending the time
allowed for effective killing of colonizing C. difficile. While
this is an intriguing idea it would be necessary to ensure that
the endolysin did not have “off target” effects by killing other
microbial species which might add to any dysbiosis rather
than simply eradicate the pathogen.

The increasing frequency of drug resistant C. difficile
infections and the severity of their pathology coupled with the
high incidence of infections occurring in health care facilities
creates urgency around the development of new strategies to
control this pathogen. The research described above highlight the
potential to use bioengineered probiotics as live cell vaccines and
vehicles for delivering therapeutics to effectively control the
damaging effects of opportunistic C. difficile outgrowth.

3 EMERGING APPLICATIONS AND
CHALLENGES OF BIOENGINEERED
PROBIOTICS
Bioengineering can be used to enhance the overall efficacy and
effectiveness of known probiotic strains, particularly in their
application to antagonize and treat diseases. The previous
sections discussed the ways by which genetic engineering
could enhance the inherent therapeutic action of probiotics.
Common approaches include: increasing the specificity of the
probiotic microbes for their target molecules, improving the
targeted therapeutic delivery action in infected hosts, and
improving the direct antimicrobial activity of the probiotic
against pathogenic infections of the gastrointestinal tract.
Genetic modifications can also be applied to probiotic strains
to improve tolerance of ecological or host environmental stress
including high temperatures, acidification, oxygen and food
processing.

3.1 Potential Benefits of Engineered Live
Cell Therapeutics to Combat Food Borne
Pathogens
Engineered probiotics have significant potential for deployment
as tools to detect pathogenic bacteria and eliminate or control
them within the gut environment. For this purpose, live cell
therapeutics display a number of potential benefits.

1. Engineered probiotic strains that have been trained to detect
and kill pathogens can have very high specificity for the target
pathogen. These can be applied with precision to eliminate the
pathogen without disruption of the gut microbiota, thus
imposing less stress on the host and avoiding dysbiosis that
would later need to be remediated (Figure 4A).

2. There is a low probability of engineered probiotics leading
to “off target” effects. Unlike systemically delivered drug
therapies, engineered probiotics are localized to the site of
infection in the gut. Since these are known to be safe
organisms they are unlikely to have adverse side effects
(Figure 4B).

3. They do not generate or encourage the development of
antibiotic resistance. Most antibiotic drugs are cytostatic,
offering the opportunity for microbes to escape the drug.
Probiotics can be engineered as cytolytic agents to kill the
target pathogen, reducing the opportunity for developing
resistance. Additionally, these will not spawn resistance to
antibiotic drugs since they have distinct modes of action and in
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some cases such as engineered yeasts they could be deployed in
conjunction with antibiotic drugs.

4. Live cell therapeutics with capability of killing pathogens will
reside and replicate in the gut. Microbial cells can be
engineered for increased stress resistance and improved
ability to colonize the gut environment. Localized with the
target pathogens, a live cell therapeutic is self-replicating and
can remain in the gut to deliver its therapeutic activity for a
longer period than any antibiotic drug would remain active,
making it more effective with a lower number of
administrations. In the absence of selection, the treatment
is self-limiting as the therapeutic would be lost (Figure 4B).

5. As live cell vaccines, a probiotic expressing surface antigens or
toxin fragments from a pathogen would have the advantage of
generating mucosal immunity effective at the site of infection
and colonization. Additionally, a live cell vaccine would allow
for prolonged exposure to the target antigens rather than a

single dose. An oral vaccine is simpler to provide and likely to
have higher uptake than an injectable vaccine (Figure 4C).

6. Live cell therapeutics are self-replicating and so would be
cheap to produce, transport and employ once developed.
Although considerable time and money is necessary to
generate highly effective live cell therapeutics, once
generated, the production cost is low, it remains viable at
room temperatures and can retain its stability in dried or
frozen forms. This stability would permit their distribution in
areas where prolonged freezing or refrigeration might not be
practical (Figure 4D).

3.2 Challenges to Successful Application of
Engineered Live Cell Therapeutics
Although bioengineered probiotics have been shown to be
effective against pathogens that commonly infect the gut, their

FIGURE 4 | Potential benefits of engineered live cell therapeutics. (A) Engineered probiotics have the potential to be trained to detect specific pathogens by way of
signaling molecules, surface antigens, secreted metabolites or other small molecules unique to the pathogen. This high specificity may allow for selective killing of the
pathogen without loss of the resident microbial population, thus avoiding the dysbiosis that results from administration of broad-spectrum antibiotic drugs. (B) An
engineered probiotic would reside in the gut in close proximity to sites of infection to allow direct and specific killing of intestinal pathogens with limited systemic
effects. As the probiotic would self-replicate it would be effective for a prolonged time without the need for multiple applications. (C) As a live-cell vaccine, probiotics can
act as a delivery vehicle to secrete or display pathogen surface antigens, adhesion molecules or toxin fragments to induce mucosal immunity at the site of infection which
may have benefits over systemic immunization. (D) Engineered live-cell therapeutics can be produced in large quantity relatively cheaply through bioreactor culture and
the cells can be stored dry or frozen with high viability.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org May 2022 | Volume 10 | Article 89047911

Cruz et al. Engineered Probiotics

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


activity can be limited by several factors and their usage can also
come with several challenges.

1. Competitiveness and stability within the host gut will be a
challenge. The physical robustness of a probiotic microbe is
critical to its ability to function as an antagonist against
pathogenic bacteria (Sola-Oladokun et al., 2017). The human
gut is populated by resident microbes well adapted to life in that
environment. Any engineered organism will need to be
genetically stable, survive passage through the GI tract,
multiply and be highly competitive to have any hope of
colonizing or engrafting in the gut. Expression of heterologous
genes is likely to impose a significant metabolic burden on any
engineered microbe making it less competitive within the gut

environment. An engineered microbe might benefit from a
“stripped down” genome engineered to remove non-essential
sequences. This is likely to prove challenging since even E. coli has
many genes and loci with no clearly assigned function (Ghatak
et al., 2019). However, increased fitness for colonizing the gut
environment could be a two-edged sword. If the engineered
microbe is too effective it might displace the natural microbiota
leading to unpredictable effects of dysbiosis (Figure 5A). They
must also tolerate commercial scale production and storage
process without contamination or significant loss of viability.
A variety of strategies around this have been reviewed (Wan et al.,
2019).

2. Target specificity needs to be tuned such that only pathogenic
microbes are targeted and killed. Failure to achieve specificity

FIGURE 5 | Challenges remain to the wide-spread application of engineered probiotics. (A) Engineered probiotics must compete with the resident microbial
species for nutrients to replicate and then act on pathogens. To compete effectively they must be as well adapted as the resident microbes but must not contribute to
overwhelming the resident microbiota. The killing of pathogens must be precise to avoid off-target killing of resident microbiota which would increase dysbiosis. This
imposes the limitation that the pathogen must be specifically identified before the application of the engineered probiotic. (B) It is likely that variants of any pathogen
will arise that can avoid detection or develop resistance to the mechanism of killing used by the engineered probiotic. Biofilms that are formed by a variety of pathogens
that colonize the gut pose a challenge for both detection and killing of the pathogen. (C) Administration of live-cell probiotic vaccines presents the concern of tolerant
pathogens resistant to immune cell responses from vaccination. Live cell probiotics can also be recognized by immune cells as foreign microbes and targeted for cell
death, thereby decreasing their viability and vaccine actions. (D)Containment of an engineered probiotic is important as it is difficult to predict how the organismwill act in
different environments and there could be unexpected effects on animals, insects or plants for which the probiotic was not engineered. Even within the planned host
environment transfer of genetic material to other organisms is a concern as this can occur through conjugation and direct transfer to bacteria as well as through phage
mediated transduction and natural DNA uptake occurring upon cell lysis for any reason.
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for pathogens could lead to destruction of helpful microbial
strains and increase dysbiosis (Figure 5A). Target specificity
can be improved by means of sensors and switches to activate
the killing mechanisms only when the target cells have been
detected. Another approach might include expression of
receptors on the surface of the engineered probiotic
allowing it to adhere to or associate with the pathogen.
However, while there is a benefit to the ability to target
specific pathogens in the gut, this also presents the
significant limitation that the target organism must be
specifically identified (Figure 5A). In contrast, broad
spectrum antibiotic drugs can be employed effectively even
without specific characterization of the infectious organism.

3. Pathogen resistance will continue to pose a challenge. Even
without specific selection, the diversity inherent in microbial
populations means that variants that are resistant to the
mechanism of killing programmed into a live cell
therapeutic will arise (Figure 5B). It is also expected that
pathogen variants with alterations in signaling molecules or
molecules targeted by biosensors would eventually arise and
avoid detection (Figure 5B). An additional means by which
pathogens may develop resistance to any engineered probiotic
is through biofilm formation (Figure 5B). While these can be
overcome by production of degradative enzymes, they do pose
a further challenge. Without selection these may not become
prevalent but these will always limit the effectiveness of an
engineered probiotic.

4. In the case of live cell vaccines, challenges will include
achieving prolonged immunity following induction of
mucosal immunity (Figure 5C). It is likely that this can be
improved with suitable adjuvant strategies. Other concerns
include the potential to induce tolerance to pathogens which
might provide them increased opportunities. It is also possible
that an immune response would be generated against the
probiotic vehicle presenting the antigens. Such a response
might reduce the effectiveness of the vaccine, induce a
response to native gut microbiota leading to dysbiosis, and
limit the effectiveness of readministering the live cell vaccine
(Figure 5C). Any strains of the target pathogen with variation
in the selected surface antigens may escape the immune
response and induce the disease state.

5. Biocontainment: The importance of ensuring the safety of an
engineered probiotic cannot be understated. While we may be
able to demonstrate that a microbe has no negative effects
within a lab environment or within test subjects, it is
impossible to predict its behavior and interactions within
other environments or in the guts of other organisms
(Figure 5D). Auxotrophic requirements, self-limiting

components and “kill-switches” can be engineered into live
cell therapeutics to limit their dissemination but these may not
be entirely sufficient for some purposes. Horizontal gene
transfer can occur in most bacterial cell populations and
this can be exacerbated through cell killing and by phage
that can transduce genetic material (Figure 5D) (Sleator,
2010). In this regard, S. cerevisiae and S. boulardii have
benefits as chassis organisms since they have no means for
horizontal gene transfer, have no phage or virus that transmit
cell to cell, and can be made sterile to avoid gene transfer to
closely related wild yeasts.

4 CONCLUSION

The ominous rise in the frequency of infections caused by
antibiotic resistant pathogens creates urgency around the
development of new drugs and therapeutics to control
infections. Synthetic biology and genomics offer powerful tools
to discover, unmask and develop new natural product antibiotics
and provide pipelines for their development. While this may
prove to be a finite resource, it has yet to be fully exploited and
may at least provide new compounds to keep us ahead of the wave
of drug resistant pathogens. Engineered probiotics and live cell
therapeutics are conceptually intriguing as they offer tools that
can be applied with precision to detect, disarm and eliminate
pathogens. While these solutions are provocative and exciting, a
variety of challenges and concerns around safety and effectiveness
must be overcome before this strategy can be considered a viable
alternative to conventional therapies.
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