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Abstract: Early detection of cancer facilitates treatment and improves patient survival. We hypoth-
esized that molecular biomarkers of cancer could be rationally predicted based on even partial
knowledge of transcriptional regulation, functional pathways and gene co-expression networks. To
test our data mining approach, we focused on breast cancer, as one of the best-studied models of
this disease. We were particularly interested to check whether such a ‘guilt by association’ approach
would lead to pan-cancer markers generally known in the field or whether molecular subtype-specific
‘seed’ markers will yield subtype-specific extended sets of breast cancer markers. The key challenge
of this investigation was to utilize a small number of well-characterized, largely intracellular, breast
cancer-related proteins to uncover similarly regulated and functionally related genes and proteins
with the view to predicting a much-expanded range of disease markers, especially that of extracellu-
lar molecular markers, potentially suitable for the early non-invasive detection of the disease. We
selected 23 previously characterized proteins specific to three major molecular subtypes of breast
cancer and analyzed their established transcription factor networks, their known metabolic and
functional pathways and the existing experimentally derived protein co-expression data. Having
started with largely intracellular and transmembrane marker ‘seeds’ we predicted the existence of
as many as 150 novel biomarker genes to be associated with the selected three major molecular
sub-types of breast cancer all coding for extracellularly targeted or secreted proteins and therefore
being potentially most suitable for molecular diagnosis of the disease. Of the 150 such predicted
protein markers, 114 were predicted to be linked through the combination of regulatory networks
to basal breast cancer, 48 to luminal and 7 to Her2-positive breast cancer. The reported approach to
mining molecular markers is not limited to breast cancer and therefore offers a widely applicable
strategy of biomarker mining.

Keywords: transcription factors; biological pathways; gene expression; microarrays; transcriptomics;
molecular biomarkers

1. Introduction
1.1. Breast Cancer

Breast cancer covers a diverse range of different diseases [1] and constitutes the second
most common type of cancer amongst female patients, after skin cancer [2]. Traditionally,
breast cancer is classified according to its histological features and is considered to include
at least 11 different histopathological types [3]. The most common type of breast cancer,
with 50–80% occurrence, is invasive ductal carcinoma not otherwise specified (IDC NOS),
while the other 25% are classified as special types [3]. An alternative classification based on
gene expression profiles identifies four molecular types: ER-positive luminal-like, basal-
like, ErbB2-positive and normal-like [4,5]. Luminal-like cancer is often divided into luminal
A and luminal B subtypes; these will also express combinations of estrogen receptor α (ER)
and progesterone receptor (PR) [6]. While both luminal subtypes express similar levels of
ER, luminal B tumors overexpress proteins related to proliferation and the cell cycle [7].
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Her2-positive breast cancers will overexpress Her2 [8]. The fourth group of cancers, lacking
all three established markers, is referred to as triple-negative and accounts for 10–15% of
breast cancers. Basal-like breast cancer largely overlaps with triple-negative breast cancer
and is named after its common expression of basal cytokeratins [6]. These include keratins
5/6 and 17, which may be expressed in 3–15% of all breast cancers [4].

1.2. Traditional Approaches to Screening

The existing Breast Cancer Screening Program in the UK relies on mammography as
the main screening modality and is currently exclusive to women aged 50 to 70, although
the effectiveness of extending the screening age parameters from 47 to 73 is being investi-
gated [8]. Whilst ample evidence exists supporting mammography as an efficient routine
screening approach to finding breast cancer at an early stage, it still yields a substantial
number of false-positive tests (over 3% in the UK, [9]) and false-negative tests (one in
eight cases [10]), leading to unnecessary additional testing or potential delays in cancer
diagnosis respectively. The benefits of mammography-based screenings starting at the
earlier age of 40 are further offset by the increased harm from overdiagnosis, overtreatment
and the increases in radiation-induced breast cancer [11]. Specificity and sensitivity of
cancer detection by mammography alone are not sufficiently high and it is comparable to
the levels achieved with clinical breast examination (CBE) as a sole screening modality [12],
but the use of CBE in addition to mammography improves both sensitivity and specificity
of detection [13]. Traditional X-ray mammography is less sensitive for mucinous, lobular,
and rapidly growing cancers [14]. Its relatively low specificity necessitates the use of other
imaging modalities such as ultrasonography [15] and magnetic resonance imaging [16],
with follow-up examinations and diagnostic evaluation of the suspected or identified
tumors [16]. Additional screening modalities are used for higher-risk patients [17], in
younger women [18] and in other cases, e.g., recognized symptoms or palpable lesions [19].
However, despite the implementation of regular screenings programs by many developed
countries, many breast cancers are being diagnosed at late stages [20]. Combining mam-
mography and tomosynthesis does not improve the effectiveness of screening and does not
allow early detection of tumors either [21].

1.3. Molecular Approaches to Clinical Diagnostics

Molecular approaches to clinical diagnostics and treatment of breast cancer first came
into clinical practice some 20 years ago following the development of the immunohis-
tochemistry (IHC) test for the detection of human epidermal growth factor receptor 2
(HER2/ERBB2/NEU), but the number of validated protein biomarkers in clinical diag-
nostics remains low. The predictive genetic test for cancer-risk genes BRCA 1/2 aims to
identify germline mutations however, it is limited to the prediction of the likelihood of
breast cancer occurrence and its cost-effectiveness remains another issue [22]. Another
existing genetic test aims at identifying PIK3CA mutations that occur in over 1/3 of breast
cancers, most often showing an ER-positive/HER2-negative molecular phenotype and
which might indicate a poor response to trastuzumab [23,24]. Elevated serum levels of CEA,
CA 15.3/CA 27.29, or CA125 are often found, especially in Her2-positive breast cancer
and might indicate the presence of metastatic disease, advanced stages of breast cancer or
recurrence respectively. These markers are therefore most suitable for disease monitoring
rather than early diagnosis [25,26]. Selectivity of the markers is low; CEA and CA125 are
also elevated in liver, lung, breast, ovarian, uterine, cervical, pancreatic and gastrointestinal
(GI) cancers, lymphoma and melanoma. CA 15.3 is elevated in lung, pancreatic, ovarian,
cervical, prostate, endometrial, bladder, and colon cancers, and other non-cancerous breast
lesions; the elevated levels can also be detected in a wide range of non-malignant conditions
such as liver cirrhosis, hepatitis, lupus, sarcoid, tuberculosis in pregnancy and lactation [27].
The existing range of plasma, serum or immunohistochemical cancer tests remains lim-
ited to a small number of protein targets, unsuitable for mass screening of asymptomatic
breast cancer (reviewed in [28,29]). Comprehensive molecular patterns describing distinct
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breast cancers can be identified using genetic typing and transcriptomics approaches [30].
These and proteomics-based methods, whilst being immensely powerful and remarkably
informative research tools, remain largely unsuitable for wider use in clinical diagnostics,
which is unsurprising considering the costs [31–33]. Biomarkers used currently for clinical
diagnosis of breast cancer are reviewed in [28]. There exist a few genetic breast cancer tests
to complement traditional pathology testing approaches, but these often rely on the avail-
ability of excised cancer tissue samples following surgery, fixed paraffin-embedded cancer
samples or biopsies and therefore cannot be used for screening or early diagnostics. There
is an apparent lack of validated molecular markers suitable for the minimally invasive or
non-invasive detection and molecular diagnosis of asymptomatic breast cancer. Afford-
able means of mass routine molecular screening remain virtually non-existent. Molecular
markers are also needed for the stratification and molecular subtyping of breast cancer. In
the absence of suitable molecular tools, pathologic analysis of breast tissue biopsies from
identified lesions achieves the highest sensitivity and specificity of detection and remains
the key procedure for diagnosis and typing of breast cancers.

1.4. Working Hypotheses

There exist a limited number of breast cancer markers, known in the literature to be
associated with different molecular subtypes of breast cancer, typical examples are listed
in Supplementary Tables S1–S3. There also exists a vast and growing body of knowledge
describing gene expression, regulation and function. We set to test whether (1) such
knowledge could be used to mine additional and possibly novel biomarkers by using
just a few known and proven molecular markers and relying on a ‘guilt by association’
approach and whether (2), such a generic mining approach would yield subtype-specific
breast cancer markers, or a ‘generic’ pan-cancer set of markers. To improve the likelihood of
reliable predictions we combined three orthogonal data mining techniques. Exploring the
transcriptional regulation of genes defines the first dimension of our mining strategy. Any
gene is regulated by one or a number of transcription factors (TFs). Detailed information
about these TFs may or may not be available for all genes, but a growing number of these
have already been described and are obtainable from multiple databases, e.g., TRRUST
or TRANSPATH [34,35]. The existing data should therefore allow for the identification of
known TFs involved in the regulation of the given genes. That knowledge should also lead
to the identification of other genes being regulated by the same TFs, although in some cases
it may not be possible to decide whether the connection is inhibitory or excitatory. The
approach is exemplified in Figure 1.
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Whilst such extrapolation of TF-related connections is expected to yield a vast number
of genes potentially related to the initial ‘seed’ genes used, these may not be entirely
accurate predictions on their own or be expected to represent complete sets of co-regulated
genes. However, with the addition of further independent predictors, the likelihood of
identifying genes being genuinely related to the disease and to the initial ‘seed’ markers
should increase to allow for distinguishing the new predicted markers from the expected
‘biological noise’. Therefore, we also explored the knowledge of functional biological
pathways, as our second independent predictor.

Gene products (functional proteins) do not function in isolation and are often involved
in one or many functional pathways (Figure 2). Since changing pathway efficiency or its
metabolic flux normally requires simultaneous and coordinated regulation of all proteins
involved, identifying such co-involved proteins is likely to yield co-regulated genes. That
principle should not be limited to cancer cells readjusting their metabolic fluxes to mitigate
the changing energy demands of cancer cells. The same general principle is universally
applicable to all complex biological systems from plants to mammals [36–39]. Such func-
tional regulation might be further complicated in cases of branched pathways. However,
whilst modelling complex pathways is far beyond the focus of this investigation, the use
of existing biological pathway network information does provide a useful shortcut for
identifying smaller gene sets of functionally related gene products, which are likely to be
similarly regulated at the gene expression level.
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Figure 2. Functional interactions and biological pathways. Panel (A). Gene Ontology (GO) database
describes three main functional classes: cellular components, biological processes and molecular
function. A few typical examples are given to illustrate the variety of classifiers. Panel (B). Kyoto
Encyclopedia of Genes and Genomes (KEGG) details functional relationships within metabolic
pathways, genetic information processing, environmental information processing, cellular process,
organismal systems, and human disease pathways. The progesterone-mediated oocyte maturation
pathway (hsa04914) is shown as an example of a relevant pathway.

The third independent predictor comes from gene clustering analyses based on co-
expressions data (Figure 3). Here, an insight into the expression of some genes may
be gained from the known expression traits for ‘co-expressed’ genes and assuming that
their expression follows the same pattern [40]. None of these three predictors would be
entirely accurate, which is especially true for the predictions of disease association from
co-expression networks; it is safe to expect a high false-positive rate. All such predictions
are also likely to be incomplete and it is reasonable to expect a high false-negative rate
as well. However, these three mining approaches provide the three largely independent
prediction methods. Therefore, combing together all three approaches and using them
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with well-characterized cancer-related proteins should achieve better accuracy, reduce
the number of predicted false positives and should help with identifying relevant cancer
networks starting with just a few initial ‘seed’ genes. We set to test such our data mining
approach with the aim to generate an expanded set of genes (and their products) which
could potentially be the most likely candidates for cancer targets or cancer markers. One
particularly interesting question was whether such a ‘guilt by association’ mining approach
would remain biased towards generic pan-cancer networks and generic markers or whether
such bias could be avoided to favor subtype-specific breast cancer markers.
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Figure 3. Gene expression and protein–protein interaction. Panel (A). COXPRESdb uses experimentally
determined expression data to identify frequently co-expressed genes. A typical example is shown.
Expression levels of ESR1 and PGR are plotted along the horizontal and vertical axes respectively.
Concentration values are shown as Log2 relative averaged expression levels of the genes. Panel (B). The
STRING tool conveniently combines analysis of expression, co-occurrence, neighborhood gene analysis,
discovery of fused genes, published experimental evidence and database occurrences. A typical example
output for CCND1 is shown (panel center). Differently colored lines between proteins indicate the type
of evidence used. Co-expression was relied upon in the current investigation.

2. Materials and Methods
2.1. Selection of Known Markers for Use as Seeds in the Subsequent Analyses

Known markers used as ‘seeds’ in the subsequent pathway and network analyses,
were identified from literature to represent three major subtypes of breast cancer. In this
case, ESR1, ESR2, PGR, CCND1, FOXA1, GATA3, KRT18, KRT8, LAPTM4B, SLC39A6,
SQLE, TFF3, and XBP1 were chosen for luminal breast cancer (Table S1). ERBB2 and GRB7
were selected for Her2-positive breast cancer (Table S2), while KRT5, CDH3, ID4, FABP7,
KRT17, TRIM29, LAMC2 and ITGB4 were used to search for an expanded set of basal
type-specific breast cancer markers (Table S3).

2.2. Transcriptional Networks

Two separate tools were used to identify potential marker genes based on their tran-
scriptional regulatory relationships with the known ‘seed’ markers. Both TRANSPATH [41]
and TRRUST [42] tools were used with default settings, the searches were limited to Homo
sapiens. In both cases, TFs known to regulate given genes were identified first, and then
used to compile lists of known target genes for all these TFs, from both databases, to ensure
maximum coverage. In all cases, the annotation terms which suggested transcriptional
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regulatory relationships were relied upon to select genes. Other terms suggesting tran-
scriptional regulation were considered for gene inclusion, other terms such as molecular
interactions were not considered and those genes were not included in further analysis. In
both tools, genes shown to regulate a known marker were considered further as potential
biomarkers. The genes targeted by a known marker, if it was a TF, were also considered for
further analysis. When combining the data from the two different searches, a candidate
biomarker was considered for further analysis if identified in at least one of the searches.

2.3. Biological Pathways

Two separate tools were used to identify genes based on their pathway associations:
Gene Ontology (GO) [43] and Kyoto Encyclopedia of Genes and Genomes (KEGG) [44].
The annotation categories (molecular functions and biological processes) were searched and
identified for the known ‘seed’ markers using GO [45]. Lists of all Homo sapiens genes/proteins
with annotations matching those of the known markers were then obtained from the National
Centre for Biotechnology Information (NCBI) platform [46]. The KEGG database entries for
the known markers were searched to identify their pathway entries [47]. Lists of all other H.
sapiens genes/proteins associated with the identified KEGG pathways were obtained from
the relevant pathway pages [47]. Only molecular functions and biological processes were
considered. When combining the data from the two different searches, a candidate biomarker
was considered for further analysis if identified in at least one of the searches.

2.4. Gene Co-Expression and Protein–Protein Interactions

The COXPRESdb resource [48] was used to identify co-expressed genes and the
STRING resource [49] was used to identify interacting proteins. Default settings were
used with the COXPRESdb tool [50] and 2000 co-expressed genes (the maximum allowed)
were considered. Only human pathways data were considered. The STRING tool [51] was
used to find proteins that had been experimentally determined to interact with the given
markers. The minimum required interaction score was adjusted to low confidence (0.150)
and the maximum number of interactions to show was changed to 100 in the first shell [51].

2.5. The Overall Prediction Strategy

Special care was taken to account for the incompleteness of databases and potential
bias due to some of the TFs, pathways or co-expression networks having been studied better
than others. Two separate tools were used for each of the three independent prediction
approaches (as outlined above) and at each individual search stage, identical weights were
given to all predicted candidate genes, irrespective of how many times any gene/protein
was found or how many TFs, pathways or co-expression networks were known to be
involved in each gene’s regulation, thus resulting in a binary selection outcome for all genes
at individual search stages. Whether a gene was found using only TRRUST or TRANSPATH
or whether it was found using both did not affect the inclusion of such gene in further
analyses. This was done in order to compensate for deficits in either tool, as no database
was assumed to be complete. The same applied to GO and KEGG, and COXPRESdb and
STRING. None of the tools or databases used were considered to be entirely accurate or
complete. However, only genes/proteins identified in all three analyses were considered
predictive markers. Therefore, to be considered for further analysis a candidate biomarker
had to be transcriptionally regulated as, functionally interact with, be co-expressed with,
or interact with at least one of the known markers used as ‘seeds’ in our search. Where
necessary, the DAVID conversion tool [52] was used to convert proteins and genes to
common IDs to allow the combining of the different candidate biomarkers. The overall
search strategy is summarized in Figure 4. At all stages, the ‘seed’ genes belonging to each
one of the three different major groups of breast cancer (Tables S1–S3) were processed and
analyzed separately from the ‘seed’ genes belonging to the other two groups (i.e., basal,
luminal, Her2-positive).
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Figure 4. Marker discovery strategy. The known markers were used for analysis in TRANSPATH,
TRRUST, GO, KEGG, COXPRESdb and STRING. In order to select potential new markers, we
combined the three data sets as shown. Genes/proteins were only considered further if they were
transcriptionally regulated, functionally related and were experimentally proven to be co-expressed
or known to physically interact with the known markers.

2.6. Analysis of Protein Targeting and Further Marker Validation

Proteins encoded by the identified genes were further checked for their cellular loca-
tion, in particular, whether or not they were secreted, as this would make them more useful
as markers for early or minimally invasive detection. To identify secreted proteins, all
sequences were checked for the presence of signal peptides and transmembrane domains.
Protein sequences were obtained from UniProt [53] for each of the proteins. The sequences
were analyzed for signal peptides and transmembrane domains using the Phobius tool [54].
The selected output format was changed to short, otherwise default, settings. A protein
was deemed to be secreted if the sequence encoded a signal peptide but did not code for a
transmembrane domain.

To further independently validate the predictions made, we analyzed transcription
levels of the predicted marker genes. mRNA expression data representing human breast
cancer and matching non-cancer tissues were obtained from the NCBI Gene Expression
Omnibus (GEO), Affymetrix human genome microarray data set GSE124646 [55], which
has undergone additional quality control and regression fitting prior to the analysis, as
described in [56]. Log-transformed transcription level changes in breast cancer tissues
compared to matching normal tissue biopsies were considered significant if p < 0.05. To
discover over-represented biological pathways, the gene ontology identifiers assigned to
the identified significantly upregulated genes were searched for and compared to the gene
ontology information assigned to the entire gene set from the Affymetrix Human Genome
U133A Array dataset used for mRNA expression analysis [55,57].

3. Results
3.1. Analysis of Transcriptional Networks Yields Potentially Co-Regulated Genes

Interrogation of TF databases identified many potentially co-regulated genes. A typical
outcome of one such individual search is illustrated for the ESR2 protein, one out of the
23 original ‘seed’ markers. The search illustrated in Figure 5 identified four known TFs, which
in turn pointed toward 306 potentially co-regulated genes. In addition to these, 51 genes are
known to also be directly regulated by ESR2. Interestingly, but not unexpectedly, the two tools
used (TRANSPATH and TRRUST) generated different sets of TFs even where the same ‘seed’
genes were used and these often resulted in the very limited overlap. In the example used,
the two pools of the predicted ESR2-related genes from TRANSPATH and TRRUST searches
overlapped by less than 50%. The outcome was similar in all the remaining 22 ‘seed’ marker
searches. Overall, 2338 different genes were identified as being co-regulated with at least
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one of the 13 ‘seed’ markers for luminal breast cancer. In the analysis of two Her2-positive
breast cancer markers, 571 co-regulated genes were identified in TRANSPATH and TRRUST
combined, with no data available in either of the databases for GRB7. 1465 different genes
were predicted to be co-regulated at the transcriptional level with the 8 markers representing
basal breast cancer by the two tools combined.
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Figure 5. Analysis of TF regulatory networks yields many potentially co-regulated genes. A typical
result is shown for ESR2. Four TFs (STAT5B, CRH, AR, STAT3) which regulate ESR2 expression also
regulate 306 other genes (listed on the right). The ESR2 gene encodes Estrogen Receptor 2, a nuclear
hormone receptor which upon binding estrogen can activate the expression of genes containing
estrogen response elements (ERE) (51 genes shown in the bottom left box). Results generated using
the TRANSPATH tool are shown in red, whilst genes identified using the TRRUST tool are shown in
blue. Targets found using both tools are shown in green.

3.2. Analysis of Biological Pathways Identifies Potentially Functionally Related Genes

Interrogation of biological pathway databases also yielded many potentially co-
involved proteins. A typical outcome of one such search for SQLE, one out of the 23 ‘seed’
markers, is summarized in Figure 6. In total, 11,621 different proteins were found to be
associated with the 13 markers of luminal breast cancer in either the GO or KEGG database,
6861 proteins were predicted for two Her2-positive breast cancer and 7910 proteins were
found to be potentially co-involved with the eight basal breast cancer markers.
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Figure 6. Analysis of pathways and biological processes. SQLE is used to illustrate a typical output.
SQLE is annotated with two molecular functions, four biological processes and two pathways. The
data obtained from GO are encircled with blue lines (left and middle), the data obtained from KEGG
are encircled with red lines (right). Interrogation of the functional groups yields many potentially
co-involved genes/proteins.

3.3. Exploring Gene Co-Expression and Protein Interaction Data

COXPRESdb and STRING were used to identify proteins that have been experimen-
tally determined to be co-expressed with the known markers. A typical outcome of one
such search for KRT8, another of the 23 ‘seed’ markers, is illustrated in Figure 7. The
search using the STRING tool yielded 33 proteins and the search with COXPRESdb yielded
a 2000 proteins-long ranked list, of which the top 65 are shown in Figure 7. In total
11,147 different genes were predicted to be potentially co-expressed with at least one of
the 13 markers for luminal breast cancer. A total of 3127 different genes were identified
as co-expressed with at least one of the two Her2-positive breast cancer markers and
7918 different genes were found starting from the eight markers for basal breast cancer.
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Figure 7. Many candidate genes/proteins can be identified from experimental co-expression (illus-
trated for KRT8). STRING yielded 33 proteins co-expressed with KRT8. The proteins are ranked in
descending order of their unit-less co-expression scores (indicator blue bar, left). COXPRESdb always
yields a list of 2000 potentially co-expressed genes/proteins ranked in the order of their Mutual Rank
(MR) where the value of 1 indicates the strongest likelihood of co-expression. Of these COXPRESdb
gene results, the 65 top ranked co-expressed genes/proteins are shown (indicator red bar, right).
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3.4. Exploring Gene Co-Expression and Protein Interaction Data

Overall, having started with just a few genes/proteins known to be associated with
breast cancer and having explored their transcriptional co-regulation, co-expression and
their involvement in the same functional pathways, 459 potential biomarker genes of breast
cancer were shortlisted following the analysis of the 13 ‘seed’ markers of luminal type breast
cancer. The 459 proteins encoded by these genes were further filtered for transmembrane
domains and signal peptides and 317 were found to have neither a signal peptide nor a
transmembrane domain, 43 had at least one transmembrane domain and a signal peptide,
51 had a transmembrane domain and no signal peptide and 48 proteins were found to have
a signal peptide but no transmembrane domain, indicating extracellular space as the most
likely targeting destination. One of these genes/proteins, the trefoil factor 3 (TFF3), was
part of the original set of ‘seed’ cancer markers used. Similarly, having started with just
two ‘seed’ markers of Her2-positive breast cancer, 66 potential biomarker genes of breast
cancer were shortlisted.

Of these Her2-positive breast cancer potential biomarkers, seven proteins were found
to have a signal peptide but no transmembrane domain, indicating extracellular space as
the most likely targeting destination. The analysis of eight markers of basal breast cancer
yielded 520 potential markers, of which 114 had a signal peptide but no transmembrane
domain, indicating extracellular space as the most likely targeting destination. One of
these, the Laminin subunit γ-2 (LAMC2) was part of the original set of the eight ‘seed’
cancer markers used. There was a small degree of overlap between the potential markers
derived from luminal, basal, or Her2-positive marker ‘seeds’, most likely indicating a degree
of commonality involved in transcription, regulation and biological pathways between
the three distinct breast cancer types explored, but many of the predicted marker genes
remained limited to one of the three separate breast cancer types tested, summarized in
Figure 8. In total, 150 novel extracellularly targeted breast cancer markers were predicted.
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Figure 8. Molecular markers of breast cancer. Filled callout shapes indicate numbers of the original
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Our data mining approach has not discriminated between up- or down-regulated
proteins. All the analyses so far assumed and aimed at identifying co-regulated genes
that included both up- and down-, strongly and weakly regulated genes/proteins. This
is to a large degree the result of the complexity of expression regulation by TFs and
the incompleteness of TF databases. Therefore, we applied one additional check to
(1) validate our predictions and (2) estimate the nature and the degree of differential regula-
tion. We relied on publicly available and quality-controlled gene expression data [55,56] to
get independent evidence of differential gene expression for the 150 putative markers iden-
tified in this work. Expression data were available for 110 out of the 114 newly predicted
basal breast cancer markers (of which 99 markers were limited to basal type only, Figure 8.
Of these, 16 were found to be significantly upregulated and 29 significantly downregulated
in breast cancer tissues (Tables 1 and 2, Figure 9A). Expression data were also available for
46 out of the 48 newly predicted luminal breast cancer markers (of which 34 were limited to
luminal type only, Figure 8. Of these, seven were found to be significantly upregulated and
nine were significantly downregulated in breast cancer tissues (Figure 9B, Tables 1 and 2).
A similar analysis of the newly predicted Her2-positive breast cancer markers yielded two
significantly upregulated transcripts (Figure 9C, Table 1). Altogether, out of the 150 pre-
dicted extracellularly targeted protein markers 58 were confirmed at gene expression level
to be significantly changed in the pool of breast cancer samples included in the analysis.
Of the 58 dysregulated transcripts 21 transcripts showed significant upregulation (Table 1)
and 37 markers showed significantly reduced transcription levels (Table 2). Two of the
21 upregulated markers have not been linked to breast cancer in the past, whilst the rest
represent proteins strongly linked to breast or other cancers, based on published evidence.

Table 1. Predicted extracellularly targeted genes/proteins significantly upregulated in breast cancer.

Gene UniProt ID Protein Name HG-U133A 1 B 2 L 3 H2 4

BGN P21810 Biglycan 201262_s_at X
CEMIP Q8WUJ3 Cell migration-inducing and hyaluronan-binding protein 212942_s_at X
CXCL10 P02778 C-X-C motif chemokine 10 204533_at X
CXCL8 P10145 Interleukin-8 211506_s_at X
HPSE Q9Y251 Heparanase 219403_s_at X

INHBA P08476 Inhibin β A chain 204926_at X
MMP1 P03956 Interstitial collagenase 204475_at X

MMP11 P24347 Stromelysin-3 203878_s_at X
MMP12 P39900 Macrophage metalloelastase 204580_at X
MMP13 P45452 Collagenase 3 205959_at X
MMP9 P14780 Matrix metalloproteinase-9 203936_s_at X
PLAU P00749 Urokinase-type plasminogen activator 205479_s_at X

PLAUR Q03405 Urokinase plasminogen activator surface receptor 214866_at X
FN1 P02751 Fibronectin 214702_at X X

VEGFA P15692 Vascular endothelial growth factor A 210512_s_at X X X
COL1A2 P08123 Collagen α-2(I) chain 202404_s_at X X

CTSD P07339 Cathepsin D 200766_at X
EDEM2 5 Q9BV94 ER degradation-enhancing α-mannosidase-like protein 2 218282_at X
HSPA5 P11021 78 kDa glucose-regulated protein 211936_at X
IFNG P01579 Interferon γ 210354_at X

IL18BP 5 O95998 Interleukin-18-binding protein 219323_s_at X
1 Affymetrix Human Genome U133A Array; 2 Basal-like breast cancer markers; 3 Luminal-like breast cancer markers;
4 Her2-positive breast cancer markers; 5 No prior publications on the role in breast cancer or other cancers.



Genes 2022, 13, 1538 12 of 20

Furthermore, all but four of these genes appear to be subtype-specific breast cancer
markers (Tables 1 and 2). Whilst accurate quantification of gene expression of the individual
markers is outside the scope of this study, consistency between our predictions and the
microarray data validates our approach to marker discovery and proves the hypothesis that
cancer markers could indeed be predicted starting with an only a small number of known
markers and utilizing the existing knowledge of gene and protein networks. Our results
also indicate that extracellularly targeted cancer-associated proteins may be predicted
starting with intracellular disease-associated genes/proteins.

Table 2. Predicted extracellularly targeted genes/proteins significantly downregulated in breast cancer.

Gene UniProt ID Protein Name HG-U133A 1 B 2 L 3 H2 4

ADAMTS1 Q9UHI8 Disintegrin and metalloproteinase with
thrombospondin motifs 1 222162_s_at X

BMP2 P12643 Bone morphogenetic protein 2 205289_at X
BMP4 P12644 Bone morphogenetic protein 4 211518_s_at X

CHRDL1 Q9BU40 Chordin-like protein 1 209763_at X
CTGF P29279 Connective tissue growth factor 209101_at X
CYR61 O00622 Protein CYR61 201289_at X
DCN P07585 Decorin 209335_at X
EDN1 P05305 Endothelin-1 218995_s_at X
FBLN1 P23142 Fibulin-1 201787_at X
FIGF O43915 Vascular endothelial growth factor D 206742_at X
FST P19883 Follistatin 207345_at X
IGF1 P05019 Insulin-like growth factor I 209540_at X

IGFBP3 P17936 Insulin-like growth factor-binding protein 3 210095_s_at X
LAMC2 Q13753 Laminin subunit γ-2 202267_at X

LEP P41159 Leptin 207092_at X
LPL P06858 Lipoprotein lipase 203549_s_at X
LTF P02788 Lactotransferrin 202018_s_at X

LUM P51884 Lumican 201744_s_at X
MFGE8 Q08431 Lactadherin 210605_s_at X
NID1 P14543 Nidogen-1 202007_at X
OGN P20774 Mimecan 218730_s_at X

PDGFD Q9GZP0 Platelet-derived growth factor D 219304_s_at X
PENK P01210 Proenkephalin-A 213791_at X
PROS1 P07225 Vitamin K-dependent protein S 207808_s_at X
PTGDS P41222 Prostaglandin-H2 D-isomerase 211663_x_at X
PTGS2 P35354 Prostaglandin G/H synthase 2 204748_at X
RELN P78509 Reelin 205923_at X
SOD3 P08294 Extracellular superoxide dismutase 205236_x_at X

PDGFA P04085 Platelet-derived growth factor subunit A 205463_s_at X X
ANG P03950 Angiogenin 205141_at X
C1S P09871 Complement C1s subcomponent 208747_s_at X

CD59 P13987 CD59 glycoprotein 212463_at X
KLK1 P06870 Kallikrein-1 216699_s_at X

PTHLH P12272 Parathyroid hormone-related protein 210355_at X
SLPI P03973 Antileukoproteinase 203021_at X

SPARCL1 Q14515 SPARC-like protein 1 200795_at X
TIMP3 P35625 Metalloproteinase inhibitor 3 201150_s_at X

1 Affymetrix Human Genome U133A Array; 2 Basal-like breast cancer markers; 3 Luminal-like breast cancer
markers; 4 No newly identified Her2-positive breast cancer markers were significantly downregulated.

We also checked which biological pathways, if any, were over-represented among these
58 predicted and validated genes. Table 3 illustrates the top 20 over-represented biological
pathways as defined by their gene ontology. The five most over-represented pathways are
collagen catabolic process (GO: 0030574), extracellular matrix disassembly (GO: 0022617),
platelet degranulation (GO: 0002576), positive regulation of cell migration (GO: 0030335)
and extracellular matrix organization (GO: 0030198)—all being highly relevant to cancer,
which further confirms the validity of our predictions. As expected, the vast majority of the
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predicted and validated genes (55 out of 58) were confirmed as belonging to extracellular
regions, following a similar analysis of over-represented cellular components among the
58 identified genes (Table 4). In total, 21 of the 58 proposed markers, which have been
confirmed as significantly over-expressed at the transcription level (Table 2). In total, 19 of
these have been associated with multiple malignancies including breast cancer, based on
the current literature, but no direct evidence exists though to link the remaining two of the
21 markers (EDEM2 and IL18BP) to breast cancer, making these the most promising novel
breast cancer markers identified here. It is also quite possible that more than just 58 of the
predicted 150 markers could be confirmed at gene expression level if a larger patient cohort
was used with a wider range of cancer types and cancer stages.
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Figure 9. Differential mRNA expression of the predicted genes in breast cancer. Panel (A): Microarray
gene expression analysis data were available for 110 out of the 114 predicted basal breast cancer
markers. 16 out of the 110 transcripts were significantly upregulated (red symbols) and 29 were
significantly downregulated (light blue symbols) in breast cancer samples. Panel (B): Microarray gene
expression analysis data were available for 46 out of the 48 predicted luminal breast cancer markers.
7 out of the 46 transcripts were significantly upregulated (red symbols) and 9 were significantly
downregulated (light blue symbols) in breast cancer samples. Panel (C): 2 out of the 7 transcripts
predicted for Her2-positive breast cancer were significantly upregulated (red symbols) in breast
cancer samples. In all panels error bars indicate confidence intervals (n = 10, p = 0.05).
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Table 3. GEO biological processes over-represented among the 58 newly identified markers signifi-
cantly dysregulated in breast cancer.

GEO Gene Ontology Biological Process 1 Counts
Observed 2

Enrichment

p ValueFold Difference
over the

Expected 3
Rank 4

GO: 0030198 extracellular matrix organization 18 11.93 5 0
GO: 0006508 proteolysis 14 6.50 10 6.6 × 10−16

GO: 0007596 blood coagulation 12 5.24 11 1.3 × 10−10

GO: 0022617 extracellular matrix disassembly 11 19.69 2 0
GO: 0001525 angiogenesis 10 9.05 8 0
GO: 0007275 multicellular organismal development 10 2.70 18 10−3

GO: 0008284 positive regulation of cell proliferation 10 5.21 12 5.1 × 10−09

GO: 0008285 negative regulation of cell proliferation 10 5.09 13 9.2 × 10−09

GO: 0044267 cellular protein metabolic process 9 3.96 14 7.9 × 10−06

GO: 0045944 positive regulation of transcription 9 2.43 20 5.7 × 10−3

GO: 0030154 cell differentiation 8 3.05 17 8.6 × 10−4

GO: 0030168 platelet activation 8 7.60 9 1.2 × 10−11

GO: 0030335 positive regulation of cell migration 8 12.46 4 0
GO: 0043066 negative regulation of apoptotic process 8 3.42 15 2.1 × 10−4

GO: 0001666 response to hypoxia 8 9.46 7 7.1 × 10−15

GO: 0007155 cell adhesion 8 3.14 16 6.3 × 10−4

GO: 0030574 collagen catabolic process 7 20.78 1 0
GO: 0001501 skeletal system development 7 10.08 6 3.7 × 10−14

GO: 0002576 platelet degranulation 7 14.26 3 0
GO: 0000122 negative regulation of transcription 7 2.63 19 7.6 × 10−3

1 Top 20 of the biological processes over-represented among the 58 dysregulated genes. 2 Number of genes (out of
the 58 tested) involved in or belonging to the biological process stated. 3 The degree of enrichment (fold difference)
of the relevant biological process among the subset of 58 genes, compared to the expected level. 4 Out of the 20
biological processed shown.

Table 4. GEO cellular components over-represented among the 58 newly identified markers signifi-
cantly dysregulated in breast cancer.

GEO Gene Ontology Cellular Components 1 Counts
Observed 2

Enrichment
p ValueFold Difference

over the Expected 3 Rank

GO: 0005576 extracellular region 55 8.90 8 0
GO: 0005615 extracellular space 36 8.41 9 0
GO: 0070062 extracellular vesicular exosome 26 2.56 11 4.1 × 10−07

GO: 0005578 proteinaceous extracellular matrix 22 19.92 3 0
GO: 0031012 extracellular matrix 20 20.99 2 0
GO: 0005604 basement membrane 8 17.21 6 0
GO: 0009986 cell surface 8 3.71 10 6.4 × 10−05

GO: 0005796 Golgi lumen 7 18.75 4 0
GO: 0031093 platelet α granule lumen 6 22.31 1 0
GO: 0043202 lysosomal lumen 6 17.28 5 0
GO: 0005788 endoplasmic reticulum lumen 6 8.98 7 6.6 × 10−11

GO: 0005789 endoplasmic reticulum membrane 6 2.23 12 4.3 × 10−2

1 All cellular components over-represented among the 58 significantly dysregulated genes (p < 0.05). 2 Genes (out
of 58) categorized as encoding or associated with the cellular components stated. 3 The degree of enrichment (fold
difference) of the relevant biological process among the subset of 58 genes, compared to the expected level.

4. Discussion

Molecular biomarkers play an ever-increasing role in diagnosis, risk stratification,
prognosis and predicting the outcome of disease or treatments [58–60]. Integration of
multiple molecular approaches with pathological and clinical outcomes justifies new clas-
sifications, defines multiple distinct cancer subtypes and genetic risk scores [61–63]. Tra-
ditional serologic testing used for diagnosis and management of breast cancer relies on
carcinoembryonic antigen (CEA) for cancer detection and monitoring recurrence, carbo-
hydrate antigen 15.3 (CA15.3) for monitoring metastatic (stage 4) breast cancer and its
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response to treatment and carbohydrate antigen 27.29 (CA27.29) for predicting recurrence.
None of these tests possess high sensitivity or specificity or are suitable for routine cancer
screening applicators. Multiple other conditions may cause an increased markers’ concen-
tration, such as in colon, liver, lung, pancreatic and prostate cancers, liver cirrhosis, some
infections, endometriosis, lupus, smoking or pregnancy, making any diagnosis inaccurate.

Early efforts to develop molecular screening tools for the detection and characteri-
zation of breast cancer date back to early the 2000s [4,5]. Nowadays, a few clinical gene
expression assays are available to assist with molecular classification of breast cancer, the
assignment of breast cancer therapy and for predicting metastases-free and overall survival.
These include the Prosigna breast cancer prognostic assay (the PAM50 test) for quantifying
the expression of 50 genes in early stage, hormone-receptor-positive breast cancer and
prediction of tumor metastasis [64,65]. The MammaPrint and BluePrint assays (Agendia)
for quantifying the expression levels of 70 and 80 genes, respectively, in the early stage
breast cancer for guiding chemotherapy, estimating the risk of recurrence [66] and for
molecular classification of breast cancer [67] and the breast cancer index (BCI) PCR-based
7-gene prognostic assay, to predict response to Tamoxifen and clinical outcomes including
distant recurrence in ER-positive cases [68,69]. Oncotype DX is another PCR-based test of a
panel of 21 genes for calculating a prognostic recurrence score and guiding chemotherapy
in ER-positive, node-negative breast cancer [70]. One other molecular test is MapquantDx
genomic grade index (GGI) which uses a 97-gene expression panel to define histological
grade and predict the risk of recurrence [71]. All these tests could be used with formalin
fixed paraffin embedded tissues, with MammaPrint and GGI also benefiting from using
fresh tissue, such as fine-needle aspiration biopsies. All the above gene panels rely on
the excised tumor tissues for extracting the transcribed genes. None of these tests are
designed to be used with blood or serum which makes all such tests unsuitable for cancer
screening purposes. Most of these gene panel sets were developed using either retrospec-
tive analyses of formalin fixed paraffin embedded materials or within a few exceptions
largely high-grade tumors, which is a typical experimental approach and a limitation of
such retrospective analyses. However, genes upregulated in higher grade tumors may be
quite different from those affected at the very early stages of tumorigenesis. IHC remains
the method of choice when testing for HER2 as well as for determining hormone receptor
status, e.g., with the HercepTest (Daco), Insight Dx Mammostrat Plus (Clarient Diagnostic)
or PATHWAY (Ventana Medical Systems) [72]. Other methods rely on testing gene copy
numbers using FISH, e.g., PathVysion Her-2 DNA Probe Kit (Abbott Molecular) [73], CISH,
e.g., Her2 CISH pharmDx kit (Dako) or by Gene Expression Tests, e.g., TARGETPRINT
(Agendia) to name a few. Oestrogen and progesterone receptors in breast cancers are also
assessed by IHC from formaldehyde-fixed paraffin-embedded tissues or needle biopsies
(e.g., ER/PR pharmDx assay kit, Dako). Another protein marker assay tests for invasion and
metastasis markers urokinase-type plasminogen activator (uPA)/plasminogen activator
inhibitor-1 (PAI-1), using enzyme-linked immunosorbent assay (ELISA) to guide treatment
in node-negative (N0) breast cancer. Pathology reports routinely include information about
HER2 status. The reliance on the tumor tissues as the source of test materials precludes all
such methods from wider largely healthy population screening applications. Traditional
marker discovery methods are also not entirely suitable for the discovery of very early
markers of cancer development—where no surgically removed material is available and
when the test population would be largely healthy. Early and minimally invasive detection
of breast cancer remains among key unmet needs and research gaps in the Fight against
breast cancer [74,75]. Mammography currently remains the most common way of screening
the population for breast cancer [76], including the USA and UK [77].

Whilst a few breast cancer-related genes and proteins have been identified and character-
ized over the course of the last few decades, most of these are late-stage markers and often
intracellular proteins identified in surgically removed tissues often representing late-stage
tumors. Tables S1–S3 list several such known markers. We decided to combine these with
the knowledge of transcriptional, biochemical and functional protein networks aiming to
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(1) test an alternative approach for identifying and expanding the range of potential molecular
markers of breast cancer by using the “guilt by association” approach and (2), to identify
among many potential markers, those gene products (proteins) which could potentially be
detected outside the tumor cells, for example in blood or other physiological fluids.

The expression level of a gene can be regulated by one or more TFs, which usually
target more than one gene. Therefore, it should be possible to identify some, if not all
of the co-regulated genes. However, none of the existing databases may have complete
and accurate information relating to the multitude of associated complex transcription
networks. We therefore used two different databases of known TFs (TRANSPATH [35] and
TRRUST [34]), but refrained from using prediction tools, e.g., [78], to ensure maximum
coverage and reproducibility.

Biological pathways represent the molecular-level pathways by which a cellular pro-
cess such as metabolism or a disease process such as cancer can occur. Each individual
pathway describes various mechanisms that lead to overall cell function, allowing the
identification of the different genes involved within the specific overall function of the
pathway in question [79]. Altered expression levels of individual genes within a specific
pathway is seldom singular, with many other genes within the pathway undergoing similar
regulatory trends and showing concerted changes to their expression levels to maintain
pathway metabolic flux. Knowledge of some of the disease-related genes may therefore
lead to the discovery of additional related genes by exploring functional gene and protein
networks. We used two different resources (Gene Ontology [43] and KEGG [44]) to ensure
better coverage and we did not prioritize gene candidates based on the frequency of their
appearance at this stage, to avoid bias due to the gaps in data coverage or due to excessive
coverage of some popular biological pathways and traits.

Similar co-regulation may also be expected of proteins that physically interact with
each other. The need to optimize the functionality of protein–protein interactions is likely
to lead to the interacting proteins being similarly regulated, co-activated or co-expressed.
The two different resources used to explore this phenomenon (and to achieve maximum
coverage) were COXPRESdb [48] and STRING [49].

The analyses of transcriptional regulation, functional or physical interaction and
co-expression represent orthogonal prediction approaches, therefore any false positives
predicted with one tool are likely to have been filtered out by the other approaches. Com-
bining these independent predictions, as outlined in Figure 4, yielded many potential
markers expected to be dysregulated in breast cancer, in a fashion similar to the few known
breast cancer markers used as ‘seed’ genes in our strategy. Of these we focused on the
transcripts which encoded proteins with signal peptides but without TM domains, thus
selecting proteins destined for extracellular space. Our data mining approach yielded
150 potential extracellularly targeted breast cancer-associated proteins (Table S4) starting
with just 23 initial ‘seed’ markers, of which only two were known to be extracellular tar-
geted proteins (LAMC2 and TFF3). Ultimately, LAMC2 and TFF3 were also found among
the 150 potential markers identified here, as expected. The remaining 148 of the putative
extracellular markers identified here were discovered using a pool of largely intracellular
‘seed’ marker proteins, thus confirming our initial expectations. Many of such identified
markers represent known extracellular matrix proteins and metalloproteinases (Table S4).
Some of the predicted 150 proteins are known from published literature to have some
association with other cancers or diseases, including breast cancer in a few cases (Table S5),
which strongly supports our approach to mining the potential biomarkers. Such findings
indicate that our search strategy has been successful in its ability to independently identify
relevant disease-associated proteins. However, since the majority of these proteins are
targeted to extracellular locations, many have escaped detection in proteomics-driven
studies that typically focus on the solid tumor tissues and hence membrane-associated
or intracellular proteins. Being extracellularly targeted and often, but not always, asso-
ciated with cell membranes, few if any of these have been considered suitable cancer
targets in the past. Furthermore, out of the 150 potential markers identified in this study, a
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few proteins Defensin (DEFA4), α-2-macroglobulin receptor-associated protein (LRPAP1),
Interleukin-18-binding protein (IL18BP), Interleukin-17D (IL17D) and ER degradation-
enhancing α-mannosidase-like protein 2 (EDEM2) are not currently linked specifically
to breast cancer and may therefore represent completely new markers of breast cancer
potentially suitable for population screening applications. The predicted putative marker
proteins EDEM2 and IL18BP are especially interesting, because their genes were found
to be significantly upregulated in all breast cancer microarrays included in the analysis
(Table 1).

The three proteins found in all three independent analyses for the different subtypes of
breast cancer were EPO, VEGFA and KLK3. These are highly interesting as they represent
single proteins that could potentially be used to detect all subtypes of breast cancer as
well as other cancers. EPO was traditionally associated with its effects on red blood cells,
specifically its role in erythropoiesis [80]. It also has a wide range of effects on cancer
cells, including an anti-apoptotic effect [80]. Due to its role in many cancers, EPO could
be useful in the detection of cancer in general. VEGFA also plays a role in various cancer
types and angiogenesis in general [81]. It also stimulates the migration of tumor cells [81].
VEGFA is considered to be not only a marker but also a potential target for the prevention
of angiogenesis, which only involves a few proteins [81]. KLK3 has long been used as a
marker for prostate cancer [82]. Furthermore, the promoter and enhancer regions of KLK3
have been shown to be mutated in breast cancer [82]. This suggests the role of KLK3 in
several types of cancer, making it a potential diagnostic marker for cancer in general.

As our approach to marker mining does not discriminate between up- or down-
regulated genes and employed no means of predicting the degree of gene expression
dysregulation, we did not expect all the 150 genes to be up-regulated. Considering the
complexity of regulatory networks, we did not expect a simple binary up/down expression
regulation outcome either but, we tested our predictions using microarray gene expression
data available publicly from [83] and further quality controlled as described in [56]. 58 of
the proposed 150 markers (37 downregulated and 21 upregulated, totaling just over 40%)
were significantly dysregulated at the transcription level (Tables 1,2 and S4). Whilst the
gene expression analysis was based on a limited scale single microarray study [55], that
was justified due to the high quality of expression data [56]), the gene expression analysis
has validated our data mining strategy.

5. Conclusions

The main challenges underlying the key hypotheses behind this research were to
check if cancer markers could be mined based on partial knowledge of transcriptional and
functional protein networks and using few known cancer-associated genes/proteins to
guide the search. The second challenge was to check whether genes encoding extracellular
protein markers could be predicted using known marker genes typically encoding intra-
cellular proteins. This second challenge was especially important because the availability
of extracellular molecules should greatly facilitate early cancer marker discovery. We
addressed both points and showed that our approach to mining cancer markers can predict
meaningful putative markers, including genes encoding extracellular proteins, some of
which are secreted and therefore could potentially be detected in biological fluids such
as blood or urine. Unlike many traditional markers and especially cancer targets, the
predicted proteins lack membrane domains and with the exception of matrix proteins are
not confined to intracellular or membrane compartments. Such protein markers could
potentially be detected using minimally invasive or non-invasive methods (urine, blood
or other physiological liquid samples) rather than needle biopsies. The predicted markers
therefore represent an expanded set of molecular tools potentially suitable for population
screening applications using liquid biopsies of cancer. The reported biomarker mining
approach for mining molecular markers is not limited to breast cancer and therefore offers
a widely applicable strategy for biomarker discovery.
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stratification of breast cancer. Table S5: Disease association or examples of known diagnostic uses for the
predicted marker genes/proteins.

Author Contributions: Conceptualization, N.S. and M.S.; methodology, N.S., F.K., E.F. and M.S.;
software, E.F. and M.S.; investigation, N.S., E.R., F.K. and M.S.; resources, M.S.; writing—original draft
preparation, N.S., E.R and F.K; writing—review and editing, E.F. and M.S.; supervision, M.S.; project
administration, M.S.; funding acquisition, M.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All data are showin in Supplementary Materials, uploaded with this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Weigelt, B.; Geyer, F.C.; Reis-Filho, J.S. Histological Types of Breast Cancer: How Special are they? Mol. Oncol. 2010, 4, 192–208.

[CrossRef] [PubMed]
2. DeSantis, C.; Ma, J.; Bryan, L.; Jemal, A. Breast Cancer Statistics, 2013. CA A Cancer J. Clin. 2013, 64, 52–62. [CrossRef] [PubMed]
3. Weigelt, B.; Horlings, H.M.; Kreike, B.; Hayes, M.M.; Hauptmann, M.; Wessels, L.F.A.; de Jong, D.; Van de Vijver, M.J.; Van’t Veer,

L.J.; Peterse, J.L. Refinement of Breast Cancer Classification by Molecular Characterization of Histological Special Types. J. Pathol.
2008, 216, 141–150. [CrossRef] [PubMed]

4. Perou, C.M.; Sørlie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.;
et al. Molecular Portraits of Human Breast Tumours. Nature 2000, 406, 747–752. [CrossRef] [PubMed]

5. Naderi, A.; Teschendorff, A.E.; Barbosa-Morais, N.L.; Pinder, S.E.; Green, A.R.; Powe, D.G.; Robertson, J.F.R.; Aparicio, S.;
Ellis, I.O.; Brenton, J.D.; et al. A Gene-Expression Signature to Predict Survival in Breast Cancer Across Independent Data Sets.
Oncogene 2006, 26, 1507–1516. [CrossRef]

6. Goldhirsch, A.; Wood, W.C.; Coates, A.S.; Gelber, R.D.; Thürlimann, B.; Senn, H. Strategies for Subtypes—dealing with the
Diversity of Breast Cancer: Highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast
Cancer 2011. Ann. Oncol. 2011, 22, 1736–1747. [CrossRef]

7. Prat, A.; Pineda, E.; Adamo, B.; Galván, P.; Fernández, A.; Gaba, L.; Díez, M.; Viladot, M.; Arance, A.; Muñoz, M. Clinical
Implications of the Intrinsic Molecular Subtypes of Breast Cancer. Breast 2015, 24, S26–S35. [CrossRef]

8. ISRCTNregistry. Available online: https://www.isrctn.com/ISRCTN33292440 (accessed on 25 March 2022).
9. Long, H.; Brooks, J.M.; Harvie, M.; Maxwell, A.; French, D.P. Correction: How do Women Experience a False-Positive Test

Result from Breast Screening? A Systematic Review and Thematic Synthesis of Qualitative Studies. Br. J. Cancer 2021, 125, 1031.
[CrossRef]

10. Mammograms. Available online: https://www.cancer.org/cancer/breast-cancer/screening-tests-and-early-detection/
mammograms (accessed on 3 March 2022).

11. Marmot, M.G.; Altman, D.G.; Cameron, D.A.; Dewar, J.A.; Thompson, S.G.; Wilcox, M. The Benefits and Harms of Breast Cancer
Screening: An Independent Review. Br. J. Cancer 2013, 108, 2205–2240. [CrossRef]

12. Ngan, T.T.; Nguyen, N.T.Q.; Van Minh, H.; Donnelly, M.; O’Neill, C. Effectiveness of Clinical Breast Examination as a ’Stand-Alone’
Screening Modality: An Overview of Systematic Reviews. BMC Cancer 2020, 20, 1070. [CrossRef]

13. Chiarelli, A.M.; Majpruz, V.; Brown, P.; Thériault, M.; Shumak, R.; Mai, V. The Contribution of Clinical Breast Examination to the
Accuracy of Breast Screening. J. Natl. Cancer Inst. 2009, 101, 1236–1243. [CrossRef] [PubMed]

14. Wilson, N.; Ironside, A.; Diana, A.; Oikonomidou, O. Lobular Breast Cancer: A Review. Front. Oncol. 2021, 10, 591399. [CrossRef]
[PubMed]

15. Sood, R.; Rositch, A.F.; Shakoor, D.; Ambinder, E.; Pool, K.; Pollack, E.; Mollura, D.J.; Mullen, L.A.; Harvey, S.C. Ultrasound for
Breast Cancer Detection Globally: A Systematic Review and Meta-Analysis. J. Glob. Oncol. 2019, 5, 1–17. [CrossRef] [PubMed]

16. Mann, R.M.; Kuhl, C.K.; Moy, L. Contrast-Enhanced MRI for Breast Cancer Screening. J. Magn. Reson. Imaging 2019, 50, 377–390.
[CrossRef]

17. Bick, U. Intensified Surveillance for Early Detection of Breast Cancer in High-Risk Patients. Breast Care 2015, 10, 13–20. [CrossRef]
18. Salem, D.S.; Kamal, R.M.; Mansour, S.M.; Salah, L.A.; Wessam, R. Breast Imaging in the Young: The Role of Magnetic Resonance

Imaging in Breast Cancer Screening, Diagnosis and Follow-Up. J. Thorac. Dis. 2013, 5, S9–S18.
19. Lehman, C.D.; Lee, A.Y.; Lee, C.I. Imaging Management of Palpable Breast Abnormalities. Am. J. Roentgenol. 2014, 203, 1142–1153.

[CrossRef]

https://www.mdpi.com/article/10.3390/genes13091538/s1
https://www.mdpi.com/article/10.3390/genes13091538/s1
http://doi.org/10.1016/j.molonc.2010.04.004
http://www.ncbi.nlm.nih.gov/pubmed/20452298
http://doi.org/10.3322/caac.21203
http://www.ncbi.nlm.nih.gov/pubmed/24114568
http://doi.org/10.1002/path.2407
http://www.ncbi.nlm.nih.gov/pubmed/18720457
http://doi.org/10.1038/35021093
http://www.ncbi.nlm.nih.gov/pubmed/10963602
http://doi.org/10.1038/sj.onc.1209920
http://doi.org/10.1093/annonc/mdr304
http://doi.org/10.1016/j.breast.2015.07.008
https://www.isrctn.com/ISRCTN33292440
http://doi.org/10.1038/s41416-021-01503-w
https://www.cancer.org/cancer/breast-cancer/screening-tests-and-early-detection/mammograms
https://www.cancer.org/cancer/breast-cancer/screening-tests-and-early-detection/mammograms
http://doi.org/10.1038/bjc.2013.177
http://doi.org/10.1186/s12885-020-07521-w
http://doi.org/10.1093/jnci/djp241
http://www.ncbi.nlm.nih.gov/pubmed/19720967
http://doi.org/10.3389/fonc.2020.591399
http://www.ncbi.nlm.nih.gov/pubmed/33520704
http://doi.org/10.1200/JGO.19.00127
http://www.ncbi.nlm.nih.gov/pubmed/31454282
http://doi.org/10.1002/jmri.26654
http://doi.org/10.1159/000375390
http://doi.org/10.2214/AJR.14.12725


Genes 2022, 13, 1538 19 of 20

20. Heller, D.R.; Chiu, A.S.; Farrell, K.; Killelea, B.K.; Lannin, D.R. Why has Breast Cancer Screening Failed to Decrease the Incidence
of De Novo Stage IV Disease? Cancers 2019, 11, 500. [CrossRef]

21. Nelson, H.D.; Fu, R.; Cantor, A.; Pappas, M.; Daeges, M.; Humphrey, L. Effectiveness of Breast Cancer Screening: Systematic
Review and Meta-Analysis to Update the 2009 U.S. Preventive Services Task Force Recommendation. Ann. Intern. Med. 2016, 164,
244–255. [CrossRef]

22. D’Andrea, E.; Marzuillo, C.; De Vito, C.; Di Marco, M.; Pitini, E.; Vacchio, M.R.; Villari, P. Which BRCA Genetic Testing Programs
are Ready for Implementation in Health Care? A Systematic Review of Economic Evaluations. Genet. Med. 2016, 18, 1171–1180.
[CrossRef]

23. Mukohara, T. PI3K Mutations in Breast Cancer: Prognostic and Therapeutic Implications. Breast Cancer Targets Ther. 2015, 7,
111–123. [CrossRef] [PubMed]

24. Martínez-Sáez, O.; Chic, N.; Pascual, T.; Adamo, B.; Vidal, M.; González-Farré, B.; Sanfeliu, E.; Schettini, F.; Conte, B.; Brasó-
Maristany, F.; et al. Frequency and Spectrum of PIK3CA Somatic Mutations in Breast Cancer. Breast Cancer Res. 2020, 22, 45.
[CrossRef] [PubMed]

25. Fang, C.; Cao, Y.; Liu, X.; Zeng, X.; Li, Y. Serum CA125 is a Predictive Marker for Breast Cancer Outcomes and Correlates with
Molecular Subtypes. Oncotarget 2017, 8, 63963–63970. [CrossRef] [PubMed]

26. Gaughran, G.; Aggarwal, N.; Shadbolt, B.; Stuart-Harris, R. The Utility of the Tumor Markers CA15.3, CEA, CA-125 and CA19.9
in Metastatic Breast Cancer. Breast Cancer Manag. 2020, 9, BMT50. [CrossRef]

27. Colomer, R.; Ruibal, A.; Genollá, J.; Rubio, D.; Del Campo, J.M.; Bodi, R.; Salvador, L. Circulating CA 15-3 Levels in the
Postsurgical Follow-Up of Breast Cancer Patients and in Non-Malignant Diseases. Breast Cancer Res. Treat. 1989, 13, 123–133.
[CrossRef]

28. Duffy, M.J.; Harbeck, N.; Nap, M.; Molina, R.; Nicolini, A.; Senkus, E.; Cardoso, F. Clinical use of Biomarkers in Breast Cancer:
Updated Guidelines from the European Group on Tumor Markers (EGTM). Eur. J. Cancer 2017, 75, 284–298. [CrossRef]

29. Malone, E.R.; Oliva, M.; Sabatini, P.J.B.; Stockley, T.L.; Siu, L.L. Molecular Profiling for Precision Cancer Therapies. Genome Med.
2020, 12, 8. [CrossRef]

30. Prat Aparicio, A. Comprehensive Molecular Portraits of Human Breast Tumours. Nature 2012, 490, 61–70.
31. Asleh, K.; Negri, G.L.; Spencer Miko, S.E.; Colborne, S.; Hughes, C.S.; Wang, X.Q.; Gao, D.; Gilks, C.B.; Chia, S.K.L.; Nielsen,

T.O.; et al. Proteomic Analysis of Archival Breast Cancer Clinical Specimens Identifies Biological Subtypes with Distinct Survival
Outcomes. Nat. Commun. 2022, 13, 896. [CrossRef]

32. Al-Wajeeh, A.S.; Salhimi, S.M.; Al-Mansoub, M.A.; Khalid, I.A.; Harvey, T.M.; Latiff, A.; Ismail, M.N. Comparative Proteomic
Analysis of Different Stages of Breast Cancer Tissues using Ultra High Performance Liquid Chromatography Tandem Mass
Spectrometer. PLoS ONE 2020, 15, e0227404. [CrossRef]

33. Bouchal, P.; Schubert, O.T.; Faktor, J.; Capkova, L.; Imrichova, H.; Zoufalova, K.; Paralova, V.; Hrstka, R.; Liu, Y.; Ebhardt, H.A.;
et al. Breast Cancer Classification Based on Proteotypes obtained by SWATH Mass Spectrometry. Cell Rep. 2019, 28, 832–843.e7.
[CrossRef] [PubMed]

34. Han, H.; Shim, H.; Shin, D.; Shim, J.E.; Ko, Y.; Shin, J.; Kim, H.; Cho, A.; Kim, E.; Lee, T.; et al. TRRUST: A Reference Database of
Human Transcriptional Regulatory Interactions. Sci. Rep. 2015, 5, 11432. [CrossRef] [PubMed]

35. Krull, M.; Pistor, S.; Voss, N.; Kel, A.; Reuter, I.; Kronenberg, D.; Michael, H.; Schwarzer, K.; Potapov, A.; Choi, C.; et al.
TRANSPATH®: An Information Resource for Storing and Visualizing Signaling Pathways and their Pathological Aberrations.
Nucleic Acids Res. 2006, 34, D546–D551. [CrossRef] [PubMed]

36. Morandini, P. Rethinking Metabolic Control. Plant Sci. 2009, 176, 441–451. [CrossRef] [PubMed]
37. Giese, G.E.; Nanda, S.; Holdorf, A.D.; Walhout, A.J.M. Transcriptional Regulation of Metabolic Flux: A Caenorhabditis Elegans

Perspective. Curr. Opin. Syst. Biol. 2019, 15, 12–18. [CrossRef]
38. Moxley, J.F.; Jewett, M.C.; Antoniewicz, M.R.; Villas-Boas, S.G.; Alper, H.; Wheeler, R.T.; Tong, L.; Hinnebusch, A.G.; Ideker, T.;

Nielsen, J.; et al. Linking High-Resolution Metabolic Flux Phenotypes and Transcriptional Regulation in Yeast Modulated by the
Global Regulator Gcn4p. Proc. Natl. Acad. Sci. USA 2009, 106, 6477–6482. [CrossRef]

39. Desvergne, B.; Michalik, L.; Wahli, W. Transcriptional Regulation of Metabolism. Physiol. Rev. 2006, 86, 465–514. [CrossRef]
40. Van Dam, S.; Võsa, U.; van der Graaf, A.; Franke, L.; de Magalhães, J.P. Gene Co-Expression Analysis for Functional Classification

and Gene-Disease Predictions. Brief. Bioinform. 2017, 19, 575–592. [CrossRef]
41. TRANSPATH. Available online: http://genexplain.com/transpath/ (accessed on 25 March 2022).
42. TRRUST. Available online: http://www.grnpedia.org/trrust/ (accessed on 25 March 2022).
43. Botstein, D.; Cherry, J.M.; Ashburner, M.; Ball, C.A.; Blake, J.A.; Butler, H.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al.

Gene Ontology: Tool for the Unification of Biology. Nat. Genet. 2000, 25, 25–29.
44. Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [CrossRef]
45. GO. Available online: http://geneontology.org/ (accessed on 25 March 2022).
46. NCBI. Available online: https://www.ncbi.nlm.nih.gov/protein (accessed on 25 March 2022).
47. KEGG. Available online: http://www.genome.jp/kegg (accessed on 25 March 2022).
48. Okamura, Y.; Aoki, Y.; Obayashi, T.; Tadaka, S.; Ito, S.; Narise, T.; Kinoshita, K. COXPRESdb in 2015: Coexpression Database for

Animal Species by DNA-Microarray and RNAseq-Based Expression Data with Multiple Quality Assessment Systems. Nucleic
Acids Res. 2015, 43, D82–D86. [CrossRef] [PubMed]

http://doi.org/10.3390/cancers11040500
http://doi.org/10.7326/M15-0969
http://doi.org/10.1038/gim.2016.29
http://doi.org/10.2147/BCTT.S60696
http://www.ncbi.nlm.nih.gov/pubmed/26028978
http://doi.org/10.1186/s13058-020-01284-9
http://www.ncbi.nlm.nih.gov/pubmed/32404150
http://doi.org/10.18632/oncotarget.19246
http://www.ncbi.nlm.nih.gov/pubmed/28969044
http://doi.org/10.2217/bmt-2020-0015
http://doi.org/10.1007/BF01806524
http://doi.org/10.1016/j.ejca.2017.01.017
http://doi.org/10.1186/s13073-019-0703-1
http://doi.org/10.1038/s41467-022-28524-0
http://doi.org/10.1371/journal.pone.0227404
http://doi.org/10.1016/j.celrep.2019.06.046
http://www.ncbi.nlm.nih.gov/pubmed/31315058
http://doi.org/10.1038/srep11432
http://www.ncbi.nlm.nih.gov/pubmed/26066708
http://doi.org/10.1093/nar/gkj107
http://www.ncbi.nlm.nih.gov/pubmed/16381929
http://doi.org/10.1016/j.plantsci.2009.01.005
http://www.ncbi.nlm.nih.gov/pubmed/26493133
http://doi.org/10.1016/j.coisb.2019.03.002
http://doi.org/10.1073/pnas.0811091106
http://doi.org/10.1152/physrev.00025.2005
http://doi.org/10.1093/bib/bbw139
http://genexplain.com/transpath/
http://www.grnpedia.org/trrust/
http://doi.org/10.1093/nar/28.1.27
http://geneontology.org/
https://www.ncbi.nlm.nih.gov/protein
http://www.genome.jp/kegg
http://doi.org/10.1093/nar/gku1163
http://www.ncbi.nlm.nih.gov/pubmed/25392420


Genes 2022, 13, 1538 20 of 20

49. Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou,
K.P.; et al. STRING v10: Protein-Protein Interaction Networks, Integrated Over the Tree of Life. Nucleic Acids Res. 2015, 43,
D447–D452. [CrossRef] [PubMed]

50. COXPRESdb. Available online: http://coxpresdb.jp/ (accessed on 25 March 2022).
51. STRING. Available online: http://string-db.org/ (accessed on 25 March 2022).
52. DAVID. Available online: https://david.ncifcrf.gov/conversion.jsp (accessed on 25 March 2022).
53. UniProt. Available online: https://www.uniprot.org/ (accessed on 25 March 2022).
54. Phobius. Available online: http://phobius.sbc.su.se/ (accessed on 25 March 2022).
55. GSE124646. Available online: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124646 (accessed on 25 March 2022).
56. Reed, E.; Ferrari, E.; Soloviev, M. Quality Control of Gene Expression Data Allows Accurate Quantification of Differentially

Expressed Biological Pathways. submitted.
57. GPL96. Available online: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL96 (accessed on 3 October 2020).
58. Califf, R.M. Biomarker Definitions and their Applications. Exp. Biol. Med. 2018, 243, 213–221. [CrossRef] [PubMed]
59. Burke, H.B. Predicting Clinical Outcomes using Molecular Biomarkers. Biomark. Cancer 2016, 8, 89–99. [CrossRef] [PubMed]
60. Kutomi, G.; Mizuguchi, T.; Satomi, F.; Maeda, H.; Shima, H.; Kimura, Y.; Hirata, K. Current Status of the Prognostic Molecular

Biomarkers in Breast Cancer: A Systematic Review. Oncol. Lett. 2017, 13, 1491–1498. [CrossRef]
61. Reis-Filho, J.S.; Pusztai, L. Gene Expression Profiling in Breast Cancer: Classification, Prognostication, and Prediction. Lancet

2011, 378, 1812–1823. [CrossRef]
62. Russnes, H.G.; Navin, N.; Hicks, J.; Borresen-Dale, A. Insight into the Heterogeneity of Breast Cancer through Next-Generation

Sequencing. J. Clin. Investig. 2011, 121, 3810–3818. [CrossRef]
63. Michailidou, K.; Lindström, S.; Dennis, J.; Beesley, J.; Hui, S.; Kar, S.; Lemaçon, A.; Soucy, P.; Glubb, D.; Rostamianfar, A.; et al.

Association analysis identifies 65 new breast cancer risk loci. Nature 2017, 551, 92–94. [CrossRef]
64. Prosigna Breast Cancer Prognostic Gene Signature Assay. Available online: https://www.breastcancer.org/screening-testing/

prosigna-assay (accessed on 30 March 2022).
65. NanoString. Available online: https://nanostring.com/products/ncounter-assays-panels/oncology/ruo-pam50-codeset/ (ac-

cessed on 30 March 2022).
66. Agendia: MammaPrint. Available online: https://agendia.com/mammaprint/ (accessed on 31 March 2022).
67. Agendia: BluePrint. Available online: https://agendia.com/blueprint/ (accessed on 31 March 2022).
68. Breast Cancer Index Test. Available online: https://www.breastcancer.org/screening-testing/breast-cancer-index-test (accessed

on 31 March 2022).
69. Breast Cancer Index. Available online: https://www.breastcancerindex.com (accessed on 31 March 2022).
70. OncotypeIQ: Personalising Treatment Decisions. Available online: https://www.oncotypeiq.com/en-GB (accessed on 1 April 2022).
71. Sotiriou, C.; Wirapati, P.; Loi, S.; Harris, A.; Fox, S.; Smeds, J.; Nordgren, H.; Farmer, P.; Praz, V.; Haibe-Kains, B.; et al. Gene

Expression Profiling in Breast Cancer: Understanding the Molecular Basis of Histologic Grade to Improve Prognosis. J. Natl.
Cancer Inst. 2006, 98, 262–272. [CrossRef]

72. Dexur Pathway—Ventana Medical Systems. Available online: https://dexur.com/md/5046402/ (accessed on 3 April 2022).
73. PATHVYSION HER-2 DNA PROBE KIT II. Available online: https://www.molecular.abbott/int/en/products/oncology/

pathvysion-her-2-dna-probe-kit-II (accessed on 3 April 2022).
74. Eccles, S.; Aboagye, E.; Ali, S.; Anderson, A.S.; Armes, J.; Berditchevski, F.; Blaydes, J.; Brennan, K.; Brown, N.; Bryant, H.; et al.

Critical Research Gaps and Translational Priorities for the Successful Prevention and Treatment of Breast Cancer. Breast Cancer
Res. 2013, 15, R92. [CrossRef]

75. Cancer—Screening and Early Detection. Available online: https://www.euro.who.int/en/health-topics/noncommunicable-
diseases/cancer/policy/screening-and-early-detection (accessed on 5 April 2022).

76. Dibden, A.; Offman, J.; Duffy, S.W.; Gabe, R. Worldwide Review and Meta-Analysis of Cohort Studies Measuring the Effect of
Mammography Screening Programmes on Incidence-Based Breast Cancer Mortality. Cancers 2020, 12, 976. [CrossRef] [PubMed]

77. Williams, J.; Garvican, L.; Tosteson, A.N.A.; Goodman, D.C.; Onega, T. Breast Cancer Screening in England and the United States:
A Comparison of Provision and Utilisation. Int. J. Public Health 2015, 60, 881–890. [CrossRef] [PubMed]

78. Ahsen, M.E.; Chun, Y.; Grishin, A.; Grishina, G.; Stolovitzky, G.; Pandey, G.; Bunyavanich, S. NeTFactor, a framework for
identifying transcriptional regulators of gene expression-based biomarkers. Sci. Rep. 2019, 9, 12970.

79. Gambardella, G.; Moretti, M.N.; de Cegli, R.; Cardone, L.; Peron, A.; di Bernardo, D. Differential Network Analysis for the
Identification of Condition-Specific Pathway Activity and Regulation. Bioinformatics 2013, 29, 1776–1785. [CrossRef]

80. Debeljak, N.; Solár, P.; Sytkowski, A.J. Erythropoietin and cancer: The unintended consequences of anemia correction. Front
Immunol. 2014, 11, 563. [CrossRef]

81. Shibuya, M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target
for Anti- and Pro-Angiogenic Therapies. Genes Cancer 2011, 2, 1097–1105. [CrossRef]

82. Majumdar, S.; Diamandis, E.P. The promoter and the enhancer region of the KLK 3 (prostate specific antigen) gene is frequently
mutated in breast tumours and in breast carcinoma cell lines. Br. J. Cancer 1999, 79, 1594–1602. [CrossRef]

83. NCBI GEO. Available online: https://www.ncbi.nlm.nih.gov/geo/ (accessed on 12 February 2022).

http://doi.org/10.1093/nar/gku1003
http://www.ncbi.nlm.nih.gov/pubmed/25352553
http://coxpresdb.jp/
http://string-db.org/
https://david.ncifcrf.gov/conversion.jsp
https://www.uniprot.org/
http://phobius.sbc.su.se/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124646
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL96
http://doi.org/10.1177/1535370217750088
http://www.ncbi.nlm.nih.gov/pubmed/29405771
http://doi.org/10.4137/BIC.S33380
http://www.ncbi.nlm.nih.gov/pubmed/27279751
http://doi.org/10.3892/ol.2017.5609
http://doi.org/10.1016/S0140-6736(11)61539-0
http://doi.org/10.1172/JCI57088
http://doi.org/10.1038/nature24284
https://www.breastcancer.org/screening-testing/prosigna-assay
https://www.breastcancer.org/screening-testing/prosigna-assay
https://nanostring.com/products/ncounter-assays-panels/oncology/ruo-pam50-codeset/
https://agendia.com/mammaprint/
https://agendia.com/blueprint/
https://www.breastcancer.org/screening-testing/breast-cancer-index-test
https://www.breastcancerindex.com
https://www.oncotypeiq.com/en-GB
http://doi.org/10.1093/jnci/djj052
https://dexur.com/md/5046402/
https://www.molecular.abbott/int/en/products/oncology/pathvysion-her-2-dna-probe-kit-II
https://www.molecular.abbott/int/en/products/oncology/pathvysion-her-2-dna-probe-kit-II
http://doi.org/10.1186/bcr3493
https://www.euro.who.int/en/health-topics/noncommunicable-diseases/cancer/policy/screening-and-early-detection
https://www.euro.who.int/en/health-topics/noncommunicable-diseases/cancer/policy/screening-and-early-detection
http://doi.org/10.3390/cancers12040976
http://www.ncbi.nlm.nih.gov/pubmed/32326646
http://doi.org/10.1007/s00038-015-0740-5
http://www.ncbi.nlm.nih.gov/pubmed/26446081
http://doi.org/10.1093/bioinformatics/btt290
http://doi.org/10.3389/fimmu.2014.00563
http://doi.org/10.1177/1947601911423031
http://doi.org/10.1038/sj.bjc.6690254
https://www.ncbi.nlm.nih.gov/geo/

	Introduction 
	Breast Cancer 
	Traditional Approaches to Screening 
	Molecular Approaches to Clinical Diagnostics 
	Working Hypotheses 

	Materials and Methods 
	Selection of Known Markers for Use as Seeds in the Subsequent Analyses 
	Transcriptional Networks 
	Biological Pathways 
	Gene Co-Expression and Protein–Protein Interactions 
	The Overall Prediction Strategy 
	Analysis of Protein Targeting and Further Marker Validation 

	Results 
	Analysis of Transcriptional Networks Yields Potentially Co-Regulated Genes 
	Analysis of Biological Pathways Identifies Potentially Functionally Related Genes 
	Exploring Gene Co-Expression and Protein Interaction Data 
	Exploring Gene Co-Expression and Protein Interaction Data 

	Discussion 
	Conclusions 
	References

