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ARTICLE INFO ABSTRACT

Available online 3 September 2014 The challenging task of studying and modeling complex dynamics of biological systems in order to describe

various human diseases has gathered great interest in recent years. Major biological processes are mediated

Keywords: through protein interactions, hence there is a need to understand the chaotic network that forms these processes
lnteractlome in pursuance of understanding human diseases. The applications of protein interaction networks to disease
Network

datasets allow the identification of genes and proteins associated with diseases, the study of network properties,
identification of subnetworks, and network-based disease gene classification. Although various protein interac-
tion network analysis strategies have been employed, grand challenges are still existing. Global understanding
of protein interaction networks via integration of high-throughput functional genomics data from different levels
will allow researchers to examine the disease pathways and identify strategies to control them. As a result,
it seems likely that more personalized, more accurate and more rapid disease gene diagnostic techniques will
be devised in the future, as well as novel strategies that are more personalized. This mini-review summarizes

the current practice of protein interaction networks in medical research as well as challenges to be overcome.
© 2014 Sevimoglu and Arga. Published by Elsevier B.V. on behalf of the Research Network of Computational
and Structural Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

We have come a long way from “one-gene/one-enzyme/one-
function” concept originally framed by Beadle and Tatum [1]. They
provided a basic explanation of how genes work at the molecular
level, however, we now know that the picture is more complex.
Biological processes inside our body are governed by the well-
defined organization of proteins into complexes, which perform dif-
ferent functions acting as molecular machines [2]. Major biological
processes such as immunity (antigen-antibody interaction), metab-
olism (enzyme-substrate interaction), signaling (interaction of mes-
senger molecules, hormones, neurotransmitters with their cognate
receptors), and gene expression (DNA-protein interactions), as well
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as the building of supramolecular assemblies (collagens, elastic fibers,
actin filaments) and molecular machines (molecular motors, ribo-
somes, proteasome) were mediated through protein interactions.
Studying the interactome, which is the whole set of molecular physical
interactions between biological entities in cells and organisms, is essen-
tial in understanding how gene functions and regulations are integrated
at the level of an organism [3].

The notion that, a disease is rarely a consequence of an abnormality
on a single gene, but it is usually the result of complex interactions
and perturbations involving large sets of genes and their relation-
ships with several cellular components, has led to the development
of the network based approaches to understand human disease [4].
Theoretical advances in network science and paralleling advances
in high-throughput efforts to map biological networks have provided
a conceptual framework with which we interpret large interactome
network maps. Protein-protein interaction (PPI) networks are
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increasingly serving as tools to decipher the molecular basis of
diseases. Furthermore, the sequencing of the genome and advances
in proteomics leads to the identification of proteins of unknown
functions. Interaction networks might give clues on the functions
of these newly discovered proteins or on new functions of already
identified proteins [5-9].

The promising applications of PPI networks to disease datasets
are concentrated on four major areas: (i) the identification of genes
and proteins associated with diseases, (ii) the study of network
properties and their relation to disease states, (iii) the identification
of disease-related subnetworks, and (iv) network-based disease
classification [10]. Fig. 1 gives an example for the schematic repre-
sentation of understanding disease-PPI network relationship using
systems biomedicine approach.

Global understanding of networks will allow researchers to examine
the disease pathways and identify strategies to control them. The inte-
gration of functional genomic and proteomic data to obtain dynamic
network analysis will further improve the success of medical research.

2. The Role of Networks in Medicine

Networks provide a systems-level understanding of the mechanisms
underlying diseases by serving as a model for data integration and anal-
ysis. They have been used to gain insight into disease mechanisms [11,
12], study comorbidities [13,14], analyze therapeutic drugs and their
targets [15-17], and discover novel network-based biomarkers [18,19].

Network science deals with complexity by “simplifying” complex
systems to components (nodes) and interactions (edges) between
them (Fig. 2). These simplifications help researchers make useful dis-
coveries. Networks can be constructed purely based on gene expression
information, including transcriptional regulatory networks [20] and
co-expression networks [21], or can also be built upon prior knowledge
of protein-protein interactions [22]. The nodes in a network representa-
tion are metabolites or macromolecules such as proteins, RNA mole-
cules and gene sequences, while the edges are physical, biochemical
or functional interactions. The resulting “interactome” network can
serve as scaffold information to extract global or local graph theory
properties, which lead to a better understanding of biological processes.
Since cellular networks consist of various types of interaction and
regulation, networks reflecting this complex scenario will provide
better insight into the problem in hand.

Fig. 2. Simple representation of a network, nodes representing components and edges
representing interactions.

Regulatory interaction networks, metabolic networks, signaling
networks, and protein-protein interaction networks cannot be
considered in isolation or as independent entities. Rather, we have
to incorporate their intricate interwoven structure. Proteins might
act alone or in combination: as transcription factors and regulators
of protein abundances, as enzymes they catalyze and coordinate
the basic cellular metabolic processes, and they react to external
and internal stimuli activating other proteins in signaling cascades.
All of these processes in turn provide cues that may lead to the
formation or termination of protein interactions and complexes.
PPI networks in particular have become a valuable resource in this
context [23,24]. An example for a PPI network can be seen in Fig. 3
for psoriasis disease.

The current estimates suggest that the human interactome
comprises approximately 130,000-650,000 protein interactions
[25,26]; however, only a subset of these has been experimentally
identified [24].

There are currently two widely used high throughput methodolo-
gies for large scale mapping of PPIL. The yeast two-hybrid (Y2H) system
[27] maps binary interactions. Mapping of direct interactions of protein
complexes is carried out by affinity or immune-purification, followed by
mass spectrometry (AP/MS) to identify protein constituents of these
complexes as well as other protein—protein interactions [28]. It should
be noted that these high-throughput methods are prone to a high rate
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Fig. 1. A systems biomedicine based approach to understanding PPl network-disease relationship.
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Fig. 3. A simplified PPI network of psoriasis disease visualized using Cytoscape (proteins are represented by Entrez ID's).

of false-positives and false-negatives, i.e. protein interactions which are
identified by the experiment do not take place in the cell or interacting
protein pairs cannot be identified by current experiment technology
[29]. Sprinzak et al. [30] have shown that the false positive (FP) rate
of high-throughput yeast two-hybrid assays is ~50%. The rate of
false negative (FN) is also very high [31]. Another downside of these
technologies is that they are expensive and time consuming [32].

The reconstruction of interaction networks has been performed via
three distinct approaches: (1) the manual curation of already existing
data available in literature, usually obtained from one or just a few
types of physical or biochemical interactions [33], (2) computational
predictions based on available “orthogonal” information apart from
physical or biochemical interactions, such as sequence similarities,
gene-order conservation, co-presence and co-absence of genes in
completely sequenced genomes and protein structural information
[34], and (3) systematic and high throughput whole genome or
proteome mapping strategies [35].

Studies employing these reconstructions ended up with more
advances in network biology such as, studies of global relationships
between human disorders, associated genes and interactome networks
[36,37], predictions of new human disease-associated genes [38],
analyses of network perturbations by pathogens [39], and emergence
of node removal versus edge specific or “edgetic” models [40] to explain
genotype-phenotype relationships [41]. The global topological analysis
of PPI networks is increasingly being replaced by more detailed analyses

of binary interactions, their determinants, characteristics, and effects
[42,43]. In the first stage such analyses will inform us about the
functional role of particular interactions, and later they will hopefully
enable us to predict PPI and their roles in silico.

PPI networks also include small interwoven modules inside them.
These modules contain functional information on complex biological
networks and interaction between these proteins comprises informa-
tion related to biological processes of the interactants. Using networking
approaches to study biological problems can provide an intuitive
picture or useful insights to help analyze complicated relations in
these systems [2]. Because PPI networks are large and complex, it be-
comes necessary to develop efficient and biologically meaningful algo-
rithms for their modular analysis. Graphlets (small induced subgraphs
of large networks) can be applied to analyze the modular characteristics
of PPI Networks [44-46].

We also have to keep in mind that molecular networks exhibit dy-
namic responses to both internal states and external signals. Ultimately,
health or disease states emerge from an individual's integration of these
internal and external signals [47]. PPl networks are also dynamic.
They change over seconds as cellular processes require protein
complexes to assemble and disassemble, and also evolve over millions
of years as interactions and genes are gained and lost. It is thus crucial
to understand how these dynamic and evolutionary changes operate,
in order to grasp how cellular machineries function and have been
shaped during evolution. In recent years such properties of PPI's and
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networks have been amenable to study, thanks to the ever-increasing
body of data on interactions, atomic structures and mRNA expression
levels [48].

3. Strategies to Identify Disease Genes

High-throughput gene expression profiling technologies have
allowed researchers to characterize molecular differences between
healthy and disease states which has led to the identification of an
increasing amount of disease related genes. PPI network based ap-
proaches have proved to be useful in enlightening relevant disease
related biological processes, and identifying candidate disease
genes. Using a detailed interaction map of a given disease can help
in elucidating its mechanism and can suggest potential points for
biomarkers or drug targets [49].

The analysis of disease networks has also permitted the discovery of
novel classes of therapeutic targets not amenable to classical drug-like
compounds but reachable through novel bioactive compounds [50].

Disease genes tend to be highly expressed and have tissue-specific
expression patterns and a higher mutation rate over evolutionary time
[51]. With this information at hand different studies have been
performed on omics platforms at various levels to identify, predict or
prioritize disease genes.

Wu et al. [52] have used gene classification strategies to detect
whether a gene is disease-associated or not. They have explored gene
classification with topological features by using k-shell decomposition
and the average distance to the center (essential genes) to analyze the
hierarchy structure of their PPI network. Assuming essential genes as
the center of the network, the disease genes appeared closer to the
center than other genes. Their findings concluded that compared with
other genes, both disease genes and non-essential disease genes are
topologically more important. Nguyen and Ho [53] enriched the disease
gene prediction by incorporating known disease genes with neighbors
of disease genes and integrating multiple data sources in their semi-
supervised Learning scheme. It is also feasible to use gene networks to
prioritize positional candidate genes in various heritable disorders
with multiple associated genes. Franke et al. [54] proposed methods to
integrate gene networks with various genetic studies which can be
useful in identifying disease genes. Kohler et al. [55] have investigated
the hypothesis that global network-similarity measures are better
suited to capture relationships between disease proteins than are algo-
rithms based on direct interactions or shortest paths between disease
genes. They have presented a novel method for candidate-gene prioriti-
zation based on the random walk method, which they used to calculate
a score reflecting the global similarity of candidate genes to known
members of a disease-gene family. Schlicker et al. [56] introduced a
novel approach for ranking candidate genes for a particular disease
based on functional comparisons involving the Gene Ontology. Lee
et al. [57] analyzed a large-scale, human gene functional interaction
network (dubbed HumanNet). They showed that candidate disease
genes can be effectively identified by GBA (guilt by association) in
cross-validated tests using label propagation algorithms related to
Google's PageRank. They resolved the issue of GBA working poorly in
genome-wide association studies by explicitly modeling the uncertainty
of the associations and incorporating the uncertainty for the seed set
into the GBA framework. Re and Valentini [58] proposed a novel semi-
supervised method to rank genes with respect to cancer modules
using networks constructed from different sources of functional infor-
mation, not limited to gene expression data. Aerts et al. [59] described
a bioinformatics approach which generates distinct prioritizations
for multiple heterogeneous data sources, which are then integrated,
or fused, into a global ranking using order statistics. Navlakha and
Kingsford [60] have found that random-walk approaches individually
outperform clustering and neighborhood approaches by examining
the performance of seven recently developed computational methods.

4. Challenges and Limitations of PPI Networks

There are still challenges regarding PPI network based approaches
stemming from the huge body of information that seems to be getting
bigger by the day.

Providing maps of PPI networks using systematic and standardized
approaches and assays that are as unbiased as possible is a grand
challenge of network biology.

There is an impressive amount of data on sequence alterations and
biomolecular profiles (mRNA expression, miRNA and noncoding RNA
profiling, proteomics, and metabolomic measurements) for many
human diseases, which can be accessed from specialized databases
and publications. However, we still have not succeeded in translating
this wealth of information into actionable knowledge about disease
pathogenesis for the development of better strategies for disease
prevention, diagnosis, and treatment. Progress is limited by the difficul-
ties in assessing the functional consequences of disease-associated
sequence variants and understanding how phenotype is affected by
the combined effect of environmental and genomic variation [24].

Though high-throughput gene expression profiling has permitted
the characterization of molecular differences between healthy
and disease states, a clear limitation of these approaches is that
they often deal with data about single players (i.e. changes in the
expression of individual genes). Novel strategies should integrate
systemic information to contextualize the differential expression
patterns observed [51].

Another limitation of network biology is the coverage and quality
of interactome data. The data incompleteness of the human PPI
network poses limitations to any study of network properties of dis-
ease genes. Also, the availability of condition-specific interactomes
that are more representative of the interactions of the proteins in a
given tissue or under certain conditions will improve the significance
of such analysis. Differential network mapping should offer more
insight into the network rewiring that occurs during disease. This
approach will enable monitoring changes in the role of the individual
nodes (hubs, bottlenecks, etc.) and changes in the global topology
of the PPI network, as well as how all these alterations correlate with
cell function. By fully characterizing network rewiring in disease,
a deeper understanding of how sequence variation shapes cellular
networks and leads to observed phenotypic changes would be
gained [24].

Although the amount of protein interactome data obtained by high-
throughput protein interaction techniques is increasing rapidly, they
contain a significant proportion of false positives and false negatives,
which exhibits the need to prioritize the interactome reported in such
assays for further validation. Computational analysis techniques for
assessing and ranking the reliability of binary PPI are highly desirable
[61]. Though many methods have emerged for ranking the reliability
of protein interactions reported by high-throughput assays, they
are mostly successful in detecting false positives. However, these assays
are also known to produce a large number of false negatives. There is an
immediate need for methods that detect false negatives. The identifica-
tion of false negatives is equivalent to the problem of predicting new
protein interactions [62].

Another challenge in integrating physical and genetic maps is to
reconcile the variety of interaction types (i.e. genetic and physical inter-
actions) that are currently available [63]. Complex diseases stem
from interplay of genetic and environmental factors, which complicate
the study of human diseases, since it is difficult to create a controlled
environment that enables scientists to study environmental effects on
disease development [64].

Researchers are increasingly using model organisms such as fruit
flies, mice, and zebrafish to examine human diseases because they are
easy to grow, dissect, and genetically manipulate in the laboratory.
The issue of the transfer of phenotypic information from animal models
to human is also a challenge [65,66].
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5. Concluding Remarks and Future Work

We are still far from unraveling the molecular mechanisms of most
diseases, thus developing effective methods to uncover disease genes
remains a great challenge.

First and foremost, the construction of a more reliable PPI network
for human genes is a must. This might be achieved by assembling a
large PPI dataset with the inclusion of all or most of the major and
minor PPI databases and ranking the interactions according to a well
established scoring system. This also means less false positives and
false negatives.

In conjunction with the use of PPI networks, studies evaluating the
correlation between human disease genes for a specific disease and
cross-comparison of those disease genes to other human diseases
are needed for a deeper understanding of the relationship of disease
genes within a disease and between diseases.

Understanding specific molecular pathways unique to a specific
disease and elucidation of differences in molecular pathways for differ-
ent diseases will help us recognize the similarities and differences
in those pathways which will lead to a better understanding of the
relationship between human diseases.

Constructing a ‘linkage network’ between diseases that are linked to
each other by one or more than one gene is also another great way to
associate human diseases by a simplified network.

It is also important to identify the ‘triggers’, key disease genes that
initiate a specific disease, and constructing a ‘triggers network’ to
further the unveiling of the disease mechanisms. This will aid us in the
optimization of primary prevention of preventable human diseases
and also lead to the discovery of biomarker or biomarker groups for
early diagnosis and intervention of human diseases. Studies to evaluate
individualized therapy that could lead to personalized medicine for
patients is also needed.

The impact of outside effects to the progress of human diseases and
the risk factors for the initiation and advancement of human diseases
also need to be analyzed for a better evaluation of each disease.

The never ending information flow will revolutionize how we look
at human diseases and disease networks for many years to come. The
prospects of predictive and personalized medicine are enormous. The
future holds the cures and the medicine.
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