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Refractoriness to platelet transfusion is a common clinical problem encountered by the transfusion medicine spe-
cialist. It is well recognized that most causes of refractoriness to platelet transfusion are not a consequence of
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Platelet trgnsfusion and highlights recent data describing novel biological mechanisms that contribute to this clinical problem.
Refractoriness © 2020 Published by Elsevier Inc.
Infection

Inflammation

Contents

Splenomegaly and Splenic Sequestration . . . . . . . . . ... ... ..
Novel Mechanisms of Platelet Consumption . . . . . . .. . .. ..
Pathogen Recognition Receptor Signaling in Platelets . . . . . . . . .
Platelet Interactions with Bacteria . . . . . . . . . . ... ... ..
Neutrophil Extracellular Traps and Histone Proteins . . . . . . . . . .
Platelet Apoptosis . . . . . . . . ...
Platelet Desialylation. . . . . . . . . . . .. ... ... ... ..
Endothelial activation and ADAMTS13 activity . . . . . . . . . . ..

Conclusions . . . . . . . . ...

Conflictofinterest . . . . . . . . . . . . . ...

Acknowledgments . . . . . . . . .. L. .. e e

References. . . . . . . . . . . . . e

Platelet refractoriness describes the circumstance in which platelet
transfusion fails to yield an adequate increase in the platelet count. Def-
initions for platelet refractoriness depend upon the timing of the post-
transfusion platelet count and the metric used to assess the increase in
platelet count (Table 1). One definition for platelet refractoriness is a
corrected count increment less than 5X10%/L/m? on two sequential oc-
casions after transfusion of ABO-compatible platelets [1]. Although
alloimmunization to human leukocytes antigens (HLA) or platelet-
specific antigens is a well understood mechanism of platelet refractori-
ness that can be ameliorated through specific product selection strate-
gies, it is observed in <10% of cases of platelet refractoriness [2]. Thus,
the majority of platelet refractoriness is not a result of alloimmunization
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but is instead a result of clinical factors in the patient [3]. Indeed, in pa-
tients with both clinical and alloimmune factors for platelet refractori-
ness, use of HLA-selected platelet components may not substantially
improve the observed post-transfusion platelet increment [4]. The pur-
pose of this review is to summarize the clinical factors associated with
platelet refractoriness and highlight recent data describing biological
mechanisms that contribute to this phenomenon.

Many different factors related to the patient’s clinical state have
been implicated as causes of platelet refractoriness (Table 2) [5-7]. In
multivariate analyses conducted with different patient cohorts, spleno-
megaly, hematopoietic stem cell transplantation, disseminated intra-
vascular coagulation, fever, bleeding, and use of antimicrobial agents
have all been implicated in platelet refractoriness [8-12]. A subsequent
analysis of the Trial to Reduce Alloimmunization to Platelets (TRAP),
which enrolled 533 AML patients receiving induction chemotherapy
and captured data from 6379 platelet transfusions, quantified the


http://crossmark.crossref.org/dialog/?doi=10.1016/j.tmrv.2020.09.002&domain=pdf
https://doi.org/10.1016/j.tmrv.2020.09.002
rmakar@partners.org
Journal logo
https://doi.org/10.1016/j.tmrv.2020.09.002
Imprint logo
http://www.sciencedirect.com/science/journal/08877963

R. Belizaire and R.S. Makar

Table 1
Definitions of platelet refractoriness.
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Variable Formulae Suggested cut-offs defining clinical refractoriness

1h 16-24 h
Platelet Increment (PI) Post-Pre <10 x 109/L <10 x 10°/L
Percentage Platelet Recovery (PPR) [PI x TBV* x 100%]/PD" <20% <10%

Corrected Count Increment (CCI) [PI x BSA*]/PD"

<5 x 10%/L/m? <2.5 x 10%/L/m?

“Total blood volume (L); Tplatelet dose, typically 4 x 10'!/component; *body surface area (m?)

impact of various non-immune clinical factors on the 1- and 18-24-hour
post-transfusion increment. Aside from parity and gender, the most im-
portant factors that independently predicted a decrease in the post-
transfusion platelet count at either time point were splenomegaly, ex-
posure to amphotericin, bleeding, fever, and infection [12]. Interest-
ingly, transfusion sequence number was an independent, albeit minor,
predictor of a reduced platelet count increment at both 1- and 18- to
24-hour time points; the effect was most pronounced in the earliest
transfusions and was independent of factors such as fever and infection.
The authors hypothesized that chemotherapy-induced endothelial
damage might mediate increased platelet adhesion and loss from the
circulation [12]. Therefore, clinical studies have reproducibly identified
a series of non-immune factors that can impact the outcome of platelet
transfusion. With the exception of splenomegaly, the factors identified
by these studies are presumed to either directly or indirectly reflect
pathophysiologic processes that lead to increased platelet consumption
in the patient.

Splenomegaly and Splenic Sequestration

The spleen influences post-transfusion platelet counts via sequestra-
tion. Seminal studies by Aster in which normal subjects and patients
with splenomegaly were infused with >!Cr-labeled platelets followed
by quantitation of radioactivity in organs via surface scintillation scan-
ning demonstrated that the spleen was the primary organ in which la-
beled platelets accumulated [13-15]. The accumulation of radiolabeled
platelets in the spleen following platelet transfusion was rapid, occur-
ring within approximately 10 minutes. With increasing splenomegaly,
the proportion of labeled platelets detectable in the peripheral blood de-
creased while increasing in the spleen. It was estimated that at any given
time, 30% of total platelet mass resided in the spleen of normal subjects
and 50% to 90% of platelet mass in patients with splenomegaly [15]. In-
terestingly, epinephrine infusion increased circulating platelet levels in
individuals with spleens but not in asplenic individuals. Furthermore,
in patients with splenomegaly, the percent increase in platelet count
from baseline was almost double that observed in normal individuals.
Thus, platelet sequestration was reversible, and platelets could be mobi-

Table 2
Causes of platelet refractoriness

Antibody-mediated Non-antibody-mediated

Platelet alloantibodies
Class I human leukocyte antigens
Human platelet glycoproteins
ABO

Splenomegaly

Infection

Fever

Disseminated
intravascular coagulation

Platelet autoantibodies Amphotericin B

Drug-dependent platelet antibodies (eg, quinine, Heparin
{3-lactam antibiotics, vancomycin)
Immune complexes Bleeding

Graft versus host disease
Veno-occlusive disease
Transfusion sequence
number

Male sex

Increasing weight
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lized by stress [15], distinguishing splenomegaly from consumptive pro-
cesses in which transfused platelets are destroyed. Indeed, in many pa-
tients with splenomegaly, satisfactory post-transfusion increments may
be observed [9]. However, among the subset of patients with massive
splenomegaly resulting in repeatedly inadequate post-transfusion in-
crements, the efficacy of prophylactic platelet transfusion is uncertain.

Novel Mechanisms of Platelet Consumption

The systemic inflammatory response and sepsis may prompt platelet
consumption and thrombocytopenia through disseminated intravascu-
lar coagulation. However, recent work has highlighted multiple addi-
tional pathways through which infection and inflammation may lead
to thrombocytopenia, including through direct interactions between
platelets and pathogens, neutrophils and neutrophil extracellular
traps, histone proteins, and the activated endothelium. See Fig. 1. Addi-
tionally, new insights suggest mechanisms through which platelet acti-
vation may result in increased clearance of platelets via apoptosis and
desialylation.

Pathogen Recognition Receptor Signaling in Platelets

A series of studies over the last two decades have reported that
platelets express pathogen recognition receptors (PRRs), including
Toll-like receptors (TLRs) and NOD-like receptors. Prior to the discovery
of PRRs, Davis et al observed that intravenous injection of purified lipo-
polysaccharide (LPS) from E. coli was associated with rapid platelet
activation and profound thrombocytopenia [16]. More recently, several
independent groups showed that the receptor required for LPS-
mediated intracellular signaling, TLR4, is expressed on both human
and mouse platelets [17-19]. In mouse models, platelet expression of
TLR4 was involved in several LPS-induced platelet phenotypes,
including thrombocytopenia, adhesion to fibrinogen, P-selectin expres-
sion, and potentiation of thrombin- or collagen-induced aggregation
[17,18,20]. In addition to TLR4, it has been reported that platelets ex-
press TLR2 [18,19,21,22], TLR7 [23], TLRO [24,25], and NOD2 [26], sug-
gesting that platelets are also potentially responsive to a wide range of
pathogen-associated molecular patterns. The bacterial cell wall mimetic,
Pam3CSK4, stimulated platelet aggregation that was significantly re-
duced by TLR2 genetic deletion or a TLR2-blocking antibody [22].
Thrombocytopenia that developed in mice treated with the guanosine
analog loxoribine or infected with encephalomyocarditis virus required
TLR7 [23]. Thon et al reported that platelets exposed to unmethylated
CpG DNA showed an increase in aggregation and P-selectin expression
that was reduced in the absence of TLR9 [25]. Finally, NOD2 was essen-
tial for the muramyl dipeptide-mediated potentiation of platelet aggre-
gation and ATP release after stimulation with collagen or thrombin [26].

Despite these data, the role of PRR signaling in platelet activation re-
mains controversial. Several studies did not observe a significant change
in platelet aggregation or P-selectin expression after treatment with
agonists of TLR2, TLR4, or TLR9 [19,27-31]. In addition, platelet-specific
deletion of the MyD88 signaling adaptor, which is required for signaling
downstream of most TLRs, had a minimal effect on platelet counts and
P-selectin expression in mouse models of S. pneumoniae and
K. pneumoniae sepsis, implying that platelet TLR signaling may have a
limited role in the platelet activation and thrombocytopenia observed
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Fig. 1. Non-alloimmune mechanisms of thrombocytopenia and refractoriness to platelet transfusion. Platelet interactions with neutrophils, microbial pathogens, and activated endothelium all
promote biological processes that lead to consumption and/or receptor-mediated clearance of endogenously produced and transfused platelets. AMR, Ashwell-Morell Receptor. NETS, neutrophil

extracellular traps. PAMPs, pathogen-associated molecular patterns.

in systemic bacterial infections [30,32]. Whether engagement of TLRs
modulates platelet biology via “non-canonical” mechanisms [28] re-
mains an open question and deserves further investigation. However,
the existence of such mechanisms is suggested by multiple studies in
which binding of TLR4 by LPS alters platelet function in a TLR-
dependent manner, including mitochondrial function [28], fibrinogen
binding [17], neutrophil binding [17,27], and cytokine secretion [29].

Platelet Interactions with Bacteria

In addition to recognition of bacterial molecules via PRRs, platelet
binding to whole bacterial pathogens has been widely described [33].
Platelet-bacterium interactions can promote platelet activation and ag-
gregation through multiple mechanisms, including indirect binding to
a plasma protein that is subsequently bound by a platelet receptor or di-
rect bacterial protein binding to a platelet receptor. For example,
S. aureus CIfA and FnbpA/B proteins both bind to fibronectin and fibrin-
ogen, which facilitates interactions with the GPIIb/Illa receptor on plate-
lets [34]; another S. aureus surface protein, IsdB, promotes platelet-
bacterium interaction via direct binding to glycoprotein (GP) IIb/Illa
[35].

Numerous other platelet-bacterium interactions involving staph-
ylococcal and streptococcal proteins have been characterized and are
presumed to play important roles in infective endocarditis and other
pathologic states [36]. Platelet activation driven by bacterial interac-
tions with GPIIb/Illa and GPIba receptors most likely contributes to
platelet aggregation and consumption in sepsis. Interestingly, H py-
lori binding to von Willebrand factor (VWF) promotes GPIba-
mediated interactions with platelets [37], resulting in platelet activa-
tion, aggregation, and thrombocytopenia in a subset of patients.
Remarkably, antibiotic therapy for H pylori that effectively resolves
infection also normalizes platelet counts [38-41], suggesting that
platelet-bacterium interaction alone could be sufficient to cause
thrombocytopenia [42].
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Neutrophil Extracellular Traps and Histone Proteins

In response to infection, neutrophils release neutrophil extracellular
traps (NETs), which are composed of DNA, histones, and granule pro-
teins [43]. NET release is a host defense mechanism employed by neu-
trophils to trap and kill bacteria, however exuberant NET formation or
reduced NET clearance are implicated in numerous pathologic processes
including autoimmunity, thrombosis, ischemia-reperfusion injury, and
cancer progression [44-46]. Platelets appear to facilitate NET formation
and to bind NETSs. Infusion of LPS in mice caused thrombocytopenia
and pulmonary sequestration of platelets through a mechanism that re-
quired both neutrophils and platelet TLR4 [17]. LPS was subsequently
shown to bind platelet TLR4, leading to platelet activation and binding
to neutrophils. The interaction between activated platelets and neutro-
phils resulted in neutrophil activation, degranulation, and NET forma-
tion. Plasma from severely septic, thrombocytopenic patients also
stimulated NET release via TLR4-dependent platelet-neutrophil interac-
tions [27]. Platelets may stimulate NET release via signaling between
platelet P-selectin and neutrophil PSGL-1[47]. Platelets can bind directly
to histone/DNA complexes within NETSs or via plasma proteins that dec-
orate NETs [46]. NET binding results in platelet adhesion, activation, and
aggregation in vitro [48]. Histone H3 and H4 are able to directly bind to
platelet TLR2 and TLR4 to mediate platelet aggregation [48,49]; platelet
aggregation requires both histone-induced calcium signaling to activate
GPIIb/Illa and fibrinogen crosslinking of histone-coated platelets [49].
The pathophysiologic relevance of these findings is suggested by murine
models in which NETs promote deep venous thrombosis [50,51] and
histone infusion induces profound thrombocytopenia in vivo [49].

In addition to NETSs, cell injury and death are other sources of circu-
lating DNA and histones. High levels of circulating histones may be ob-
served in patients with sepsis [52-54] or following trauma [55] and
may contribute to end-organ injury [52,54,55]. In a murine model, infu-
sion of a sublethal dose of purified histones resulted in pulmonary injury
characterized by accumulation of neutrophils and platelet-rich thrombi
in the alveolar microvessels, vacuolation of endothelial and epithelial
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cells, intra-alveolar hemorrhage with accumulation of fibrin as well as
platelet-rich microthrombi, and deposition of fibrin and collagen in
the interalveolar septae [52]. A relationship between circulating his-
tones and thrombocytopenia in the clinical setting is suggested by the
observation that high levels of plasma histones detected in critically ill
patients was associated with subsequent development of moderate to
severe thrombocytopenia [56].

Platelet Apoptosis

Apoptosis comprises an ordered series of biochemical and morpho-
logic changes that ultimately result in cell death [57]. Though nuclear
condensation is one of the original hallmark features of apoptosis [58],
it is now well-established that platelets, which lack a nucleus, can un-
dergo apoptosis [59]. In addition, several lines of evidence indicate
that apoptosis plays a significant role in determining platelet lifespan.
In this context, it is possible that clinical factors (eg, drugs, inflamma-
tion, infection) could affect the lifespan of endogenously-produced
and transfused platelets via accelerated apoptosis.

Oltersdorf et al reported a reduction in platelet counts in mice
treated with ABT-737, a small molecule antagonist targeting the
antiapoptotic proteins BCL2, BCL2L1 (aka BCL-xL), and BCL2L2 (aka
BCL-w) [60]; similarly, patients with lymphoid malignancies who re-
ceived a related compound with improved oral bioavailability, ABT-
263, also developed dose-limiting thrombocytopenia [61,62]. One
would predict that ABT-737 and ABT-263 also affect transfused plate-
lets, though there are currently no published data on platelet lifespan
after transfusion in mice or humans treated with either of these drugs.

Using a genome-wide screening approach in mice, Mason et al iden-
tified Bcl2I1 as a key determinant of platelet lifespan [63]. Moreover,
in vitro analyses demonstrated that both human and mouse platelets ex-
press BCL2, BCL2L1, and BCL2L2, suggesting that inhibition of
antiapoptotic pathways promotes platelet death and removal from the
circulation [64-66]. Genetic ablation or targeted inhibition of BCL2L1
alone was sufficient to recapitulate the thrombocytopenic phenotype
observed with ABT-737, demonstrating that the activity of BCL2L1 is es-
sential to prevent platelet apoptosis [64,67,68]. Interestingly, human
platelets exposed to E. coli or S. aureus showed rapid BCL2L1 degrada-
tion, mitochondrial depolarization, and cytoplasmic condensation, indi-
cating that bacteria or bacterial products have the capacity to induce
platelet apoptosis [69]; it is likely that both endogenously-produced
and transfused platelets would be affected by this pro-apoptotic
mechanism.

Inhibition of protein kinase A (PKA) may promote apoptosis in plate-
lets. A murine model in which PKA was knocked out only in the mega-
karyocytic lineage demonstrated that platelets in mice homozygous
for the deletion had a significantly shortened life span and the mice
themselves were thrombocytopenic. Interestingly, apoptosis was ob-
served in platelets from thrombocytopenic patients with immune
thrombocytopenic purpura (ITP), diabetes, and sepsis and was accom-
panied by markedly reduced PKA activity. Reduced PKA activity and ap-
optosis was detected in normal platelets following incubation in the
plasma from patients with ITP or diabetes [70]. Antibodies directed
against glycoprotein Ibac (GPIba) can induce platelet apoptosis
in vitro, which can be prevented by genetic or chemical inhibition of
the AKT, a serine/threonine kinase that functions upstream of PKA [71]
. Thus humoral factors may activate apoptotic pathways in platelets,
shortening their lifespan and resulting in thrombocytopenia.

Examination of mice lacking proapoptotic proteins also supports a
role for apoptosis in the regulation of platelet lifespan. Combined loss
of Bak and Bax, which drive apoptosis via mitochondrial perme-
abilization, was associated with a significant increase in platelet number
and survival in circulation [72]. In addition, thrombocytopenia in the
setting of BCL2L1 loss or inhibition by ABT-737 was completely rescued
in Bak/Bax double knockout mice, indicating that the equilibrium be-
tween pro- and antiapoptotic proteins is a key determinant of platelet
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lifespan [63,64,72]. Interestingly, platelet numbers and survival were
minimally affected in mice lacking upstream activator(s) of BAK and
BAX, including BAD, BBC3 (aka PUMA), BID, and BIM [64,73,74]; the ab-
sence of a robust platelet phenotype in these mice could reflect func-
tional redundancy among these proteins or the presence of a novel
BAK/BAX activation pathway.

Platelets also undergo phenotypic changes consistent with apopto-
sis, including mitochondrial depolarization, cytochrome c release, mem-
brane blebbing and phosphatidylserine (PS) exposure [63,66,75]. In
nucleated cells, exposed PS is recognized by several receptors and se-
creted proteins, serving as a canonical “eat me” signal that promotes
cell clearance via phagocytosis [76]. Notably, PS exposure on platelets
occurs after activation with physiologic agonists and promotes the
procoagulant function of platelets by facilitating the assembly of tenase
and prothrombinase complexes [77,78]. The precise role of PS exposure
in platelet clearance is uncertain, though there is evidence from patients
with acute myocardial infarction, bacteremia, dengue fever, and essen-
tial thrombocythemia suggesting that increased PS exposure is associ-
ated with platelet phagocytosis by neutrophils, macrophages, and
endothelial cells [79-82]. Activation of Akt by antibodies against GPIba
results in exposure of PS on platelets and their phagocytosis by macro-
phages in the liver; conversely, inhibition of Akt signaling or prevention
of PS exposure rescues platelets from phagocytosis [71]. Interestingly,
platelet PS exposure due to activation and apoptosis appear to occur
via distinct molecular mechanisms [75,83]; whether thrombocytopenia
and platelet transfusion refractoriness in critically ill patients are pre-
dominantly linked to one or both of these mechanisms remains to be
determined.

Platelet Desialylation

0- and N-linked glycans decorating platelet glycoproteins, particu-
larly GPIba, terminate in sialic acid residues [84]. Removal of sialic
acids, or desialylation, exposes [3-galactose moieties to which the sialic
acids were linked. Exposed p-galactose on the surface of the platelet
can lead to its binding and clearance from the blood via the Ashwell-
Morrell receptor (AMR, also known as the asialoglycoprotein receptor)
on hepatocytes and Kupffer cells [85-87]. Desialylation occurs as plate-
lets age and may be a mechanism for removal of senescent platelets
[86,88]. In a murine model of S. pneumoniae sepsis, marked thrombocy-
topenia results not from disseminated intravascular coagulation but is
instead the result of platelet desialylation by the bacterial NanA neur-
aminidase, leading to platelet clearance by the AMR [89,90]. Similarly,
Jansen et al recently reported that binding of influenza virus to platelet
sialoglycans was associated with platelet desialylation by the viral neur-
aminidase [91], providing a possible mechanistic explanation for the
thrombocytopenia observed in influenza-infected patients [92].

Interestingly, platelet activation also leads to desialylation. In mice,
translocation and surface expression of endogenous platelet lysosomal
neuraminidase occurs after platelet activation with antibodies directed
against GPIba, leading to platelet desialylation. Desialylation results in
platelet clearance and thrombocytopenia in an Fc receptor (FcR)-inde-
pendent mechanism that depends upon the AMR [93]. In patients with
immune thrombocytopenic purpura, detection of autoantibodies
targeting GPIba predicts refractoriness to therapies that inhibit clear-
ance by the FcR (ie, steroids and intravenous immunoglobulin), suggest-
ing that platelet activation, desialylation, and AMR-mediated platelet
clearance may be a key driver of thrombocytopenia in these patients
[94,95]. In this context, increased platelet activation observed in SARS-
CoV2 infection may underlie the thrombocytopenia and thromboem-
bolic complications observed in patients with severe COVID-19 [96-
98], though platelet sialylation in COVID-19 patients has yet to be exam-
ined. Binding of soluble VWF to platelet GPIba under shear stress also
results in platelet signaling, activation, desialylation and clearance. The
mechanism of platelet activation involves shear stress-induced
unfolding of a mechanosensory domain of GPIba that occurs when
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vWEF binds, leading to platelet signaling and activation [99]. This mech-
anism may explain why increased binding of vVWF to platelets, as in type
2B von Willebrand disease or following administration of ristocetin, re-
sults in thrombocytopenia [84]. Interestingly, platelet desialylation
resulting from a marked increase in VWF binding to platelets is thought
to mediate the thrombocytopenia observed in patients with acute den-
gue infection [100].

The clinical relevance of desialylation as a mechanism of thrombocy-
topenia in critically ill patients is supported by a recent prospective
study [101]. Patients meeting the clinical definitions of sepsis, severe
sepsis, and septic shock were stratified by the presence of thrombocyto-
penia, defined as a platelet count <100X10%/L. The degree of platelet
desialylation was compared between septic patients with and without
thrombocytopenia and was found to be significantly greater among
the group with thrombocytopenia. The patients enrolled in this study
who met clinical criteria for severe sepsis with a platelet count
<50X10%/L were further enrolled in a clinical trial in which they were
randomized to receive standard antimicrobial therapy versus antimicro-
bial therapy combined with oseltamivir, a neuraminidase inhibitor that
has clinical utility for the treatment and prevention of influenza. In com-
parison with patients receiving standard of care, a larger proportion of
patients receiving oseltamivir increased their platelet count to at least
100X10°/L during the trial. Additionally, patients in the oseltamivir
arm had a shorter duration of thrombocytopenia and received fewer
platelet transfusions. Nevertheless, there was no impact of treatment
with oseltamivir on overall 28-day mortality [101].

Endothelial activation and ADAMTS13 activity

Under healthy, steady-state conditions, platelet interactions with en-
dothelial cells are limited by the endothelial glycocalyx, which serves
the dual purposes of electrostatic repulsion and masking of platelet ad-
hesion receptors [102]. Endothelial nitric oxide, prostacyclin, and CD39
ecto-ATPase activity also regulate platelet-endothelium interactions by
inhibiting the surface expression of adhesion receptors on both platelets
and endothelial cells [103]. Impairment of the endothelial mechanisms
that prevent platelet adhesion occurs in numerous pathologic states, in-
cluding ischemia [104], chronic kidney disease [105], hyperglycemia
[106], dyslipidemia[107], trauma[108], inflammation [109], and sepsis
[110]; it has also been suggested that platelet-endothelial interactions
can initiate the development of atherosclerotic lesions [111,112].
These pathologic states are often associated with inflammatory cytokine
production that leads to endothelial activation [113-115], which is
marked by E-selectin, P-selectin, and vVWF exposure on the endothelial
luminal surface [116]. Endothelial P-selectin engages P-selectin glyco-
protein ligand-1 (PSGL-1) or GPIba on platelets to support platelet
rolling along the endothelium [117-121]; platelet GPIba binding to en-
dothelial VWF also enables platelet rolling [ 122,123]. With additional in-
flammation and platelet activation, fibrinogen can facilitate firm
adhesion of platelets to the endothelial surface by bridging platelet
integrin allbp3 with endothelial intercellular adhesion molecule-1
(ICAM-1) or atVPR3 [124]. Finally, activated platelets can promote endo-
thelial cell activation [125,126], indicating that platelets have the capac-
ity to initiate and sustain platelet-endothelial interactions.

It is likely that enhanced platelet-endothelial interaction contributes
directly to thrombocytopenia in critically ill patients. Gawaz et al ob-
served a significant increase in platelet-endothelial interaction in vitro
when normal donor platelets were treated with plasma from septic pa-
tients compared to plasma from healthy individuals [127]. ADAMTS13
(a disintegrin-like and metalloprotease with thrombospondin type I re-
peats 13) activity, which is required for the cleavage of VWF that re-
leases platelets from endothelial interaction, is reduced in a significant
fraction of critically ill, thrombocytopenic adults and children [128]. No-
tably, these patients are distinct from patients with thrombotic throm-
bocytopenic purpura (TTP): they typically have higher platelet counts
and measurable ADAMTS13 activity (11-40% of normal); they do not
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harbor the autoantibodies that directly inhibit ADAMTS13 function,
which are pathognomonic for TTP; and they do not respond to plasma
exchange [129-131]. Not surprisingly, ADAMTS13 deficiency associated
with critical illness and thrombocytopenia has been detected in the set-
ting of sepsis with consumptive coagulopathy [130,132-143]; thrombo-
cytopenic patients with non-infectious systemic inflammation have also
been described to have below normal ADAMTS13 activity, though levels
are typically higher in these patients compared to those with sepsis
[132,134].

Conclusions

Splenic sequestration and disease processes that result in increased
platelet consumption can result in refractoriness to platelet transfusion.
Myriad mechanisms have been defined that potentially explain why
thrombocytopenia and refractoriness to platelet transfusion are
reproducibly observed in the setting of infection and inflammation. Un-
derstanding these pathophysiologic processes may lead to novel thera-
peutic interventions in the future, such as the use of neuraminidase
inhibitors in patients with sepsis [101]. However, readers of this review
are most probably confronted with the dilemma of what to offer now to
the severely thrombocytopenic patient who is bleeding and unrespon-
sive to platelet transfusion. On this question, there is little clinical guid-
ance. After exonerating antibody-mediated clearance as a cause of
platelet refractoriness, there is no product selection strategy available
that will temper other mechanisms that significantly reduce platelet
lifespan in the circulation. Attempting to exceed a defined platelet
count threshold, which is itself anecdotally determined, with repeated
platelet transfusions is unproven as a therapeutic intervention to treat
bleeding, risks volume overload in the patient and contributes to local,
regional, and national platelet shortages. Treatment decisions should
be guided by careful assessment of the patient and the nature of the pa-
tient’s bleeding. Where possible, local bleeding should be addressed
through local measures, such as packing for a nosebleed, rather than
platelet transfusion. Additionally, consideration should be given to ad-
ministration of antifibrinolytic agents such as epsilon aminocaproic
acid or tranexamic acid [7,144]; multiple clinical case series suggest
benefit in bleeding patients with thrombocytopenia [145-147]. Ran-
domized controlled trials using tranexamic acid in diverse clinical set-
tings have demonstrated safety and observed no to minimal risk of
thrombosis [148-150]. Prophylactic use of tranexamic acid in patients
with hematologic malignancies receiving chemotherapy or stem cell
transplant is currently being studied in a double-blind randomized con-
trolled trial, the TREATT Trial [151]. In conclusion, platelet transfusion
refractoriness due to clinical factors associated with critical illness are
often unavoidable and unmodifiable, representing a significant thera-
peutic challenge and opportunity. As in many areas of transfusion med-
icine, well-designed clinical studies are needed to inform treatment
decisions in this setting.
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