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Cardio-cerebrovascular diseases, as a major cause of health loss all over the world,

contribute to an important part of the global burden of disease. A large number

of traditional Chinese medicines have been proved effective both clinically and in

pharmacological investigations, with the acceleration of the modernization of Chinese

medicine. Sinomenine is the main active constituent of sinomenium acutum and

has been generally used in therapies of rheumatoid arthritis and neuralgia. Varieties

of pharmacological effects of sinomenine in cardio-cerebrovascular system have

been discovered recently, suggesting an inspiring application prospect of sinomenine

in cardio-cerebrovascular diseases. Sinomenine may retard the progression of

atherosclerosis by attenuating endothelial inflammation, regulating immune cells function,

and inhibiting the proliferation of vascular smoothmuscle cells. Sinomenine also alleviates

chronic cardiac allograft rejection relying on its anti-inflammatory and anti-hyperplastic

activities and suppresses autoimmune myocarditis by immunosuppression. Prevention

of myocardial or cerebral ischemia-reperfusion injury by sinomenine is associated with

its modulation of cardiomyocyte death, inflammation, calcium overload, and oxidative

stress. The regulatory effects on vasodilation and electrophysiology make sinomenine

a promising drug to treat hypertension and arrhythmia. Here, in this review, we will

illustrate the pharmacological activities of sinomenine in cardio-cerebrovascular system

and elaborate the underlying mechanisms, as well as give an overview of the potential

therapeutic roles of sinomenine in cardio-cerebrovascular diseases, trying to provide

clues and bases for its clinical usage.

Keywords: sinomenine, cardio-cerebrovascular diseases, atherosclerosis, ischemia-reperfusion injury,

pharmacological activity, therapeutic effect

INTRODUCTION

Sinomenine is an alkaloid isolated from the root and stem of Sinomenium acutum Rehder et
Wilson or Sinomenium acutum var. cinereum., and is the main active chemical component
of these traditional Chinese medicine which used to treat rheumatism and neuralgia for
centuries (1–4). The classic pharmacological activities of sinomenine are anti-inflammation
and immunomodulation, contributing to its potent therapeutic effects on rheumatoid arthritis
and sciatic neuritis or lumbalgia (1, 2, 5). Since sinomenine is purified in the 1920s,
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many other pharmacological properties and therapeutic efficacies
of this alkaloid have been discovered and investigated, including
promotion of histamine release, mild sedative and analgesic
effects, treatment of ankylosing spondylitis, and protection
against cardio-cerebrovascular diseases, etc. (1–3, 6–10). The
diverse functions of sinomeninemake it a promising and effective
drug in clinical use.

Cardio-cerebrovascular diseases are the leading cause of death
and severely threaten the health and living quality of people
worldwide (11–13). As the effectiveness of Chinese medicine
in clinical treatments has been recognized gradually around
the world, investigations on the specific role of sinomenine
in cardio-cerebrovascular diseases are increasing, especially
inspired by the fact that inflammatory responses and immune
activation are involved in many pathological processes in
cardio-cerebrovascular diseases, such as atherosclerosis, as
well as cerebral and myocardial ischemia-reperfusion injury
(IRI) (14–17). Recently, it has been realized that sinomenine
treatment could be beneficial to many cardio-cerebrovascular
diseases, including atherosclerosis, cerebral or myocardial
IRI, cardiac allograft rejection, autoimmune myocarditis,
hypertension, and arrhythmia. The underlying mechanisms
involve anti-inflammation, immunosuppression, regulation
of cell proliferation and apoptosis, inhibition of oxidative
stress and calcium overload, vasodilation, and regulation
of electrophysiology. In this review, we will systematically
summarize and expound the role of sinomenine in cardio-
cerebrovascular diseases based on its pharmacological effects and
therapeutic potentials, aiming to give enlightenments for clinical
applications of sinomenine.

SINOMENINE AND ATHEROSCLEROSIS

Atherosclerosis is the major driving factor of coronary artery
diseases (15, 18–20). The formation and development of
atherosclerotic plaques may cause coronary artery stenosis or
blocking and ischemia of myocardium or brain, frequently
leading to severe cardio-cerebrovascular diseases such as
myocardial infarction, angina, heart failure, and ischemic
cerebral stroke (14, 15, 21, 22). Multiple pathological
progressions contribute to the initiation and development
of atherosclerosis, including lipid metabolic disorder, endothelial
dysfunction and inflammation, activation of immune cells, and
abnormal cellular activities of vascular smooth muscle cells
(VSMCs) (14). Sinomenine is reported to have pharmacological
activities such as anti-inflammatory effects on endothelium,
immunosuppressive effects on leukocytes, and inhibitory effects
on VSMCs proliferation (Figure 1). Besides, drug interactions
between sinomenine and other cardiovascular drugs also have
been investigated. Therefore, sinomenine is promising to be used
for the prevention or treatment of atherosclerosis.

Suppression on Endothelial Inflammation
and Immune Activation
Endothelial inflammation and immune activation are essential
pathological processes of atherosclerosis. Long-term chronic

inflammation throughout atherosclerosis triggers the assembly
and activation of immune cells in the lesions of atherosclerotic
plaque, thus contributing to the progress of atherosclerosis
(23). Inflammatory responses in vascular endothelial cells
(VECs) can prompt the excretion of pro-inflammatory cytokines,
activation of multiple signal pathways, and expression of
endothelial leukocyte adhesion molecules including E-selectin,
intracellular adhesion molecule-1 (ICAM-1), and vascular
adhesion molecule-1 (VCAM-1) (14, 24, 25). These cellular
activities are responsible for immune responses which play
vital roles in the development of atherosclerosis, such as
recruitment, invasion, and differentiation of monocytes, and
inflammatory activities mediated by macrophages and other
leukocytes (15, 23). Therefore, the regulation of endothelial
inflammation and immune activation are important ways to
treat or prevent atherosclerosis. Sinomenine has strong anti-
inflammatory and immunosuppressive activities and hence may
have anti-atherogenic effects through regulating endothelial
inflammation and function of immune cells that participate in
atherosclerosis (26–31).

VCAM-1, expresses and distributes on the activated VECs
surface, is a kind of adhesion molecules and can bind to
leukocytes and promote their adhesion and trans-endothelial
migration (25, 26, 32). Cytokines such as tumor necrosis
factor-α (TNF-α) and interleukin (IL)-1 play important roles
in stimulating the expression of adhesion molecules including
VCAM-1 (33). As VCAM-1 usually indicates the infiltration of
leukocytes such as monocyte, macrophage, or lymphocyte, it is
thought to be a promising target to detect atherosclerosis and
assess the efficacy of anti-atherogenic therapies (25). Sinomenine
is found to inhibit VCAM-1 expression induced by TNF-α in
VECs (26). Sinomenine downregulates TNF-α and IL-1β through
blocking the activity of nuclear factor-kappa B (NF-κB) in
macrophages and synoviocytes (27). Sinomenine also inhibits
the lipopolysaccharide-induced upregulation of IL-1α in VECs
(28). Increased IL-1 has been reported leading to endothelial
inflammation by inducing the adhesion and migration of
leukocytes to endothelium dependent or independent of VCAM-
1 (34). Therefore, the decline of VCAM-1 in VECs caused by
sinomenine might be at least in part due to the suppression
of TNF-α and IL-1 by regulating the NF-κB signal pathway,
which needs further investigation. Besides, Sinomenine has an
inhibitory effect on endothelin-1 (ET-1) in VECs (28). ET-1 is a
marker of endothelial damages and is involved in inflammation
responses (35, 36). As a result, sinomenine can be helpful
to alleviate the endothelial inflammation in atherosclerosis by
suppressing VCAM-1, IL-1, and ET-1.

The effects of sinomenine on VCAM-1 and pro-inflammatory
factors including TNF-α, IL-1, and ET-1 suggest its potent
repression on inflammatory and immune responses which
facilitate the formation of foam cells and exacerbate the
progression of plaque in atherosclerosis. Multiple immune cells
participate in different stages of atherosclerosis. Monocytes
can be activated and recruited to the damaged endothelium
and differentiate into macrophages. Macrophages secret pro-
inflammatory factors and ingest lipids, usually the low density
lipoproteins, to form the inflammatory foam cells (14, 23).
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FIGURE 1 | Anti-atherosclerotic effects of sinomenine. Sinomenine could suppress the progression of atherosclerosis by affecting the activities of multiple cells

including VECs, monocytes, granulocytes, lymphocytes, macrophages, and VSMCs. Sinomenine attenuates the endothelial inflammation through decreasing

pro-inflammatory factors VCAM-1, IL-1α, and ET-1. Sinomenine represses the proliferation, migration, and invasion of monocytes with downregulating CD147 and

MMP-2/9. Sinomenine also inhibits the migration of granulocytes, as well as the proliferation and antibody production of lymphocytes. In addition, sinomenine

promotes cell apoptosis and decreases the inflammatory response of macrophages through regulating ERK and NF-κB signal pathways respectively, resulting in

upregulation of p27 and Bax, and downregulation of TNF-1α and IL-1β. Furthermore, Sinomenine restrains the dedifferentiation, proliferation, and migration of VSMCs

depending on inhibition of several signal pathways including MAPK, Akt/GSK3β, STAT3, and PDGFR-β, leading to the increased expression of SMA,

Smoothelin, and SM22a.

Lymphocytes and granulocytes are also found to be pro-
atherogenic and play parts in atherosclerotic plaque formation
(15, 37). It is proved that sinomenine can inhibit the proliferation
of monocytes and suppress the invasion and migration ability
of activated monocytes which differentiate into macrophages
(30, 38). The suppression on invasion and migration of
monocytes by sinomenine may be related to the reduction
of metalloproteinase (MMP)-2 and MMP-9 in the activated
monocytes by downregulating the expression of extracellular
matrix metalloproteinase inducer (EMMPRIN, CD147) (30).
Hence, sinomenine contributes to restraining the leukocytes-
endothelial adhesive interactions by suppressing invasion,
migration, and differentiation of monocytes. Sinomenine

induces the apoptosis of macrophages through activating
extracellular signal regulated protein kinase (ERK) to upregulate
p27 and pro-apoptotic factor B-cell lymphoma (Bcl)-2-associated
x (Bax) (29). p27 is an inhibitor of cyclin E/cyclin-dependent
kinase 2 and p27 overexpression may block cell cycle progression
and induces apoptosis (39). As a member of the Bcl-2 family,
Bax induces the release of inducing factors of apoptosis such as
procaspase-9 and cytochrome c (40). Sinomenine also decreases
the pro-inflammatory factors production of macrophages
including TNF-α, IL-1, and prostaglandin E2 (41–44). The role
of sinomenine on macrophages may reduce the formation of
inflammatory foam cells and atherosclerotic plaques. Besides
the impacts on monocytes and macrophages, sinomenine
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also inhibits proliferation of lymphocytes from mouse
spleen, antibody production by B cells, and transmigration
of granulocytes across the IL-1β activated human umbilical
vein endothelial cells monolayer, conducing to alleviate the
progression of atherosclerosis (31, 38, 45). Taken together,
sinomenine may suppress proliferation, invasion, migration, and
differentiation of monocytes, increase apoptosis of macrophages,
and modulate functions of lymphocytes and granulocytes,
which benefit for mitigating plaque formation and progression
in atherosclerosis.

Inhibition of VSMCs Proliferation
VSMCs are abundant in the arterial wall and play important
parts in atherosclerosis by promoting vascular remodeling,
neointima formation, and plaque stability (14, 46, 47). The
phenotype switching of VSMCs from contractile to synthetic,
characterized by enhanced proliferation and migration abilities
and reduced apoptosis of VSMCs, can accelerate atherosclerosis
progression (14, 46). Dedifferentiated VSMCs can migrate from
the media to the intima of the vessel wall and proliferate rapidly,
with higher expression of extracellular matrix components,
extracellular matrix-remodeling enzymes, and pro-inflammatory
cytokines (48). As the phenotype switching of VSMCs is a
reversible process, the regulation on phenotype switching could
be developed into a method used for preventing or retarding the
progress of atherosclerosis (46).

Sinomenine has an influence on phenotype switching
of VSMCs by inhibiting the dedifferentiation, proliferation,
and migration of rat VSMCs induced by platelet-derived
growth factor-BB. The reversed dedifferentiation of VSMCs
by sinomenine is proved by upregulating multiple smooth
muscle-specific contractile genes such as smooth muscle α-
actin (SMA), smoothelin, and smooth muscle 22α (SM22α). As
a result, sinomenine decreases the neointimal formation after
carotid artery injury in vivo, represented by the reduced intimal
area and intima-to-media ratio. The effects of sinomenine on
VSMCs phenotype modulation may be due to its inhibition
on mitogen-activated protein kinase (MAPK), protein kinase B
(Akt)/glycogen synthase kinase 3β (GSK3β), signal transducer
and activator of transcription 3 (STAT3), and platelet-derived
growth factor receptor-β (PDGFR-β) pathways (21). The
phosphorylation of ERK1/2 and p38 in MAPK signal pathway
promotes platelet-derived growth factor-BB induced VSMCs
dedifferentiation (49–51). The Akt/GSK3β signal pathway
modulates VSMCs phenotype to increase its dedifferentiation
and is implicated in cell proliferation and migration (49,
52, 53). STAT3 regulates cell growth and differentiation and
its phosphorylation is usually in response to acute vascular
injury and induces neointimal hyperplasia (54–56). Sinomenine
might suppress MAPK, Akt/GSK3β, and STAT3 signal pathways
directly or by inhibiting the phosphorylation of their upstream
regulator PDGFR-β which can be activated by platelet-derived
growth factor-BB and cause the activation of its downstream
signal pathways (57, 58). Relying on its effects on phenotype
switching of VSMCs, sinomenine could be used to treat vascular
proliferative diseases including atherosclerosis and restenosis
after percutaneous coronary intervention or vein graft (59, 60).

Interaction of Sinomenine with Statins
Statins are commonly used to alleviate atherosclerosis and can
lower the cardiovascular mortality and the risk of cardiovascular
events in patients with coronary artery diseases (61, 62). Statins
are usually prescribed for long-term use and combined with other
drugs, resulting from the complicated and diverse conditions in
cardiovascular diseases. Consequently, drug interactions between
statins and other drugs of clinical use have become a special
concern for the sake of ensuring the safety and efficacy of
medications in these patients (63, 64).

Sinomenine has been reported to have drug interaction
with statins, as statins can influence the metabolism of
sinomenine in liver and lead to the change of pharmacokinetic
parameters of sinomenine. Sinomenine can be metabolized in
rat liver microsomes, catalyzed by enzymes CYP3A1/2 and
CYP2D1 which are homologous with CYP3A4 and CYP2D6
of human. The inhibitory or inductive effects on sinomenine
metabolism by statins are dependent on the dosage and
administration period. Single dose of simvastatin or lovastatin
could inhibit the liver metabolism of sinomenine, resulting in
increased plasma concentration and decreased clearance rates
of sinomenine (65). The underlying mechanism could be that
simvastatin and lovastatin, as well as their metabolites, are the
substrates of CYP3A (66–69). Thus, co-administration of statins
may competitively inhibit the metabolism of sinomenine by
CYP3A1/2 in rats after a single administration. It also suggests
that co-administration of sinomenine might influence the
concentration of statins in turn, as well as other drugs catalyzed
by CYP3A. However, multiple doses of simvastatin reduce
the plasma concentration of sinomenine. The upregulation of
CYP3A1/2 at the transcriptional and translational levels by long-
term co-administration with simvastatin may account for this
opposite effect on sinomenine (65). Upregulation of CYP3A1/2
after long-term co-administration of sinomenine and simvastatin
might result from the compensatory mechanism since the two
drugs compete for CYP3A1/2 leading to insufficiency of enzymes.
Drug interactions between sinomenine and statins give us a
hint about how to ensure the effectiveness and safety of both
drugs, as well as other drugs catalyzed by CYP3A, in clinical
use based on the regulation of dosage and administration period
of medication.

SINOMENINE AND ISCHEMIC
CARDIO-CEREBROVASCULAR DISEASES

Ischemic cardio-cerebrovascular diseases, typically referring to
myocardial infarction and ischemic stroke, are major cause of
death and disability globally. IRI is a phenomenon that occurs
after the restoration of blood flow in ischemic tissues and is
associated with many severe cardio-cerebrovascular diseases (16,
70). IRI is characterized by functional and structural alterations
with cellular destruction and dysfunction in ischemic tissues
after reperfusion (17). Multiple factors such as oxidative stress,
inflammatory and immune response, calcium overload, and
dysfunction of mitochondria contribute to the pathogenesis and
development of IRI (16, 17, 71). It is urgent to find suitable drugs
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FIGURE 2 | Modulatory mechanisms and protective effects of sinomenine in cerebral and myocardial IRI. (A) Sinomenine may alleviate cerebral IRI through inhibition

of neurological inflammation, neurocyte apoptosis, and calcium overload in the cerebrum, resulting in the amelioration of brain injury and improvement of neurological

function. (B) Sinomenine could mitigate myocardial IRI by suppressing the apoptosis and oxidative stress of cardiomyocytes, as well as lowering myocardial calcium

level, further leading to the reduction of IR-induced arrhythmia. Red upward arrows represent stimulation by sinomenine, and green downward arrows represent

inhibition by sinomenine.

as the treatment for IRI remains lacking (72, 73). Sinomenine has
been reported protective for IRI of the myocardium and brain
depending on its regulatory effects on cell death, inflammation,
calcium overload, and oxidative stress (Figure 2), which could
be a promising drug to treat or prevent IRI in the cardio-
cerebrovascular system (10, 74–77).

Prevention of Cerebral IRI
Cerebral IRI is an important part of brain injuries caused
by ischemic stroke with high recurrence and disability rates
worldwide (77). Cerebral IRI could lead to cerebral edema,
brain hemorrhage, neurocyte death, neurological dysfunction,
and poor prognosis such as disability (78–80). As a consequence,

effective drugs to prevent or treat cerebral IRI can be helpful
to recover neurological function and improve the prognosis of
ischemic stroke. Targeting several pathological processes such
as cell apoptosis, inflammatory response, and calcium overload
may be beneficial to relieve ischemia-reperfusion (IR)-caused
brain damages (81–85). Sinomenine, with the ability to cross
the blood-brain barrier (BBB), could prevent and alleviate
cerebral IRI by inhibiting apoptotic gene activation and the
NOD-like receptor family pyrin domain containing 3 (NLRP3)
inflammasome-mediated inflammation, as well as attenuating
calcium overload through regulating acidosis and energy
metabolism, resulting in reverse of neurological functional
damages (10, 76, 77, 86–88).
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Apoptosis is crucial to the pathogenesis of IRI (89, 90). Both
the extrinsic and intrinsic pathways of apoptosis are activated in
IRI. The extrinsic pathway functions by recruiting caspase-8 to
cleave caspase-3, and the intrinsic pathway leads to upregulation
of pro-apoptotic Bax and downregulation of anti-apoptotic Bcl
(16, 91). Sinomenine may reduce the neurocytes death induced
by oxygen glucose deprivation-reperfusion or middle cerebral
artery occlusion models through inhibiting apoptosis, since Bax
and cleaved caspase-3 are reduced while Bcl and Bcl/Bax ratio
are elevated during treatment of cerebral IRI with sinomenine
(76, 87).

Besides suppression of apoptosis, sinomenine protects the
cerebrum from IRI through decreasing inflammatory responses,
especially NLRP3 inflammasome-mediated inflammation
(87). Inflammatory response in brain is an important inducer
of cerebral IRI, involving NLRP3 inflammasome activation,
pro-inflammatory factors production, gliacyte activation,
and immune cells involvement, etc. (17, 92, 93). NLRP3
inflammasome, consisting of NLRP3, apoptosis-associated
speck-like protein containing a caspase recruitment domain
(ASC), and caspase-1, is a classic and well-characterized
inflammasome that can sense and respond to neurological
injuries such as cerebral IRI (94–96). Activation and
assembly of the NLRP3 inflammasome promote the release
of pro-inflammatory cytokines including IL-1β, IL-18, and
TNF-α (94, 97, 98). Adenosine 5’-monophosphate-activated
protein kinase (AMPK) is an upstream regulator of NLRP3
inflammasome and its inactivation leads to excessive NLRP3
inflammasome activation (99, 100). Sinomenine downregulates
IR-induced elevation of NLRP3, ASC, and caspase-1 in cerebral
tissues through promoting AMPK phosphorylation (87).
Elevation of pro-inflammatory factors, including IL-1β, IL-18,
IL-6, TNF-α, and ICAM-1, in cerebral tissues during IR are
alleviated through sinomenine treatment, at least in part due to
its regulation on NLRP3 inflammasome (86, 87). In addition,
the suppressive effects of sinomenine on brain inflammatory
responses induced by IR are also proved by inhibition of astrocyte
and microglia activation which are vital for the initiation and
progression of neurological inflammation following cerebral
IR (87).

During cerebral IR, intracellular levels of calcium in
neurocytes are elevated resulting from ischemia or hypoxia-
induced insufficiency of energy supply, which could harm the
cells by increasing production of reactive oxygen species,
destructing cell membrane, and causing mitochondrial
dysfunction, and eventually lead to cell death (16). Low
levels of ATP cause the inactivation of several ATPases
including Na+-K+-ATPase, Ca2+-ATPase, and Ca2+-Mg2+-
ATPase, leading to membrane depolarization and activation
of voltage-gated calcium channels (VGCCs) which mediate
the pumping of calcium into neurocytes (16, 17, 86). Another
ion channel mediating the entrance of calcium into neurocytes
is Ca2+-permeable acid-sensing ion channel 1a (ASIC1a)
and its activation is mainly responsible for acidosis-mediated
injuries of neurons (101, 102). Since acidosis is a common
feature of ischemia-induced brain injuries, ASIC1a is activated
during cerebral IR, which increases the uptake of calcium into

neurocytes. Calcium overload induced by cerebral IR promotes
the autophosphorylation of calcium/calmodulin dependent
protein kinase II (CaMKII), a protein kinase regulating many
calcium signal-mediated events, and the excessive activation
of CaMKII contributes to ischemic brain injuries (103–105).
Sinomenine blocks the calcium overload in brain induced by
IR-related membrane depolarization and acidosis, through
the regulation of ATPases, VGCCs, and ASIC1a (76, 86).
Sinomenine improves the energy metabolism of the ischemic
cortex by elevating Na+-K+-ATPase, Ca2+-ATPase, and
Ca2+-Mg2+-ATPase levels which are reduced in IR (86). L-
type calcium channel, one type of VGCCs, is suppressed by
sinomenine, resulting in the reduction of calcium currents into
neurocytes (76). The inhibition of L-type calcium channel might
result from a direct impact of sinomenine or its indirect effect
through enhancement of ATPase activation, as the increased
ATPase levels may reduce the membrane depolarization and
thus suppress VGCCs. Sinomenine also declines the elevated
lactate dehydrogenase (LDH) levels in neurocytes and ischemic
cortex induced by IR, as well as increased ASIC1a expression
and ASIC1a-mediated calcium uptake induced by extracellular
pH reduction, suggesting the alleviation of acidosis in the brain
by sinomenine (76, 86). In addition, the suppressive effects of
sinomenine on calcium overload induced by cerebral IR are
demonstrated by its inhibition on cortical autophosphorylation
of CaMKII which responds to upregulation of intercellular
calcium concentration (76).

Treatment with sinomenine could contribute to attenuation
of brain injury and improvement of neurological function (76,
86, 87). The infarct size can predict long-term adverse events
in patients suffering IRI and has been used as an indicator of
IRI (72, 73). Sinomenine reduces cerebral infarction volume,
brain water content, and BBB permeability induced by middle
cerebral artery occlusion. The attenuation of these brain injuries
induced by IRI leads to elevation of body weights and better
performance on neurological function in middle cerebral artery
occlusion-treated animals, including the decrease of neurological
severe score (NSS), alleviation of severe neurological deficits such
as hemiparalysis symptoms and sensorial or motorial disability
(76, 86, 87).

Prevention of Myocardial IRI
Myocardial IRI is a common pathological process in acute
coronary artery diseases after restoring blood flow to the ischemic
myocardium with percutaneous coronary intervention (71).
Myocardial IRI may aggravate impairment of cardiac function
and lead to complications of acute coronary artery diseases
such as reperfusion arrhythmia (106, 107). Myocardial IRI
often manifests as cardiomyocyte damages including apoptosis,
pyroptosis, oxidative injury, and calcium concentration
elevation, etc. (71, 89, 90, 108–110). Sinomenine could alleviate
myocardial IRI by decreasing calcium concentration, oxidative
stress, and apoptosis of cardiomyocytes, and also reduces
IR-induced arrhythmia (74, 75).

Similar to cerebral IR, calcium concentration in
cardiomyocyte augments during the process of cardiac IR. After
reperfusion to the ischemic myocardium, the sudden restoration
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of blood flow together with increased calcium level can trigger
oxidative stress with reduced activity of antioxidases, generation
of reactive oxygen species and lipid metabolites, finally inducing
cell damages and death (16, 17, 71, 93). Sinomenine reduces
the elevated calcium contents in the myocardium induced by
IR and inhibits oxidative stress in cardiomyocytes through
increasing superoxide dismutase (SOD) activity and decreasing
lipid peroxidation metabolite malonaldehyde (MDA) (74, 75).
Sinomenine also downregulates the expression of NF-κB in
cardiomyocytes stimulated by oxidative stress (75). NF-κB, as
a redox-sensitive transcription factor, responds to oxidative
stress rapidly and plays significant roles in IRI. Activated NF-κB
induces the transcription of target genes, promoting multiple
pathogenic activities involved in IRI, such as apoptosis and
inflammation, and the inhibitors of NF-κB have been proved to
reduce IRI (16, 75, 111). Therefore, sinomenine might protect
the myocardium and cardiomyocytes from IRI relying on its
inhibitory effects on calcium overload, oxidative stress, and
NF-κB function.

Cell death in the myocardium induced by IR is a vital cause
of cardiac IRI (16, 71). Apoptosis of cardiomyocytes can be
evoked due to IR-induced hypoxia and production of reactive
oxygen species, and restraint of apoptosis might be a treatment
strategy for myocardial IRI (16, 89, 90). Sinomenine suppresses
the apoptosis of cardiomyocytes induced by oxidative stress and
decreases the LDH release which is positively related to the degree
of cell damage and death, suggesting the potential therapeutic
role of sinomenine in cardiac IRI (75). Recently, pyroptosis
has been found to promote the death of cardiomyocytes and
enlarge myocardial infarct area in IR (110). Pyroptosis is a
process of programmed cell death that can be induced by NLRP3
inflammasome-mediated activation of caspase (86, 112). Cardiac
IRI can be alleviated by inhibition of pyroptosis with suppressing
NLRP3 inflammasome including downregulation of NLRP3 and
caspase-1 in cardiomyocytes (113). Since sinomenine can restrain
the activation of NLRP3 inflammasome with the decrease of
NLRP3, ASC, and caspase-1, it is probable to alleviate cardiac IRI
by reducing pyroptosis of cardiomyocytes through inactivating
NLRP3 inflammasome (87, 114).

In addition, sinomenine is reported to prevent IR-induced
arrhythmia in isolated hearts including decreasing the incidence
of ventricular extrasystole, ventricular tachycardia, and
ventricular fibrillation, shortening the duration of ventricular
fibrillation, and prolonging the incubation of ventricular
fibrillation (74). In conclusion, sinomenine may protect the
myocardium against IRI through its regulation on calcium
overload, oxidative stress, apoptosis, and pyroptosis probably, as
well as reduction of IR-induced arrhythmia.

SINOMENINE AND IMMUNO-RELATED
CARDIOVASCULAR DISEASES

Sinomenine has been demonstrated to possess
immunosuppressive and anti-inflammatory activities, including
regulating the activation, proliferation, and differentiation of
lymphocytes, the differentiation and function of dendritic cells

(DCs), and production of pro-inflammatory factors, etc. (1).
Such effects make sinomenine suitable for therapy of immune-
related disorders such as rheumatoid arthritis, hepatitis,
colitis, and allograft rejection (41, 44, 115, 116). Excessive
immune responses in cardiac tissue cause several immuno-
related cardiovascular diseases, while sinomenine may protect
the cardiovascular system from immune response-mediated
injury including cardiac allograft rejection and autoimmune
myocarditis (116, 117).

Prevention of Cardiac Allograft Rejection
Cardiac graft is an important therapy to rescue patients
suffering severe heart failure. Chronic rejection (CR) with graft
vasculopathy is a major cause of cardiac graft failure (118–120).
Myocardial fibrosis, perivascular and interstitial inflammatory
infiltration mediated by immune cells, and narrowing or
occlusion of the graft vasculature due to hyperplasia of vascular
intima and VSMCs make contributions to CR of cardiac allograft
(118, 119). Besides, the upregulation of vascular endothelial
growth factor, basic fibroblast growth factor, and ET-1, which
are generated from a variety of cell types such as VSMCs
and macrophages, could be stimulated by T cell/B cell-driven
immune responses and promote the development of CR in
multiple transplant organs (121–123). Sinomenine has been
reported to exhibit anti-inflammatory, immunomodulatory, and
anti-hyperplastic effects in vessels, suggesting that it may
also have therapeutic effects on vasculopathy-related CR in
cardiac allograft (14, 15, 24, 26, 28, 32). It is found that
sinomenine, compared with untreatment or cyclosporin A,
causes less severe vasculopathy in a model of cardiac allograft,
representing as lower vasculopathy score, less luminal narrowing,
less proportion of diseased vessels, and less fibrotic alterations,
as well as reduced mononuclear cell infiltrates and macrophages
proportion in cardiac allografts. Furthermore, the combination
of sinomenine and cyclosporin A results in more significant
improvements on vasculopathy probably through reducing
IgM levels and downregulating vascular endothelial growth
factor, basic fibroblast growth factor, and ET-1, indicating
that sinomenine may act synergistically with cyclosporin A
by enhancing the effects of cyclosporin A on vasculopathy,
humoral immune response, and expression of cytokines and
tissue growth factors (116). Hence, sinomenine could be effective
in treatment of chronic cardiac allograft rejection either alone
or in combination with other immunosuppressive drugs, which
benefits for patients with heart failure.

Prevention of Autoimmune Myocarditis
Excessive or abnormal immune response inmyocardium induced
by infectious or non-infectious factors can trigger myocarditis,
leading to severe consequences especially in children and young
people (124–126). Autoimmune myocarditis is a kind of non-
infectious myocarditis, which could be mediated by the activity
of DCs (127). DCs are a type of antigen-presenting cells with
a strong capacity to induce primary immune responses and act
as an essential regulator in immunity and tolerance balance
relying on their activation status (128–130). Inhibition of DCs
maturation leads to T cell unresponsiveness and inflammation
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tolerance, resulting in alleviation of autoimmune diseases
including autoimmune myocarditis (129, 130). Sinomenine
could suppress the maturation of monocyte-derived DCs,
represented by downregulation of their mature parameters such
as membrane antigens CD40, CD80, CD83, CD86, and human
leukocyte antigen DR, resulting in inhibition of T cells activation
and IL-12 expression (117). The immunosuppressive effects of
sinomenine on DCs may depend on the downregulation of
phosphorylation of inhibitor of NF-κB α and inhibition of the
nuclear translocation of RelB, leading to the inactivation of NF-
κB pathway which has been proved to regulate the maturation
of DCs (117, 131–133). In consequence, it provides evidence
that sinomenine might have the potency to treat DCs-mediated
autoimmune myocarditis.

SINOMENINE AND OTHER
CARDIOVASCULAR DISEASES

Sinomenine and Hypertension
Vascular tone regulation is crucial to many cardiovascular
diseases, especially to hypertension. Relaxation of the vessels
could reduce the blood pressure and workload of heart,
which plays essential roles in therapy of hypertension and
heart failure (8, 134). Sinomenine could dose-dependently
mitigate norepinephrine, phenylephrine, KCl, or phorbol 12,
13-dibutyrate-induced vasoconstrictions of isolated aortal rings
through multiple mechanisms (8, 134, 135). The activation of
protein kinase C (PKC) in VSMCs is an important inducer of
vasoconstriction (134, 135). The facts that sinomenine mitigates
vasoconstriction induced by phorbol 12, 13-dibutyrate (a
PKC activator) and pretreatment with staurosporine (a PKC
inhibitor) attenuates the vasodilative effects of sinomenine
suggest that sinomenine may function through suppressing
the PKC activity in VSMCs (8, 135). Increased calcium
concentration in VSMCs triggers contraction of VSMCs and
the blockade of calcium channels has become a common
method for vasorelaxation and decompression (136, 137).
In addition, the opening of ATP-sensitive K+ channel in
VSMCs could also lead to a decrease of intercellular calcium
concentration (138). Sinomenine alleviates the contraction
induced by phenylephrine/KCl and lowers the elevated calcium
concentration in VSMCs, and pretreatment of nicardipine (a
L-type calcium channel blocker) or glibenclamide (a selective
ATP-sensitive K+ channel blocker) attenuates vasodilative effects
of sinomenine. Accordingly, it is possible that sinomenine
reduces the calcium concentration in VSMCs to cause
vasorelaxation through both blocking L-type calcium channel
and opening ATP-sensitive K+ channel (8, 134, 135). Besides,
sinomenine may activate β-adrenoceptor in VSMCs to relax
the vessels since propranolol (a β-adrenoceptor blocker)
attenuates vasodilation induced by sinomenine (8). In addition
to acting on VSMCs, endothelial-dependent vasorelaxation
plays important parts in the vasodilative effects of sinomenine.
Removal of endothelium attenuates the vasorelaxation caused
by sinomenine (135). Reduction of the endothelium-derived
relaxing factor NO and less release of prostaglandin I2 from

endothelium induced by pretreatments with NG-monomethyl-
L-arginine, monoacetate salt (a NO synthesis inhibitor) and
indomethacin (a cyclooxygenase inhibitor) also result in
attenuated vasodilative effects of sinomenine, indicating that
sinomenine may elevate NO and prostaglandin I2 levels to dilate
vessels (8, 135).

To sum up, sinomenine could cause vasorelaxation probably
relying on its inhibition of PKC activity and L-type calcium
channel, accompanied with the activation of ATP-sensitive K+

channel and β-adrenoceptor stimulation in VSMCs, as well as
its promotion of endothelial-dependent NO and prostaglandin
I2 synthesis (8, 9, 134, 135). It is found that sinomenine only
lowers the systolic blood pressure in spontaneously hypertensive
rats while has no impact on the systolic blood pressure
in normotensive rats, which might partly result from the
increased distribution and/or sensitivity of ATP-sensitive K+

channel and augmented Ca2+ sensitivity induced by PKC during
hypertension (134, 139). Therefore, sinomenine may have the
potential for controlling blood pressure clinically. Furthermore,
since vasodilation is helpful to reduce the pre- and after-loads of
the cardiovascular system, which is essential for the treatment of
heart failure, sinomenine also could be a hopeful drug to treat
heart failure through executing its vasodilative effects (8, 9, 135).

Sinomenine and Arrhythmia
Dysrhythmia makes great damages to cardiac function, and
severe or untreatable arrhythmia may lead to death clinically
(9). It has been reported that sinomenine has cardioprotective
effects based on its regulation of cardiac rhythm (8, 9,
74, 140). Sinomenine has an impact on action potential
configurations in ventricular cardiomyocytes and papillary
muscles, including prolonging action potential duration with
increase of repolarization and decreasing action potential
amplitude with inhibition of themaximum rate of depolarization,
probably resulting from its regulation of several ionic currents.
Sinomenine could inhibit the L-type Ca2+ current, the delayed
rectifier K+ current, and the inwardly rectifying K+ current
(IK1) in cardiomyocytes, resulting in the prolonging of the
action potential duration. The inhibition of the inwardly
rectifying K+ current by sinomenine could depolarize the
membrane potential, which plays a part in anti-arrhythmic
actions. Suppression of action potential amplitude and the
maximum rate of depolarization suggest the repressive action of
the fast Na+ current, a class I anti-arrhythmic action, indicating
the inhibitory effects of sinomenine on the conduction velocity
and excitability. Besides, the reduced fast Na+ current might
also cause the decline of cellular calcium concentration, which
is essential for the alleviation of arrhythmia. As a consequence,
the abnormal action potentials induced by calcium overload
are suppressed by sinomenine (8, 140). Arrhythmia caused by
picrotoxin or BaCl2 could also be recovered into sinus rhythm
by sinomenine (9). Furthermore, sinomenine attenuates the
arrhythmia following IR, as mentioned in the former parts (74).
In summary, sinomenine may be used for the treatment of
arrhythmia depending on its electropharmacological effects on
the action potential configuration and the ionic channel currents.
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CONCLUSION

Cardio-cerebrovascular diseases are the major cause of public
health problems globally and Chinese medicine has broad
prospects for treatment of such diseases. Sinomenine possesses
promising protective effects on atherosclerosis, cerebral or
myocardial IRI, cardiac allograft rejection, autoimmune
myocarditis, hypertension and heart failure, as well as
arrhythmia, relying on its diverse pharmacological activities
including anti-inflammation, immunosuppression, modulation
of cell proliferation and apoptosis, attenuation of oxidative stress
and calcium overload, and vasodilatory or electrophysiological
function. Further investigations are required to focus on the
definite therapeutic roles of sinomenine in clinical situation.
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