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The adverse effect of acidosis on the skeletal system has been recognized for almost a

century. Although the underlying mechanism has not been fully elucidated, it appears

that acidosis acts as a general stimulator of osteoclasts derived from bone marrow

precursors cells and enhances osteoclastic resorption. Prior work suggests that acidosis

plays a significant role in osteoclasts formation and activation via up-regulating various

genes responsible for its adhesion, migration, survival and bone matrix degradation.

Understanding the role of acidosis in osteoclast biology may lead to development of

novel therapeutic approaches for the treatment of diseases related to low bone mass.

In this review, we aim to discuss the recent investigations into the effects of acidosis in

osteoclast biology and the acid-sensing molecular mechanism.
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INTRODUCTION

The maintenance of intracellular and extracellular physiological pH is crucial for normal cell
function. A shift in pH toward a more acidic environment can lead to: (a) systemic acidosis,
which develops due to pathological conditions like renal and respiratory diseases, diabetes,
anemia, menopause, and aging and leads to abnormal cell function; and (b) localized extracellular
acidosis, which results from both pathological and physiological conditions, such as ligand–
receptor interactions in the tumor microenvironment, infection, inflammation, and wound healing
(Arnett, 2008, 2010; Ahn et al., 2012). Localized acidosis appears to play a role in early wound
healing, infectious diseases, tumorigenesis, and bone remodeling (Belinsky and Tashjian, 2000);
however, themechanism underlying localized acidosis is poorly understood. Typically, extracellular
acidosis promotes inflammatory cell defense against pathogens by regulating migration and
phagocytosis (Martinez et al., 2006). However, lactic acidosis caused by increase in glycolysis during
tumorigenesis facilitates tumor invasion and metastasis, and has deleterious effects on biological
processes (Rofstad et al., 2006; Sharma et al., 2015). Recent results from in vivo studies have shown
that bone loss related to acidosis was not due to passive physicochemical dissolution of bone
minerals but rather increased osteoclastic resorption (Kraut et al., 1984; Meghji et al., 2001).

Osteoclasts are the only cells known to be involved in resorption of large quantities of bone
material and mineralized cartilage (Song et al., 2009; Li et al., 2010; Liu et al., 2015). Osteoclasts
are large multinucleated cells generated by the fusion of mononuclear precursor cells derived
from hematopoietic stem cells in response to specific molecular signals (Kelemen, 1986). The
process of osteoclast differentiation is mainly regulated by two cytokines, namely, macrophage
colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-kappa B (NF-κB) ligand
(RANKL) (Boyle et al., 2003; Wada et al., 2006). M-CSF has been reported to play a crucial role
in the proliferation and survival of osteoclast precursor cells (Hamilton and Anderson, 2004).
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Moreover, other studies suggest that osteoclasts can also be
regulated by several hormones, including parathyroid hormone
(Furuya et al., 2011), glucocorticoids (Fujihara et al., 2014),
1,25(OH)2D3 (Geusens et al., 1991), and estrogen (Piao et al.,
2016), by influencing their formation, bone resorption activity
and life span, by regulating expression of various molecular
factors. In addition, multiple studies have identified that acidic
extracellular pH can considerably induce bone loss through
increasing osteoclast differentiation, survival, and activity. This
is likely due to the increased expression of osteoclastogenic
and bone-resorptive regulatory molecules, such as transcription
factor NFATc1 (Komarova et al., 2005; Pereverzev et al., 2008; Li
et al., 2013; Yuan et al., 2014), cathepsin K (Muzylak et al., 2007),
carbonic anydrase II (Biskobing and Fan, 2000), the vacuolar-
type H+-ATPase (Nordstrom et al., 1997; Kim et al., 2007), and
osteopontin (Kim et al., 2007).

This review focuses on recent investigations into the effects
of acidosis on osteoclasts. Additionally, we have discussed the
molecular role of acid/proton sensing genes in the regulation
of osteoclast differentiation, survival, and activity, with an aim
to understand the underlying mechanisms of acidosis-induced
osteoclastic bone resorption.

FUNCTIONS OF ACIDOSIS IN
OSTEOCLAST BIOLOGY

Fusion and Differentiation of Preosteoclast
Cells
Osteoclast differentiation involves 3 general steps: (a)
differentiation of monocytic/macrophage lineage precursor
cells into preosteoclast cells expressing mononuclear tartrate-
resistant acid phosphatase (TRAP) gene (TRAP+), (b) Fusion
of these TRAP-positive mononuclear preosteoclasts to become
non-functional polykaryons, and finally, (c) the activation of
these nonfunctional multinucleated cells into fully activated
functional osteoclasts (Shiotani et al., 2002; Nakamura et al.,
2007). Osteoclast differentiation is regulated by two key growth
factors, M-CSF and RANKL (Feng et al., 2014). M-CSF, c-
Fms is critical for survival and differentiation of osteoclast
precursors into preosteoclasts (Hamilton and Anderson,
2004), and RANKL is involved in eliciting different cellular
responses, including preosteoclast fusion, polykaryon formation,
and osteoclasts activation (Asagiri and Takayanagi, 2007). In
addition, RANKL also activates nuclear factor-activated T
cells c1 (NFATc1), responsible for preosteoclast fusion and
differentiation (Takayanagi, 2007; Kajiya, 2012).

Recently, it has been reported that acidosis-mediated
induction of osteoclast formation is most effective in the later
stages of preosteoclast differentiation (Kato and Morita, 2011;
Kato and Matsushita, 2014). To identify the stage at which
acidosis promotes osteoclast differentiation, bone marrow cell
cultures were maintained in medium, containing RANKL and
M-CSF cytokines, at pH 7.4 for the first 3 days, followed by
replacing themediumwith extracellular acidic pH of 6.8 for 1 day
during the 4-day culture period (Kato and Morita, 2011). This
led to marked increase in the number of osteoclasts. However,

cultures kept in medium with pH 7.4 for 4 days rarely induced
large positive multinuclear osteoclasts. These findings indicated
that acidosis promotes osteoclast differentiation by targeting the
later stage of preosteoclast differentiation. Moreover, it was also
observed that bone marrow cells stimulated with acidosis for
more than 6 h after 3-day culture at pH 7.4 had increased
osteoclast size.

Osteoclast Activity
A variety of factors, including cytokines and immune complexes,
lead to maturation and activation of multinucleated osteoclasts
that subsequently initiate bone remodeling. Interestingly,
accumulating evidence has indicated that osteoclasts are very
sensitive to small changes in pH and become activated by acidosis
(Krieger et al., 1992). Osteoclast activity induced by acidosis was
described by Teti et al. (1989), who reported that extracellular
acidification of osteoclasts reduced cytosolic calcium, and
accelerated the expression of cell-matrix adhesion proteins.
However, few earlier studies identified that acid ingestion leads
to reduction in bone mass and increase in osteoclastic resorption
surface (Barzel and Jowsey, 1969; Chan et al., 1985; Arnett and
Dempster, 1986).

The attachment structures (i.e., podosomes) are located in
areas where osteoclasts adhere to bone during osteoclastic
resorption (Teti et al., 1989). Meghji et al. (2001) reported
that acidosis induced extensive osteoclastic resorption cavities
as evident from the scalloped edges in 3-day cultures of
neonatal mouse calvaria. Occasionally, acidosis also induced
aggressive osteoclastic resorption resulting in complete bone
perforation. However, the treatment of cultured neonatal mouse
calvariaes with alkalotic medium decreased the osteoclastic
activity and increased osteoblastic formation (Bushinsky, 1996).
Another study showed that magnesium hydroxide temporarily
increased osteoblast activity and suppressed osteoclast number
in peri-implant bone remodeling (Janning et al., 2010). These
findings clearly indicated that modulation of osteoclast activity is
determined by acidosis and dependent on pH in mouse calvarial
cultures. Acidosis-induced resorptive activity of rat osteoclasts
was similar to as observed in vivo. Thus, these experiments
confirmed that osteoclasts have little or no resorptive activity
in the long bones of neonatal rats when ambient pH was above
7.3, but it increased steeply with a fall in the pH and reached its
maximum level at pH 6.8. Extracellular H+ led to pH reduction
of less than 0.1 unit, but bone resorption was increased 2-fold,
suggesting an important contribution of acidosis in promoting
osteoclast activity (Arnett and Spowage, 1996). Moreover, in vitro
cell culture experiments suggested that acidosis led to a direct
stimulatory effect on bone resorption by osteoclasts cultured on
bone slices (Arnett and Dempster, 1986; Arnett, 2010). Similarly,
extracellular acidosis also induced osteoclast activity in avian
and human osteoclasts (Arnett and Dempster, 1987; Arnett,
2008). In parallel, direct stimulation of osteoclasts by acidosis
also induced rapid and significant increase in intracellular Ca2+

([Ca2+]i) concentration, which further stimulated the nuclear
translocation/activation of NFATc1 and promoted osteoclasts
bone resorption activity (Komarova et al., 2005).
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Acidosis seems to induce osteoclast activity by both direct
and indirect effects on osteoblasts. Several factors expressed by
osteoblasts might regulate osteoclast activity. Acidosis-stimulated
production of prostaglandin E2 from osteoblasts increased
osteoclastic bone resorption (Krieger et al., 2000; Bushinsky
et al., 2001; Frick and Bushinsky, 2003). Other factors secreted
by osteoblasts, such as RANKL, M-CSF, and osteoprotegerin
(OPG), have also been known to modulate osteoclast precursor
differentiation and osteoclast activity. RANKL expressed at the
cell surface of osteoblasts interacts with its receptor RANK
and induce the resorptive activity of osteoclasts (Lacey et al.,
1998; Tsurukai et al., 2000). Metabolic acidosis also increases
the osteoblast autocrine or paracrine production of RANKL.
This up-regulation of RANKL expression under acidic conditions
depends on cyclo-oxygenase activity, which likely stimulates
osteoclast activity (Frick and Bushinsky, 2003).

Osteoclast Survival, Adhesion, and
Migration
Osteoclasts are multinucleated and terminally differentiated cells
with a short life span (Miyazaki et al., 2000) and apoptosis
has been identified as the major form of cell death, both in
vitro and in vivo (Xing and Boyce, 2005; Mollazadeh et al.,
2015). Interestingly, extracellular acidosis and RANKL have
not only been identified as potent stimulators of osteoclast
resorptive activity and differentiation, but also inhibit osteoclast
apoptosis, contributing to the enhancement of osteoclast life
span. Moreover, it has also been reported that acidosis exerts
its direct effect on osteoclast survival through the activation of
NFATc1. Several other pathways have also been suggested to
contribute into the effects of acidosis on osteoclast apoptosis
and survival. For example, suppression of cytosolic free calcium
concentration ([Ca2+]i) using the intracellular Ca2+ chelator,
BAPTA, abolished the ability of acidosis to increase osteoclast
survival. Calcium signaling results in activation of protein
kinase C (PKC), which either regulates the phosphorylation
status of pro- or anti-apoptotic proteins, or promotes ERK1/2
phosphorylation. Activation of the MAPK pathway is known to
be important for osteoclast survival. Studies using PKC inhibitor
also showed that pharmacological inhibition of PKC completely
blocked acidosis-induced prolongation of osteoclasts survival,
suggesting that acidification-increased osteoclast lifespan was
dependent on PKC activation. Although activation and nuclear
translocation of NFATc1 have been suggested to be critical for
osteoclast differentiation and activity under acidic conditions
(Komarova et al., 2005), studies using NFAT-specific inhibitor,
11R-VIVIT, showed that NFATc1 inhibition had no effect on
acid-induced prolongation of osteoclast survival.

Osteoclastic bone resorption by mature osteoclasts involves
multiple steps: (1) fusion of mononuclear pre-fusion osteoclasts
into multinucleated osteoclasts; (2) attachment of osteoclasts
to the bone surface; (3) polarization [characterized by ruffled
border and clear zone (actin ring)], increased secretion of
acid and lysosomal enzymes into the space beneath the ruffled
border; and (4) apoptosis (Suda et al., 1997). Ahn et al.
demonstrated that acidosis promoted osteoclast formation and

FIGURE 1 | Role of OGR1 in osteoclasts associated differentiation and

survival.

function through increased adhesion and migration (Ahn et al.,
2012). To further support the role of acidosis in mediating
osteoclast survival, and to evaluate whether osteoclast spreading,
adhesion, and migration played a key role in determining
bone-resorptive osteoclast function, RANKL induced osteoclasts
were exposed to HEPES-buffered media at pH 7.0 or 7.5
(Ahn et al., 2012). These extracellular acidification experiments
demonstrated that osteoclasts containing more than 3 or 10
nuclei and apparent actin rings survived longer at a relatively
low pH.Moreover, osteoclasts cultured under the same condition
exhibited increased osteoclast adhesion and migration at pH 7.0
as compared to pH 7.5, but failed to spread. These observations
indicated that acidosis plays a critical role in osteoclast survival,
adhesion, and migration.

Integrins are cellular adhesion receptors that belong to
a superfamily of receptors that are involved in mediating
cell–matrix interactions. Osteoclasts typically exhibit high
expression of transmembrane integrin-αvβ3 heterodimer,
which recognize Arg-Gly-Asp (RGD) motif on the bone matrix
components, osteopontin and bone sialic protein (Mchugh
et al., 2000; Rao et al., 2006). The inhibition of αvβ3 integrin
was shown to suppress in vitro and in vivo bone-resorption
activity, suggesting that it might play a major role in regulating
osteoclasts function (Novack and Faccio, 2011). In the study by
Ahn et al. (2012), osteoclasts exposed to low pH led to increased
secretion of osteopontin into the extracellular space of mature
osteoclasts, while RGD peptide treatment that antagonize the
matrix proteins, resulted in inhibition of acidosis-induced
osteoclast adhesion and migration. Additionally, this study
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FIGURE 2 | Role of ASIC1a in osteoclasto genesis.

identified that extracellular acidosis also activated the osteoclast
adhesive and migratory signal molecules independent of the
αvβ3 integrin pathway, including Pyk2, Cbl-b, and Src signals.
This observation again emphasized that extracellular acidosis
increased bone resorption by enhancing osteoclast survival,
adhesion, and migration.

MECHANISMS OF ACIDOSIS SENSING
AND ITS REGULATION IN OSTEOCLASTS

Several types of plasma membrane sensors have been reported
to be involved in osteoclasts acid-sensing, namely G-protein
coupled receptors (GPCRs) and non-GPCR sensors (Damaghi
et al., 2013). GPCRs include ovarian cancer G protein-coupled
receptor 1 (OGR1) and T cell death-associated gene 8 (TDAG8),
which have also been identified as acid receptors on osteoclasts
(Yang et al., 2006; Pereverzev et al., 2008; Li et al., 2009;
Hikiji et al., 2014). A key breakthrough in the field of proton-
sensing mechanisms was the discovery of the proton-sensing
ability of transient receptor potential (TRP) V1 (TRPV1) protein
(Kajihara et al., 2010). This discovery suggested that non-GPCR
proteins can also sense and respond to different extracellular
pH environments (Kajihara et al., 2010). The acid-sensitive ion
channel (ASIC) is amember of the non-GPCR protein family that
has been shown to be expressed on human and rat osteoclasts
and might have role in acidosis sensing (Jahr et al., 2005;
Li et al., 2013). ASIC encodes at least six different subunits,
including ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3, and ASIC4
(Waldmann et al., 1997; Li et al., 2014). Understanding of the
functional molecular mechanism of these acid sensing sensors is
likely to provide insights into their regulatory role under acidosis
and may help to understand their link in modulating osteoclast
biological behavior.

Proton-Sensing GPCRs
OGR1 was originally described as a receptor for
sphingosylphosphorylcholine (Xu et al., 2000; Damaghi
et al., 2013; Justus et al., 2013; Thongon et al., 2014), but later
shown to be acting as a proton sensing receptor that couples
with Gq protein (Ludwig et al., 2003). OGR1 was found to be
expressed on osteoclasts like cells differentiated from RAW264.7
cells (Yang et al., 2006). OGR1 expression was also observed on

the osteoclasts in bone marrow macrophages (BMMs) treated
with RANKL to induce osteoclast differentiation (Yang et al.,
2006). These studies suggested that OGR1 may act as a proton
sensing receptor in osteoclasts.

More specifically, OGR1 has been shown to be activated
by acidosis to increase [Ca2+]i levels via Gq stimulation,
which in turn resulted in cyclooxygenase 2 (COX-2) gene
expression and subsequent prostaglandin E2 (PGE2) production.
This regulation was sensitive to Gq/11 inhibitor and OGR1-
specific siRNA, which stimulate bone resorption activity of
osteoclasts by inducing the RANKL/RANK system. It has also
been reported that extracellular acidic pH, mimics RANKL and
induces the Ca2+/calcineurin/NFATc1 pathway, which is critical
for osteoclast differentiation and function, possibly by activated
OGR1 in the osteoclasts (Komarova et al., 2005; Pereverzev et al.,
2008). In addition, Yang et al. (2006) have reported that OGR1
is expressed early during osteoclastogenesis, both in vivo and in
vitro, and is crucial for osteoclast differentiation. Iwai et al. (2007)
have identified RANKL-induced osteoclastogenesis by inhibiting
the expression of regulator of G protein signaling 18 (RGS18), a
negative regulator of the OGR1/NFATc1 pathway. This indicated
the role of acid sensing OGR1 in osteoclasts differentiation and
function. Recent findings have also suggested that OGR1 is
involved in the acidosis-induced increase in osteoclast [Ca2+]i
levels (Pereverzev et al., 2008). Interestingly, OGR1-mediated
regulation of calcium signaling pathway during extracellular
acidosis results in acidosis-induced osteoclast survival. OGR1
activation in osteoclast promoted survival by inducing the
activation of protein kinase C (PKC) (Pereverzev et al., 2008).
Frick et al. (2009) had shown that a non-specific inhibitor of
OGR1 attenuated acidic pH-induced [Ca2+]i levels in primary
calvarial cells and Ca2+ efflux from calvariae (Figure 1). This
data suggests that acidic pH induced osteoclasts differentiation,
function, and survival and may involve OGR1/Ca2+ signaling
pathway. Further evidence for a positive role of OGR1 in
osteoclastogenesis was detected in OGR1 knockoutmice (Li et al.,
2009; Okajima, 2013), where these mice showed a pH-dependent
osteoclasts survival effect. However, in vivo X-ray scans did not
show overall abnormality in the bones of these animals (Li et al.,
2009). In addition, a recent publication further confirmed that in
vivo loss of OGR1 increased bone mineral density probably by
increasing the bone formation and directly contributing to the
decreased bone resorption that was observed in rapidly growing
mice (Krieger et al., 2016).

TRP Family
Among the TRP family members, TRPV1 is a calcium-permeable
channel that has been widely studied and is activated only by
severe acidosis resulting from pH values below 6 (Tominaga
et al., 1998; Morales-Lazaro et al., 2013). Among the several
recent reports suggesting the involvement of TRPV1 in osteoclast
differentiation (Idris et al., 2010; Kato and Morita, 2013; Rossi
et al., 2014a,b), TRPV1 specific agonist capsaicin, in particular,
increased the osteoclasts formation in BMMs cultures treated
with RANKL and M-CSF (Rossi et al., 2009). In contrast, the
TRPV1 antagonist, capsazepine, resulted in inhibition of the
osteoclast formation and their bone resorptive activity (Idris
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et al., 2010). It was also observed that TRPV1 blockade protected
against ovariectomy induced bone loss in mice. However,
Kato and Morita (2013) have recently reported that TRPV1
specific agonist, capsaicin, and its antagonist, AMG9810, neither
promoted nor inhibited osteoclasts formation, respectively.

Likewise, another member of the TRP family, TRPV4,
has also recently been reported to play a crucial role in
osteoclasts differentiation (Masuyama et al., 2008). TRPV4 is
known as a sensor of mechanical or osmotic signals (Mizuno
et al., 2003; Suzuki et al., 2003). TRPV4-mediated Ca2+ influx
appeared necessary for sustained Ca2+ signaling, NFATc1 gene
transcription, terminal differentiation and osteoclast activity
(Masuyama et al., 2008, 2012). TRPV1 activation was also
observed to cause osteoclasts, in vivo bone loss. It has also
shown a weak response to low pH (Suzuki et al., 2003), and
got activated by src under acidic conditions. Taken together, this
data suggests that extracellular acidosis is activated by TRPV4.
Its antagonist, RN1734, partially inhibited acidosis-induced
osteoclast formation, while its agonist 4-α PDD enhanced
osteoclast formation under mild acidosis, thus implicating
TRPV4 in acid-induced osteoclast formation (Kato and Morita,
2013). Moreover, there is also a possibility that acidosis-induced
osteoclast formation is regulated by other unidentified TRP
family cation channels permeable to Ca2+. Consistent with this
probability, experiment by Kato and Morita (2013) have already
shown that Ruthenium red, a general blocker of TRP channels,
potently inhibited the acidosis-induced osteoclast formation.

ASICs
ASICs are proton-gated channels that are distributed throughout
the central and peripheral nervous systems. Currently, there are
six isoforms of ASICs (Xiong et al., 2004; Yuan et al., 2010b) and
are activated by a decrease in the extracellular pH and are cation-
selective. Recently it has been suggested that ASICs are expressed
not only in nervous system but also in the non-neuronal cells,
such as dendritic cells (Tong et al., 2011), astrocytes (Huang et al.,
2010), vascular smooth muscle cells (Grifoni et al., 2008; Jernigan
et al., 2012), nucleus pulposus cells (Ohtori et al., 2006; Uchiyama
et al., 2007, 2008; Navone et al., 2012; Cuesta et al., 2014; Sun et al.,
2014), synoviocytes (Kolker et al., 2010), hepatic stellate cells (Wu
et al., 2014), and glioma cells (Berdiev et al., 2003; Vila-Carriles
et al., 2007; Kapoor et al., 2009). The wide expression pattern
suggests that ASICs may have more diverse role in physiological
and pathogenic processes. We, and others, have recently reported
the expression of ASICs in human skeleton and rat articular and
endplate chondrocytes (Jahr et al., 2005; Yuan et al., 2010a,b; Hu
et al., 2012; Rong et al., 2012). Moreover, our study also showed
the involvement of ASICs in inducing osteoclast differentiation
in response to acidosis (Li et al., 2013). The mRNA of four
ASICs subtypes, including ASIC1a, ASIC1b, ASIC2a, and ASIC3

is expressed in the osteoclasts derived from RANKL and M-
CSF induced BMMs. The acidosis has been reported to increase
the mRNA expression of ASIC1a in osteoclasts, suggesting that
ASIC1a has a role in facilitating the sensing and response to
differences in extracellular pH. Furthermore, we identified that
ASIC1a is essential for the extracellular acidification-induced
increase in [Ca2+]i levels in osteoclasts and also involved

in extracellular acidification-stimulated NFATc1 signaling in
osteoclastogenesis (Figure 2). Taken together, our data suggested
that ASIC1a seems to be involved in acid-induced osteoclast
differentiation and bone resorption and can act as a potential
therapeutic target for the treatment of human diseases, such as
osteoporosis (Li et al., 2013).

CONCLUSION

Recent evidences based on animal model studies, implicate
several acid sensing receptors in various diseases. However, going
forward it will be important to determine how our current
knowledge of acid sensing receptors can be translated to human
patients. One way would be to first identify if there are any
existing genetic associations between acid sensing receptors and
human bone resorption-related diseases. Another path would
be to directly test if inhibitor of acid sensing receptors can
produce beneficial effects in human patients. In addition, a better
understanding of the molecular mechanisms involved in action
of acid sensing receptors will help to clarify how inhibiting or
potentiating these receptors could affect the pathophysiology
and behavior of human patients. In this review, we have tried
to highlight the critical role of acidosis in osteoclast fusion,
differentiation, activity, survival, adhesion, migration and acid
sensing mechanism. This effort will help to provide further
insight into the molecular and cellular understanding of bone
resorptive disorders in an acidic environment.
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