
Molecular Portrait of GISTs
Associated With Clinicopathological
Features: A Retrospective Study With
Molecular Analysis by a Custom
9-Gene Targeted Next-Generation
Sequencing Panel
Haoran Qian1†, Na Yan2,3†, Xiaotong Hu4, Junchang Jiang4, Zhengzheng Cao2,3 and
Dan Shen2,3*

1Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China, 2Dian
Diagnostics Group Co., Ltd., Hangzhou, China, 3Key Laboratory of Clinical in Vitro Diagnostic Techniques of Zhejiang Province,
Hangzhou, China, 4Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou,
China

Objectives: The study aims to investigate genetic characterization of molecular targets
and clinicopathological features with gastrointestinal stromal tumors based on targeted
next-generation sequencing.

Materials and Methods: We selected 106 patients with GISTs from Sir Run Run Shaw
Hospital between July 2019 and March 2021. FFPE samples and paired blood samples
were obtained from these patients who underwent excision of the tumor. A customized
targeted-NGS panel of nine GIST-associated genes was designed to detect variants in the
coding regions and the splicing sites of these genes.

Results: In total, 106 patients with a GIST were included in the study which presented with
various molecular driver alterations in this study. KIT mutations occurred most often in
GISTs (94/106, 95.92%), followed by point mutations in PDGFRA. KIT or PDGFRA
mutations were detected to be mutually exclusive in the GIST. A total of eight patients
with wide-type KIT/PDGFRA were characterized as WT-GISTs, according to clinical
diagnosis which included six quadruple-WT GISTs, 1 BRAF-mutant, and 1 NF1-
mutant GIST. In KIT exon 11, the most common mutation type was the codon
Mutation (in-frame deletion or indels), whereas the missense mutation was the
dominant type in KIT exon 13 and KIT exon 17. All variations in KIT exon 11 observed
in this study were concentrated at a certain position of codon 550 to codon 576. Mutation
in KIT exon 9 was mostly located at codon 502–503. Two germline pathogenic mutations
were detected: NF1-R681* and KRAS-T58I. NF1-L591P was a germline mutation to be
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identified for the first time and is not recorded in the database. The frequency of driving
mutations differed between the primary anatomical site in the GIST (p = 0.0206). KIT exon
11 mutants had a lower proliferation index of Ki67 (68.66%,≤5%), while 50.00% of KIT
exon 9 mutants had the Ki67 status greater than 10%.

Conclusion: The occurrence and development of a GIST is driven by different molecular
variations. Resistance to TKIs arises mainly with resistance mutations in KIT or PDGFRA
when they are the primary drivers. Targeted NGS can simultaneously and efficiently detect
nine GIST-related gene mutations and provide reference for clinicians’ individualized
diagnosis and treatment. Our results have important implications for clinical management.

Keywords: gastrointestinal stromal tumors, molecular subtypes, clinicopathological features, next-generation
sequencing, target therapy

INTRODUCTION

A gastrointestinal stromal tumor (GIST) is the most common
mesenchymal malignancy of the gastrointestinal tract which
originates from Cajal cells of the digestive tract and account
for 3% of gastrointestinal malignant tumors. The most common
clinical manifestation of a GIST is a gastric tumor or a bowel
tumor. The rectum, colon, esophagus, and other sites are rare
(Ducimetière et al., 2011; Boonstra et al., 2018; Florindez and
Trent, 2020; Virgilio et al., 2021). Pathological examination is the
most reliable method for the diagnosis of a GIST (Blay et al.,
2021a). National Comprehensive Cancer Network (NCCN)
guidelines recommend endoscopic ultrasound with fine-needle
aspiration and biopsy (EUS-FNAB) as the first choice (Zhao et al.,
2020). The expression of tumor markers in tumor tissues was
detected by immunohistochemistry (Fernández et al., 2018). c-Kit
(stem cell growth factor receptor, CD117) is a protein encoded by
the KIT gene in humans. CD117 is the most important IHC
marker which is expressed in 85–95% of GISTs (Ramdani et al.,
2020). DOG1 is a useful marker for these tumors that the GIST
does not express KIT on IHC. Other tumor markers include
CD34, smooth muscle action (SMA), etc., (Luo et al., 2004; Malik
et al., 2019; Bradea et al., 2021).

In total, 60–70% GISTs can acquire mutation of KIT, and
10–15%GISTs acquire mutation of platelet-derived growth factor
receptor A (PDGFRA) that both promote to the occurrence and
development of GISTs (Joensuu et al., 2013; Joensuu et al., 2015;
Nishida et al., 2016). KIT and PDGFRA mutations play a crucial
role in the pathogenesis of GISTs (Demetri et al., 2006). Chinese
consensus guidelines for diagnosis and management of
gastrointestinal stromal tumor recommend KIT/PDGFRA gene
testing for CD117/DOG1-negative GIST patients, which acts as a
supplement for immunohistochemical diagnosis (Li et al., 2017).

GIST is divided into three types at the molecular level based on
the mutations of KIT and PDGFRA: GIST with KIT mutations,
GIST with PDGFRA mutations, and non-KIT or PDGFRA
somatic mutation (WT-GIST) (Daniels et al., 2011). WT-GIST
is complex due to the existence of different subgroups with
distinct molecular hallmarks. About 30% of WT-GISTs show
deletion mutations of succinate dehydrogenase subunit A
(SDHA) (Boikos et al., 2016). Other molecular hallmarks

include mutations of neurofibromatosis type 1 (NF1), BRAF,
or RAS (Corless et al., 2011a; Blay et al., 2021a). It follows that
GIST is a cancer with comparatively small genetic heterogeneity.
The cancer-driven pathway of a GIST is a downstream signaling
pathway mediated by KIT/PDGFRA receptors (Blay et al.,
2021b). The precise treatment of the cancer gene map for
GISTs has become increasingly mature.

The tyrosine kinase inhibitor (TKI) imatinib is a model of
targeted therapy for GISTs which can be used to treat GISTs with
KIT/PDGFRA mutation (Park et al., 2014; Gang and Wang,
2018). However, the therapeutic response and dosage of GIST
to tyrosine kinase inhibitors are closely bound up with molecular
subtypes (Blay et al., 2021b). Specifically, the KIT exon 11
mutation is more responsive to imatinib treatment than the
KIT exon 9 mutation or WT-GISTs. The KIT exon 9 mutation
requires double dose of imatinib (800 mg/d) (Nishida et al., 2015;
Reichardt, 2016). KIT-V654A and KIT-T670I mutations are
resistant to imatinib (Guo et al., 2007). PDGFRA-D842V
mutations are also characterized broadly as imatinib resistance
mutations which can adjust the drug treatment strategy to
300 mg/d avapritinib (Jun et al., 2018; Heinrich et al., 2020;
Smrke et al., 2020; Jones et al., 2021). Therefore, it is
necessary to understand the molecular characteristics before
tyrosine kinase inhibitor treatment to ensure the optimal
treatment strategy. The purpose of this study was to
investigate the relationship between the molecular variation
and clinicopathological features in GIST patients by targeted
next-generation sequencing (NGS), in order to deepen the
understanding of GIST-individualized treatment.

MATERIALS AND METHODS

Patients and Tumor Samples
A total of 106 solid tumor samples from gastrointestinal stroma
and paired blood samples were analyzed by a custom 9-gene
targeted next-generation sequencing panel, which was obtained
from Run Run Shaw Hospital between July 2019 and May 2021.
All specimens were pathologically and immunohistochemically
confirmed as GISTs. Tumor cells accounted for more than 20% of
the tumor population. Clinical data of all patients were collected
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and sorted out on the basis of age, gender, tumor location, tumor
size, mitotic count, immunohistochemical detection index
(CD117, CD34, DOG1, S-100, Ki-67, SDHB, SMA, and
desmin), etc., (Supplementary Table S1). This study was
approved by the internal review board of the Run Run Shaw
Hospital.

Sample Preparation and DNA Extraction
The pathologist performed a histological assessment with
hematoxylin and eosin-stained sections to confirm the tumor
purity. Then, the tumor areas of the FFPE sections were
macrodissected. Tumor cells accounted for more than 20% of
the tumor population. Genomic DNA from FFPE samples of the
GIST were extracted by using a QIAamp DNA FFPE Tissue Kit
(QIAGEN, Dusseldorf, Germany), following the manufacturer’s
instructions. Paired blood samples of GIST were extracted using a
QIAampDNA BloodMidi Kit (QIAGEN, Dusseldorf, Germany),
according to manufacturer’s instructions. The DNA
concentration was measured using a Qubit 3.0 (Thermo Fisher
Scientific, Waltham, United States) fluorometer. The size
distribution of DNA was analyzed using a Qsep100 (Bioptic,
Taiwan, China) system.

Next-Generation Sequencing Library
Preparation
This study used the CleanPlex™ (Paragon Genomics, Silicon
Valley, United States) panel with an optimized manufacturer’s
protocol to prepare sequencing libraries. 40 ng of genomic DNA
was enriched in the target region of nine GIST-related genes by
multiplex PCR and then ligated with indexed sequencing adapters
sequentially. Purification of DNA libraries used Agencourt
AMPure XP beads (Beckman Coulter, United States). The
purified NGS library was quantified using the Qubit 1×dsDNA
Assay Kit (Thermo Fisher Scientific, Waltham, United States),
and its fragment size distribution was analyzed using a Qsep100
(Bioptic, Taiwan, China) system. A nine GIST-related gene panel
was used to identify one or more single-nucleotide variants,
insertions, deletions, duplications, and delin mutations. The
nine genes include KIT, PDFRA, KRAS, BRAF, NF1, SDHA,
SDHB, SDHC, and SDHD.

Sequencing and Bioinformatics Analysis
In order to ensure the reliability and validity of the experimental
results, all library construction and sequencing were completed in
a CAP-certified laboratory. Sequencing was performed on the
Illumina NextSeq 500 platform (Illumina, San Diego,
United States). The mean coverage depth is approximately
>1000X for the tumor samples and >30X for the paired blood
samples. A minimal variant frequency of 5% was designated as a
mutation. The paired-end sequencing data of the libraries in the
FASTQ format were mapped to the human genome (hg19) by the
Burrows–Wheeler Aligner (BWA-MEM). MuTect19 with default
parameters was applied to paired blood and tumor BAM files for
identification of somatic single-nucleotide variants (SNV). Small
insertions and deletions (indels) were detected by SCALPEL. SNV
and indel annotation was performed by ANNOVAR21 using the

hg19 reference genome and 2014 versions of standard databases
and functional prediction programs.

Statistical Analysis
The statistical package stats of R version 4.1.1 software were used
for statistical analysis. Continuous variables were reported as
mean and standard deviation or median and interquartile range
and compared by using the Student t test or Mann–Whitney U
test. Chi-square analysis was performed toward analyses of
subgroups, and Fisher’s exact test was used in cases of small
numbers. All tests were 2-sided, with p ≤ 0.05 as the criterion
standard for determining significance. Structural changes
induced by amino acid substitution were predicted by
Missense3D software. A clustering correlation heatmap with
signs was performed using the Kendall correlation analysis.
GO enrichment analysis and KEGG pathway analysis were
established with OmicShare tools.

RESULTS

Clinicopathological Characteristics of
Patients
The total of 106 patients were included in this study, of which 73
were primary tumors (68.87%) and 33 were recurrent disease
(31.13%) (Table 1). Gender disparity in GIST incidence was
not observed as the male-to-female ratio is 1.3:1 (60 male and
46 female patients). The age of the first operation
composition ranged from 35 to 89 with a median age of
58. GIST arose in the non-stomach (64, 60.38%) sites more
than the stomach sites (42, 39.62%). Location of the disease
disparity in GIST incidence was not observed as the stomach-
to-non-stomach ratio is 1:1.03. The level of the mitotic phase
in the stomach is higher (Mitotic count [x/HPF] > 5, 32.43%),
which is different from that of non-gastric primary GIST
(Mitotic count [x/HPF] > 5, 8.33%；p-value = 0.0389). There
was no significant difference between the location of the
primary focus and tumor size (Supplementary Figure S1,
Supplementary Table S1).

Gene Mutation Distributions and
Frequencies
Mutations in 106 patients with primary and recurrent GISTs have
a preference (Figure 1, Supplementary Figure S2,
Supplementary Table S1). KIT mutations occurred most often
in GISTs (94 of 106 tumors, 95.92%), followed by the point
mutation in PDGFRA. This predominant preference presented
both in primary and recurrent GISTs (Supplementary Table S1,
Figure 1, Supplementary Figure S2). KITmutations or PDGFRA
mutations were detected to be mutually exclusive here, which is in
consistency with previous reports (von Mehren and Joensuu,
2018a; Blay et al., 2021a). A total of eight patients with wide-type
KIT/PDGFRA were characterized as WT-GISTs, according to
clinical diagnosis. These include six quadruple-WT (KIT/
PDGFRA/SDH/RAS-WT) GISTs, 1 BRAF-mutant, and 1 NF1-
mutant GIST.
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It is worth noting that none of the first-episode patients
developed resistance mutations, except for one patient who had
been treated with IM 400mg neoadjuvant therapy for 25months
preoperatively. This patient only detected KIT exon 11
p.W557_K558 deletion before IM therapy (Supplementary Table
S1). However, we found secondary resistance mutations (KIT exon
13 p.V654A, exon 17 p.D820V, p.N822K/Y, and p.Y823D) in 13
recurrent patients (Figure 2, Supplementary Table S1,
Supplementary Figure S2). A total of 14 patients with resistant
mutations were detected in this study, and 92.86% of them relapsed.

KIT-Mutant GISTs
KIT mutations including deletion, deletion-insertion (indels),
duplication, and missense mutations occurred mostly in exon
11 (74 of 94 KIT-mutant GISTs), followed by exon 9, exon 13,
exon 17, and exon 4 (Supplementary Figure S2, S3A). In exon
11, the most commonmutation type was the codon mutation (in-
frame deletion or indels), whereas the missense mutation was the
dominant type in exon 13 and exon 17 (Supplementary Figure
S2). This preference of variant type in different exons of KIT was
statistically significant (p = 6.011e-07) (Table 2).

The deletions of codon 557–558 (c.1669-1674del) in exon 11
of KIT were 63.04% in 46 patients, which is associated with the
malignant behavior as mentioned in reports (Martin-Broto et al.,
2010; Joensuu et al., 2015). The next most frequent mutation in
exon 11 of KIT was the missense mutation of codon 559 (c.1676T
> A/C/G). All variations in KIT exon 11 observed in this study

were concentrated at a certain position of codon 550 to codon 576
(Supplementary Table S1), which may be defined as the hotspot
region of GISTs.

Mutation in KIT exon 9 mostly located at codon 502–503. The
duplication insertion of A502-Y503 codons account for 93.33% (14 of
15 GIST) GISTs, which was identified a variation in KIT exon 9.
Besides, a variant at codon 476 (c.1427G > T, p.Ser476Ile) of
unknown significance in KIT exon 9 was found in this study.
Structural changes induced by amino acid substitution were
predicted by Missense3D software. The results showed that the
variation of Ser to Ile at position 476 resulted in hydrogen bond
damage and atomic collision with surrounding amino acid residues.
It was inferred that KIT-S476I may be a pathogenic mutation
(Figure 3). Among 15 GIST patients who harbored the KIT exon
9 mutation, nine (60%) were recurrence patients, indicating a higher
risk of relapse after surgical excision of exon 9-mutatedGIST patients.

The missense mutation affecting codon V654 (c.1961T > C) in
exon 13 of KIT was identified only in recurrence GISTs in this
study. This finding is consistent with the previous understanding
that V654A in exon 13 is the secondary resistance mutation
acquired under the therapeutic pressure of a TKI (Nishida et al.,
2008; Serrano et al., 2019). Codon L642 (c.1924A > G) in exon 13
presented in two primary GIST patients in this study.

In exon 17 of KIT, D820A, N822K/Y, and Y823D were
observed in seven recurrent patients and one primary patient
(Figure 2). As the secondary mutation, the activation loop
mutation in exon 17 (e.g., D820A) stabilizes the active

TABLE 1 | Demographic and clinical characteristics of 106 patients with GIST.

Characteristics No. of
patients

% Characteristic No. of
patients

%

Gender CD34
Male 60 56.60 positive 84 79.25
Female 46 43.40 negative 12 11.32

unknown 10 9.43
Mean age of first operation [years] (range) 58 (35–89) SMA
≤55 37 34.91 positive 9 8.49
>55 69 65.09 negative 86 81.13

unknown 11 10.38
Location of primary GIST S-100
Stomach 42 39.62 positive 1 0.94
Others 64 60.38 negative 95 89.62

unknown 10 9.43
Tumor size (cm) Desmin
≤2 6 5.66 positive 2 1.89
>2,<5 41 38.68 negative 93 87.74
≥5 58 54.72 unknown 11 10.38
unknown 1 0.94

Mitotic count [x/HPF] SDHB
≤5/HPF 57 53.77 positive 90 84.91
>5/HPF 29 27.36 negative 4 3.77

unknown 20 18.87 unknown 12 11.32
CD117 Proliferation index of Ki67 (%)
positive 94 88.68 ≤5 60 56.60
negative 3 2.83 >5,< 10 11 10.38
unknown 9 8.49 ≥10 25 23.58

DOG1
positive 85 80.19 Disease status
negative 12 11.32 primary tumors 73 68.87
unknown 9 8.49 recurrent disease 33 31.13
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FIGURE 1 | Genetic profile of the GIST.

FIGURE 2 | Distribution characteristics of KIT-resistant mutations. (A): Distribution of resistant mutations in the KIT gene. (B): Distribution of resistant mutations in
KIT functional domains.
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formation of KIT kinase, thus contributing resistance of TKI. The
mutation observed in exon 17 in our study was also considered as
the cause for relapse.

PDGFRA-Mutant GISTs
PDGFRA-D842Vwas observed in all (4/4) of GISTs with PDGFRA
alterations in this study (Supplementary Table S1). It means that
these patients cannot benefit from imatinib treatment.

Germline Mutation in GISTs
Two germline pathogenic mutations were detected, NF1-R681*
and KRAS-T58I. We also obtained eight germline mutations of
unknown clinical significance, SDHA-Y211H, SDHC-V9I,
SDHB-A6S, BRAF-G69A, PDGFRA-S716R/D756N, and NF1-
R2713Q/Y1292C. NF1-L591P was a germline mutation to be
identified for the first time and is not recorded in the database
(Supplementary Table S2).

Associations Between the Molecular
Subgroup and Clinicopathological
Characteristics of GISTs
The frequency of driving mutations differed between primary
anatomical sites in GISTs (p = 0.0321) (Table 3). GISTs bearing
KIT exon11 mutations were located most often in the
gastrointestinal tract (53.6%, 30/56) and small intestine (35.7%,
20/56). Mutations in exon 9 of KIT-mutant GISTs all happened in
the small intestine (100%, 6/6) in our cohort. In the primary rectal
GIST, the most frequent driver mutations occurred in KIT exon 11
(100%, 5/5). All GISTs harboring the PDGFRA-D842V mutation
had a unique gastric primary localization. The wide-type KIT/
PDGFRA GISTs arose in the small intestine and stomach.

There was a significant difference in theKITmutation rate among
GIST patients in the Ki67 status group of ≤5, group of >5 and <10,
and group of ≥10 (p = 0.001333) (Table 4). KIT exon11mutants had
a lower proliferation index of Ki67 (68.66%,≤5%), while 50.00% of
KIT exon 9mutants had a Ki67 status greater than 10%.Mutations in
KIT 9 exon were more likely to occur in non-gastric areas (Table 4).

In practice, the diagnosis of GISTs is mainly based on IHC
markers, including CD117, CD34, DOG1, and SDHB, and with the
help of genetic analysis. Almost all GISTs overexpress CD117 or

DOG1with one exception in our cohort (Supplementary Figure S4).
However, the CD117 expression and KIT mutation was not entirely
concordant. There was one KIT-mutant patient who was CD117-
negative but DOG1-positive. DOG1 was universally expressed in
three GISTs with PDGFRA mutations, while one PDGFRA-mutant
patient failed to get IHC information. The significance test of the
Kendall correlation coefficient showed that the KIT mutation was
positively correlated with CD117 (p < 0.05), while the PDGFR
mutation was negatively correlated with CD34 (p < 0.01) (Figure 4).

The relationship between clinical features and the
immunophenotype was depicted by Figure 4. CD117 (p <
0.05) and Ki67 (p < 0.001) were positively correlated with
patients’ mitotic count. Meanwhile, the age (p < 0.05) and
tumor size (p < 0.01) were positively correlated with Ki67. In
addition, the relevance between the tumor location and DOG1
was also positive. GO enrichment analysis was performed on nine
GIST-related genes. Biological processes have been enriched byGO
analysis. It includes cell proliferation, reproduction, developmental
process, and reproductive process, which are related to the growth
of cells. This may explain why there are significant correlations
among CD117, Ki67, and mitotic count (Figure 5). Meanwhile,
KEGG pathway analysis showed that nine GIST-related genes were
enriched in cell growth and death, development, aging,
environmental adaptation, etc. Perhaps this is why the tumor
size is significantly correlated with the Ki67 index (Figure 6).

DISCUSSION

In the past 10 years, the remedy of GISTs has gradually been
evolving from a one-size-fits-all scheme to targeted oncogene
treatments for specific molecular GIST subtypes (Blay et al.,
2021a). However, the effectiveness of targeted therapy varies
among patients because its effectiveness depends on the
genetic mutation profile of GIST tumor tissues (Debiec-
Rychter et al., 2006). A variety of molecular driven mutations
are present in the GIST and are directly related to the curative
effect of targeted treatment (von Mehren and Joensuu, 2018b).
The most frequent driver mutations occur in KIT and PDGFRA.
In total, 60–70% GISTs can acquire the mutation of KIT, and
10–15% GISTs acquire mutation of PDGFRA that both promote

TABLE 2 | The genomic features of 106 GIST patients.

Features Variation type

Point mutation Codon mutation

Number of
patients %

N % N % p Value

Wild-type 8 7.55% 3 37.50% 1 12.50% 0.4900
Mutation 98 92.45% 49 50.00% 61 62.24%
KIT 94 95.92% 44 46.81% 61 64.89% 6.011e-07
exon 4 1 1.06% 0 / 1 1.06%
exon 9 15 15.96% 1 6.67% 14 14.89%
exon 11 74 78.72% 28 37.84% 48 51.06%
exon 13 9 9.57% 9 100.00% 0 /
exon 17 7 7.45% 7 100.00% 0 /
PDGFRA 4 4.08% 4 100.00% 0 /
exon 18 4 100.00% 4 100.00% 0 /
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to the occurrence and development of GISTs. Around 15% of
GISTs have other genetic alterations, for example, in SDH family
genes, RAS family genes, BRAF, NF1, or other very rare driver
gene mutations (von Mehren and Joensuu, 2018b; Blay et al.,

2021b). Therefore, it is necessary to analyze the gene mutation
profile of tumor tissues. Although the cost of molecular detection
needs to be paid for additionally, the cost of molecular detection is
lower than unnecessary adjuvant or neoadjuvant treatment.

FIGURE 3 | Missense3D predicts the tertiary structure changes introduced by KIT p.Ser476Ile.
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In this study, the molecular detection method we chose was
targeted next-generation sequencing for nine GIST-related genes.
Different from the traditional Sanger sequencing, NGS
sequencing can detect molecular variations in multiple genes
at the same time. Its outstanding advantage is higher detection

sensitivity. NGS sequencing can capture the secondary drug
resistance mutation earlier than Sanger sequencing that
provides more valuable reference information for the
treatment strategies of advanced patients. We found that four
patients carried PDGFRA-D842V in 73 primary patients. The
aforementioned information suggests that patients should be
cautious when choosing IM for treatment. Briefly, in the
current study, a gene panel consisting of 158 CDS regions in
nine genes, which have clinical interest for the GIST, was tested for
targeted sequencing. The genetic profiles of 106 GIST patients were
comprehensively analyzed by a 9-gene targeted next-generation
sequencing panel. It shows that KIT was the most frequent driver
gene. Of all patients, 13.21% (14/106) patients had two or more
mutations. KITmutations or PDGFRAmutations were detected to
be mutually exclusive in the GIST. In addition, the significance test
of the Kendall correlation coefficient showed that theKITmutation
was negatively correlated with the BRAF mutation and SDHB
mutation (p < 0.01). Although the analysis results showed a
significant correlation, they could not represent the actual
clinical situation because there was only one case of BRAF and
SDHBmutation respectively. However, we found similar results in
other studies (Corless et al., 2011b; Kondo et al., 2020). Different
types of molecular tumor drivers are related to the primary
anatomical site. GIST-bearing KIT mutations were located in
the small intestine (51/94,54.26%) or stomach (36/94,38.30%).
All of KIT exon 9 mutations were not observed in the stomach.
Mutations of PDGFRA were observed in the primary gastric GIST.

Our study identified that 88.68% (94/106) of the cases carried
KIT mutations, 3.77% (4/106) of cases harbored PDGFRA
mutations, and 7.56% (8/106) of cases were characterized as
WT-GISTs. The KIT mutation incidence was higher than that
reported in a previously published literature study, and the
PDGFRA mutation incidence was lower than others’ published
literature which could be attributed to different sample sizes,
populations, and detection sensitivity. The KIT mutation was
distributed in exons 4, 9, 11, 13, and 17 that contain different
types of variation, such as point mutation, duplication, and small
fragment deletions. Exon 11 (74/94, 78.72%) accounted for the
highest proportion of mutations. The codon mutation (61/94,
64.89%) was the most common variant carried in KIT exon 11. In
total, 47.54% (29/61) of patients were involved in 557/558
deletion. All patients with the KIT exon 9 mutation carried
p.Ala502_Tyr503 duplicate mutation except for one missense
mutation (p.Ser476Ile) case.

TABLE 3 | Clinicopathological feature correlation with molecular classification.

Characteristics KIT PDGFRA Wild-type p Value

Gender
Male 53 3 4 0.7065
Female 41 1 4

Age
≤55 33 2 2 0.6879
>55 61 2 6

Location of GIST
Stomach 36 4 2 0.0321
Others 58 0 6

Tumor size (cm)
≤2 4 1 1 0.2187
>2,<5 36 1 4
≥5 53 2 3

Mitotic count [x/HPF]
≤5/HPF 50 3 1 0.0563
>5/HPF 28 0 4

CD117
positive 86 3 5 0.0274
negative 1 0 2

DOG1
positive 77 3 5 0.4762
negative 10 0 2

CD34
positive 77 1 6 0.03637
negative 9 2 1

SMA
positive 9 0 0 1
negative 76 3 7

S-100
positive 1 0 0 1
negative 85 3 7

Desmin
positive 2 0 0 1
negative 83 3 7

SDHB
positive 81 3 6 0.3673
negative 3 0 1

Proliferation index of Ki67 (%)
≤5 52 3 5 0.7805
>5,< 10 10 0 1
≥10 24 0 1

TABLE 4 | Features of KIT exons.

Features Number
of

patients

% Location of GIST Mitotic count
[x/HPF]

Tumor size (cm) Proliferation index of Ki67 (%)

Stomach Non-
stomach

≤5/
HPF

>5/
HPF

≤2 >2,<5 ≥5 ≤5 >5,<
10

≥10

KIT 94 p-value =
0.000209

p-value =
0.1069

p-value =
0.3118

p-value =
0.001333

exon 4 1 1.06 0 1 1 0 1 0 0 1 0 0
exon 9 15 15.96 0 15 6 7 0 5 10 4 3 7
exon 11 74 78.72 35 39 42 18 3 29 41 46 7 14
exon 13 9 9.57 3 6 4 5 0 2 7 5 1 1
exon 17 7 7.45 0 7 2 4 0 3 4 0 3 4
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FIGURE 4 | Kendall correlation analysis between gene mutations and clinical features. Test of significance of the Kendall correlation coefficient: “*”, “**”, “***”
represent p < 0.05, p < 0.01, and p < 0.001, respectively.

FIGURE 5 | GO functional classification results of nine genes related to GIST (A) Circle Diagram of GO Molecular Function Enrichment (B) Bar Chart of GO
Molecular Function Enrichment.
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Lincoln SE et al. discovered that the pathogenic germline
mutations of tumor susceptibility genes had potential clinical
effects, such as clinical trial qualification and earlier detection or
prevention of the second primary cancer (Lincoln et al., 2020). We
set up a synchronous detection of germline variation to this study
and identified different pathogenic germline mutations in two
patients from 106 Chinese patients with the GIST. One patient
was a wild-type patient without somatic mutation, but one
pathogenic germline mutation of NF1 exon 18 p.R681 * was
tested. The other patient detected somatic mutations of KIT exon
9 p.A502_Y503dup and exon 17 p.N822Y and developed liver and
abdominal metastasis 2 years after initial surgery and IM treatment.
The pathogenic mutation KRAS-T58I was detected in the germline
molecular assay of this patient. In addition, we also obtained two
germline mutations of unknown clinical significance, PDGFRA-
S716R andNF1-R2713Q. NF1-L591Pwas a germlinemutation to be
identified for the first time and is not recorded in the database.

It is a great pity that there were several limitations to our study.
The 9-gene targeted next-generation sequencing panel used in
this study was too small for excavation of the complicated genetic
alterations in the GIST. Therefore, according to the specific
application scenario, there is space for upgrading and
optimizing the analysis of the GIST disease occurrence and
development and drug efficacy evaluation. Second, in our
study, the relapse-free or disease-free survival analysis was not
applicable due to the short median follow-up duration. Finally,
the functional evaluation of the germline gene variation has not
taken a closer study.

In conclusion, our study confirms the utility of the 9-gene targeted
next-generation sequencing panel to efficiently identify mutations
associated with GISTs. NGS can effectively expand our understanding

about the specific mutations of sensitivity in individualized treatment.
The occurrence and development of GIST is driven by different
molecular variations. Resistance to TKIs arises mainly with resistance
mutations in KIT or PDGFRA which may provide a genetic basis for
developing new GIST therapeutic drugs. Our results have important
implications for clinical management that supplies reference for
clinicians’ individualized diagnosis and treatment.
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