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Abstract
Background: Heterogeneous biological data such as sequence matches, gene
expression correlations, protein-protein interactions, and biochemical pathways can be
merged and analyzed via graphs, or networks. Existing software for network analysis
has limited scalability to large data sets or is only accessible to software developers as
libraries. In addition, the polymorphic nature of the data sets requires a more
standardized method for integration and exploration.
Results: Mango facilitates large network analyses with its Graph Exploration Language,
automatic graph attribute handling, and real-time 3-dimensional visualization. On a
personal computer Mango can load, merge, and analyze networks with millions of links
and can connect to online databases to fetch and merge biological pathways.
Conclusions: Mango is written in C++ and runs on Mac OS, Windows, and Linux. The
stand-alone distributions, including the Graph Exploration Language integrated
development environment, are freely available for download from http://www.
complex.iastate.edu/download/Mango. The Mango User Guide listing all features can
be found at http://www.gitbook.com/book/j23414/mango-user-guide.
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Background
In the present Big Data era, one of the great challenges is to be able to compare or inte-
grate diverse data types. Modern biological research produces large and heterogeneous
data sets, and there are many ways to categorize or display each type of data. The 2014
Nucleic Acids Research Database Special Issue counted 1552 online biological databases
[1]. It is often illuminating, even essential, to examine important biological problems
using different types of data. For example, new discoveries often emerge when a biologist
is able to interrogate gene expressions in the context of biological pathways [2]. A com-
mon method to analyze related data relies on graphs, or networks, where data of various
types are linked and key network features or subsets are identified [3–5].
Many graph analysis solutions have been written in Java, most notably Cytoscape

[6]. Started in 2002, Cytoscape has an impressive array of features. However, like other
Java programs, the software slows to non-operational levels when handling large (>1 M
link) biological networks due to Java Virtual Machine limitations [7]. Non-Java graph
tools either do not provide analysis functions, or provide only libraries which users
must incorporate into their own software solutions. Overall, many graph tools focus
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solely on one functionality, i.e., either analysis or visualization, and require users to inte-
grate two or more tools for one project. Multi-graph comparison and integration are
further complicated by differing graph attributes from heterogeneous data sets. Many
tools ignore or limit the number of attributes associated with a graph. A comparison
of currently available graph analysis and visualization software [6, 8–10] is given in
Table 1.
To address these limitations, we have developed a stand-alone graph analysis and visu-

alization software environment called Mango to aid biologists and other researchers
efficiently integrate and explore heterogeneous networks larger than previously possible.
A 4 million link network can be loaded into Mango in 30 seconds on a Mid 2010 Mac
mini computer with a 2.4 GHz (Gigahertz) Intel Core 2 Duo processor and 8 GB RAM
(random access memory). As a comparison, Cytoscape took 6 minutes to load that same
network file on the same computer using its default configurations. Mango possesses
the scalability to handle larger networks, the expressive power of a new Graph Explo-
ration Language (Gel) and the convenience of unlimited graph attributes with automatic
graph attribute merging and promotion. Within the integrated development environ-
ment, Gel commands can be edited, run line-by-line, or saved as scripts to reproduce
results. Script files enhance the speed and reproducability of analysis [11]. Mango pro-
vides both comprehensive graph analyses and real-time 3-dimensional (3D) visualization.
Mango is a cross-platform C++ program that runs on Mac OS X 10.9 or later, Windows
7 or later, and many Linux variants. It is freely available from our website (http://www.
complex.iastate.edu/download/Mango) and the Mango User Guide is hosted at GitBook
(http://www.gitbook.com/book/j23414/mango-user-guide).

Implementation
The Mango user interface

Mango updates its display in real-time at each stage of analysis to facilitate the integration
and modification of multiple large networks. Mango contains a primary window divided
into four areas (Fig. 1). The graph canvas area is fully interactive, responding to mouse
and keyboard actions to zoom, move, rotate, and auto-layout the displayed graphs. By
dragging and rearranging tabs, multiple graphs can be viewed simultaneously, easing
multi-network comparison. Mango functions are mostly carried out through its com-
mand console or Gel code editor. The Gel code editor allows commands to be run
line-by-line, edited, and saved as Gel script files. Gel script files can then be shared among
researchers, reproducing a 3D layout or network analysis pipeline. Finally, the data area
lists currently loaded graphs, their sizes and attributes. Interactive real-time network visu-
alization inMango helps hone and refine each step of analyses. Mango is built on multiple
layers of implementation that are seamlessly combined to form an integrated solution for
graph analysis (Fig. 2).

The Graph Exploration Language (Gel)

A graph is defined as a set of nodes (V ) and links (E) where a node represents some entity
and a link represents a relationship between a pair of entities. In practice, graphs also have
added annotations called attributes. Currently, Gel provides four basic data primitives
string, int, float and double as well as aggregate data types node (Vattr), link (Eattr) and
graph.

http://www.complex.iastate.edu/download/Mango
http://www.complex.iastate.edu/download/Mango
http://www.gitbook.com/book/j23414/mango-user-guide
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Table 1 Comparison of graph visualization software
Software Code Graph analysis features Visualization Limitations

Cytoscape Java · Many algorithms for systems biology · 2D predetermined layout · Can only merge 2 graphs at a time

(v. 3.2.1) · Can add GO or KEGG attributes · 3D predetermined layout (via plug-in) · 6 min to load a network with 4 M links

· Plug-ins available · but no visual afterward

Gephi Java · Intuitive graph statistics · 2D and 3D layouts but graphs cannot be · Cannot display multiple graphs on one

(v. 0.8.2) · Automated graph algorithm citation rotated in 3D screen

· Generalized for all types of graphs · Graph layout animation helps maintain · Limited by JVM constraints; cannot load

· Plug-ins available mental map a network with 4 M links

GUESS Java · GYTHON, a language for graph analysis · 2D layout only · Cannot be run on MacOS 10.9, Windows

· Can map information attributes to visual · Update with user commands 7, or Redhat Linux 6.0

attributes

Graphviz C · No graph analysis capabilities · Rich set of predetermined 2D layouts · Not an interactive system

· Streamlined command line interface · Cannot efficiently handle graphs over
100 nodes

Neo4j Java · Graph database system · Relies on JSON for visualization · Designed as a backend to database sup-

(v. 2.1.7) · Cypher graph query language · 2D layouts only port rather than for visualization

· Queries are based on a combination of · Have to click a node or link to see its · Nodes are only labeled by numbers

topology and attributes attributes on a separate panel · The whole database is one huge graph

Tulip C++ · A set of C++ libraries for graph analysis · 2D visualization · More useful to users who program C++

(v. 4.6.1) · Can also be run as stand-alone program · 3D is available through plug in or python directly

· Plug-ins can be created in Python · Had some 3D layout algorithms · More analysis than visualization features

NetworkX Python · Python module for graph analysis · Must export to other software or · Useful only as an analysis tool

(v. 1.6.1) · Rich set of network algorithms modules for visualization

Mango C++ · Provides general graph mathematics · Interactive 3D layouts and controls · Does not yet have plug-in feature

(v. 1.10) · Heterogeneous graph analysis with ease · Real-time large graph visualization · Does not yet use GPU speedup

· Takes ∼30 s to load a 4M link network · User customizable visual attributes · Limited set of preset layouts

Benchmarks were performed on a 2010 Mac mini that has 8 Gb RAM and runs 64-bit MacOS X 10.9 with a 2.4 GHz Intel Core 2 Duo processor. All software were run using their default configurations
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Fig. 1 Mango user interface. The main window is divided into four areas: data list (left), graph canvases
(middle 3D visualizations), Gel editor (bottom left), and Gel command console (bottom right). Shown in the
graph canvas area are the following networks: Left column: WGCNA correlation network, KEGG biological
pathway network and their combined networks; Middle column: crown-plot of the intersection network
between correlation and pathway networks and extracted hub genes sub-network; and Right column: hub
and in-betweener genes laid out in a bipartite graph where nodes are labeled by gene names

G = {V ,E} where V = {v1, v2, v3, ..., vn}
E ⊆ {(vi, vj)|vi, vj ∈ V }

Vattr = {a1, a2, a3, ..., am1 |type(ai) ∈ {int, float, double, string}}
Eattr = {a1, a2, a3, ..., am2 |type(ai) ∈ {int, float, double, string}}

Fig. 2 System architecture. The Mango software is made up of multiple code layers seamlessly stacked up to
form the stand-alone program. The GPU speedup layer is not included in some Mango versions
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Each nodes and link type can have any number of attributes of the four primitive
types in any order, and each of the attributes has a distinct name and specified data type
(e.g. string, int, float, and double). The first attribute in a node type must be a string to
denote the node name, and a link is identified by a pair of node names. All node and
link attributes have default values, which are usually zero for numeric types or the empty
string, but users can define other default values during node and link type declarations.
Graphs are defined based on a pair of node and link types. For example, the following Gel
code defines and initializes two graphs GA and GB, also shown in Fig. 3a. Node type and
link type are defined with the given attributes inside parentheses and brackets; the brack-
ets denote non-directional link types (whereas arrows <> denote directional link types).
For example, GA is declared with ntA and ltA, and is also initialized by the graph literals
enclosed within the braces.

node(string id, int count) ntA;
link[float weight] ltA;
graph(ntA,ltA) A = {("a",1)[0.4]("b",2)[0.4]("d",4), a[0.8]("c",3)};

node(string id, string tag) ntB;
link[float weight] ltB;
graph(ntB,ltB) B = {("b","g")[0.3]("d","m")[0.3]("e","c"), b[0.2]("c","g")[0.2]e};

Other than defining a graph in the native graph exploration language, Mango can read
graph data in tabular or CSV (comma separated values) format using the import com-
mand. A properly formatted graph file lists nodes with their attributes and then links with
their attributes. A single line containing a hyphen separates the node list from the link
list. The full description of the import command is in the Mango User Guide.

Fig. 3 Graph Exploration Language examples. a Graphs A and B have different node attributes. Graph C is
the result of attribute merging and promotion of A and B. b Graph mathematics. Given two graphs A and B,
the dotted addition A .+ B combines nodes and links from graph A and graph B. The non-dotted addition A +
B combines graph A with links of Graph B whose end nodes are already contained in graph A. Graph
subtraction works similarly. Graph mathematic results depend on operand order; attribute merging and
promotion are handled automatically as described in the main text but are not shown in this figure
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Mango system-defined graph attributes are appended to user defined attributes. The
system-defined attributes are related to the 3D visualization of a network and define such
attributes like node position, node color, or link width. Therefore, generating any 3D visu-
alization is a matter of mapping user defined information attributes to system defined
visualization attributes [12]. By dynamically changing these mappings, animations and
simulations can be accomplished in Mango. A full listing of the visualization attributes is
in the Mango User Guide.

Standards for combining heterogeneous graphs

When combining two or more graphs, much of the confusion stems from what will
happen to the nodes and links. Since a graph contains both node and link sets, our for-
mally defined dotted and non-dotted graph mathematic operators allow users to specify
node-centric or link-centric operations precisely. Recall the two graphs GA and GB.

GA = {VA,EA} GB = {VB,EB}

Merging nodes and links is represented by the dotted addition.

GA . + GB = {VA ∪ VB,EA ∪ EB}

However, suppose that the user is only concerned with the nodes in GA, such as a set of
important genes, and merely wants to combine the new links between those genes from
GB. The non-dotted addition merges links from GB only between nodes already in GA.

GA + GB = {VA,EA ∪ {(vi, vj)|vi, vj ∈ VA, (vi, vj) ∈ EB}}

In a similar fashion, dotted and non-dotted subtraction between two graphs are defined
as follows.

GA . − GB = {VA \ VB, (vi, vj)|(vi, vj) ∈ {EA \ EB}, vi, vj ∈ {VA \ VB}}
GA − GB = {VA,EA \ EB}

Other operations such as producing intersections and bipartite graphs are defined as
follows.

GA .& GB = {VA ∩ VA,EA ∩ EB}
GA & GB = {VA,EA ∩ EB}
GA ∗ GB = {VA ∪ VB,EA ∪ EB ∪ {(vi, vj)|vi ∈ VA, vj ∈ VB, vi �= vj}}

GA ∗ ∗ GB = {VA ∪ VB,EA ∪ EB ∪ {(vi, vj)|vi ∈ VA, vj ∈ VB}}

The abovemathematics can be extended across multiple graphs to create unions (GA .+
GB .+GC), differences (GA .−GB .−GC orGA−GB−GC), intersections (GA .&GB .&GC)
and inverse graphs (GA ∗ GA − GA). The graph operations can be mixed and matched to
produce more complex results. Figure 3b demonstrates a few of the graph mathematics
visually.
When graphs are combined in mathematical operations, attributes from two graphs

might conflict. For example, the link between b and d nodes in GA may have a weight
attribute of 0.4 while the link between b and d nodes in GB may have a weight attribute
of 0.3. Gel handles attribute conflicts by giving preference to the left operand. During the



Chang et al. BioDataMining  (2016) 9:25 Page 7 of 14

operation GA . + GB, the left operand GA takes precedence and the resulting graph will
have weight value 0.4. An exception to this rule is when the conflicting attributes in GA
happen to be at their default values (default values can be defined by users). In those cases,
the attributes of graph GB will be copied. This automatically merges useful non-default
information from GB into the resulting graph.
When heterogeneous graphs are combined, their unique attributes can be selectively

preserved. Recall that the nodes in GA have attributes id and count while nodes in GB
have attributes id and tag.

VA,attr = {id, count} EA,attr = {weight}
VB,attr = {id, tag} EB,attr = {weight}

Because nodes in GB only share the id attribute with GA, when GB is added to GA as in
GA. + GB, the count attribute of nodes copied from GB is automatically set to the default
value 0 but their tag attribute is ignored. To preserve both GA and GB attributes, users
can define a new node type that includes all attributes. This is called attribute promotion.
In our example, a new node type containing id, count and tag attributes is defined and
used by the new GC to receive all attributes from GA and GB.

VC,attr ={id, count, tag} EC,attr = {weight}

However, simply writing GC = GA . + GB will not work as the tag attribute from GB
is already lost after the addition of GB to GA but before the result is assigned to GC . The
correct steps to preserve graph attributes during heterogeneous graph mathematics are
demonstrated below (Fig. 3a):

node(string id, int count, string tag) ntC;
link[float weight] ltC;
graph(ntC, ltC) C=A; // copy id and count attributes from graph A
C.+=B; // then merge with tag attributes from graph B

Flexible node and link type definition coupled with an intuitive set of attribute pro-
motion and merging rules ease the combination of heterogeneous graphs in Gel. Thus
users can focus on graph level operations instead of attribute level selection, sorting, and
merging.
Many graph analyses require traversing all nodes and links to perform a calculation

based on graph attributes or topology. Gel provides the select command to pull out a
subgraph based on user-defined conditions. These conditions can be related to stored
attribute values or topology properties. Gel also allows mapping or computing new
attribute values across a graph on a per-node or per-link basis with the foreach com-
mand, which efficiently applies a set of user-defined calculations across all nodes or links
that optionally meet certain conditions. The same command can also be used to tally
attribute values across all nodes and links. The following demonstrates the two types of
Gel commands:

graph(nt,lt) hubs = select node from A where in+out>3;
graph(nt,lt) thresh = select link from A where weight>0.2;
foreach link in thresh where weight>1.0 set weight=1.0;
foreach link in thresh set _r=weight, _g=weight, _b=weight;
foreach node in hubs where type=="gene" set _radius=0.2+(in+out)/2.0,count++;
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In addition to the data types, graph mathematics, automatic attribute handling and
traversal commands; Gel also provides commands for object modification, data examina-
tion, input and output, code execution, graph construction, and simulation. A growing set
of built-in functions for mathematics, visualization control, graph layouts, and statistical
reporting are also provided. To explore all Gel commands and functions, type the help
command in Mango or consult the online User Guide.
The Mango system and its Graph Exploration Language are data agnostic, meaning

that any type of network can be loaded and analyzed – users have total control of node
and link attribute definitions and their associations within Mango. Our goal is to make
this software widely available to all researchers and promote its use in solving ever more
complex biological research problems.

KEGG connect

The KEGG Connect dialog demonstrates how Mango can fetch network data directly
from online biological databases. KEGGConnect queries the KEGG (Kyoto Encyclopedia
of Genes and Genomes) database (http://www.genome.jp/kegg) and selectively down-
loads pathways grouped by organisms. Within the downloaded pathway, nodes maintain
their 2-dimensional (2D) coordinates from the KEGG visualization. The nodes are col-
ored red, blue, green and yellow representing pathway maps, compounds, genes, and
orthologs respectively (Fig. 4). Multiple pathways can be downloaded either as individual
networks or as one merged network. If multiple networks are merged, each pathway will
be given a different z coordinate value, so the pathways are layered in 3D space.We intend
to connect Mango to more biological databases soon.

Results and discussion
We present a few network analysis examples to illustrate the use of Mango in this section.
Examples of comparing different types of biological networks and the scalability ofMango
to large networks are provided.

Fig. 4 KEGG Connect. (Left) The KEGG Connect dialog lists currently available organisms and pathways in the
KEGG database. Users can fetch multiple pathways individually or merge them into one network by checking
the “Merge Fetched Pathways” box. (Middle) Mango maintains the x-y coordinates from KEGG website
drawing and colors nodes red (pathway map), green (enzymes), blue (compounds), and yellow (orthologs).
(Right) Corresponding KEGG website drawing for the same pathway

http://www.genome.jp/kegg
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Network data collection

Four large E. coli network data sets were collected. The corr 4 M link network was com-
puted using the WGCNA (weighted gene coexpression network analysis) package in R
[13] on microarray data measuring the expression of 4454 E. coli genes in cells grown
under 10 different conditions (GSE61736, [14]). The path biological pathways of E. coli
were downloaded from the KEGG database (http://www.genome.jp/kegg) and combined
into a single pathway network. The go network was constructed using E. coli GO (gene
ontology) information retrieved from the gene ontology website (http://geneontology.
org/page/download-annotations); E. coli genes that share at least one GO term are linked.
Finally, the protein-protein interaction (ppi) network was retrieved from the supplemen-
tary materials of a 2014 paper [15]. Sizes and attributes for the 4 large networks are
summarized in Table 2.

Large heterogeneous network comparison

For all networks, nodes are identified by gene names with no additional attributes, thus
the following node type declaration can be shared among the networks:

node(string name) nt;

All networks have undirected links but differ in their link attributes (the path network
does not contain any link attributes), thus the following 4 link type declarations are used
to load the different networks:

link[float corr_weight] corr_lt;
link[] path_lt;
link[int count, string go_terms] go_lt;
link[string source] ppi_lt;

After the node and link type declarations, the corr network, path network, go network,
and ppi network can be imported into Mango for all-to-all network comparisons:

graph(nt,corr_lt) corr = import("wgcna.csv");
graph(nt,path_lt) path = import("kegg.csv");
graph(nt,go_lt) go = import("go.csv");
graph(nt,ppi_lt) ppi = import("ppi.csv");

For the integration of the networks, a common link type including all available link
attributes is declared:

link[float corr_weight, int count, string go_terms, string source] c_lt;

Table 2 Summary of 4 large heterogeneous biological networks for E. coli

Network Nodes Links Node attribute(s) Link attribute(s)

corr 4,454 4,408,269 gene name WGCNA correlation weight

path 2,353 6,703 gene name none

go 3,764 2,208,090 gene name count and string of shared GO terms

ppi 2,042 3,888 gene name source of evidence (Y2H, LIT or both)

Unconnected nodes and duplicate links have been removed from some of the networks. In all 4 networks, nodes are identified by
gene names and differ in their link attributes

http://www.genome.jp/kegg
http://geneontology.org/page/download-annotations
http://geneontology.org/page/download-annotations
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Once the networks are loaded into Mango, Gel mathematics allow network integra-
tion and comparisons. For example, the comparison of the corr and path networks are
visualized in the top two panels in the left column of Fig. 1. The top middle panel in Fig. 1
is the result of the following Gel intersect operation.

// intersection of path and corr networks
graph(nt,c_lt) intersect = path .& corr;

The corr-path intersection network contains 961 links with 1020 nodes. The all to all
comparisons of these four networks were completed in Mango and the common links
among the networks were summarized in Fig. 5. All possible intersections among the four
E. coli networks can be worked out with a few lines of Gel code each. Bench-marked time
for different types of Gel mathematics between the large corr and path networks are listed
in Table 3.

Flexible real-time network exploration and visualization

Over-plotting of nodes and links becomes more of a challenge as network sizes get big-
ger. For example, the corr and path networks and their combination can be visualized in
Mango but provide limited biological interpretation (the left column of panels in Fig. 1).
In this example, we continue to explore the intersection of the two networks by querying
certain node and link attributes, imposing thresholds to reveal important features, and
map these features to network visualization.
First we arrange all nodes in the intersection network along a circle in the x-y plane and

map the node connectivity to their z-axis coordinates. Nodes are assigned random colors
and higher z-axis node colors are bled down the links to emphasize hubs. Nodes above a
threshold are emphasized by increasing their radius and labeling them with gene names
and connectivity.

Fig. 5 Biological network comparisons. Link intersections among the corr, path, go and ppi networks. The
intersections were worked out using Gel commands. WGCNA is the gene-to-gene correlation network corr
computed from E. colimicroarray data. PPI is the protein-protein interaction network ppi of E. coli. GO is the
network go that connects any two E. coli genes sharing at least one gene ontology term. KEGG is the entire
KEGG biological pathway network path of E. coli
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Table 3 Benchmarking the speed of Gel mathematics on massive graphs

Gel operation . Time (in seconds) Average

4M+ = 8 K 0.92, 0.35, 0.27, 0.60, 0.56 0.54

8 K+ = 4M 1.25, 1.15, 1.03, 1.02, 1.02 1.09

4M− = 8 K 0.52, 0.33, 0.62, 0.33, 0.25 0.41

8 K− = 4M 1.09, 1.28, 1.09, 1.16, 1.19 1.16

4M .+ = 8 K 0.69, 0.60, 0.57, 0.31, 0.40 0.51

8 K .+ = 4M 12.06, 12.09, 12.05, 12.23, 12.32 12.15

4M .− = 8 K 0.55, 0.41, 0.25, 0.26, 0.32 0.36

8 K .− = 4M 0.90, 0.85, 0.83, 0.98, 0.74 0.86

4M∗ = 8 K 22.94, 23.74, 23.35, 22.98, 23.03 23.21

8 K∗ = 4M 36.75, 35.33, 35.23, 35.38 35.67

copy = 4M 7.90, 7.76, 7.85, 7.73, 7.87 7.82

copy = 8 K 0.30, 0.52, 0.45, 0.34, 0.29 0.38

The 4 M link network is the gene correlation network generated by WGCNA. The 8 K link network is the combined KEGG pathway
network. Benchmarks were performed consecutively on a 2010 Mac mini that has 8 Gb and runs 64-bit MacOS X 10.10 with a 2.4
GHz Intel Core 2 Duo processor. The time to copy the networks is also listed. All operations, including the copy operation, were
performed using single thread in RAM

layout(intersect,"circle");
foreach node in intersect set _z=(in+out);
foreach node in intersect set _r=rand(),_g=rand(),_b=rand();
foreach link in intersect where in._z>=out._z set _r=in._r,_g=in._g, _b=in._b;
foreach link in intersect where in._z<out._z set _r=out._r,_g=out._g, _b=out._b;

// Label nodes by connectivity to choose a threshhold
foreach node in intersect set _text=(in+out);

// Emphasize hubs
foreach node in intersect where (in+out)>10 set _radius=0.8;
foreach node in intersect where (in+out)<=10 set _text="";

The resulting network layout, called a crown-plot, is shown on the top pane in the
middle column of Fig. 1. The hub genes and their links can be pulled into a new sub-
network. The sub-network called hubs is then flattened and spread out using a force-
directed layout built into the graph panel by right-clicking on the panel. The hub genes
are raised one level. Genes that are not themselves hubs but connect two or more hubs
are raised to a third level. The following Gel code accomplishes all these except the force-
directed layout, which is performed by right-clicking on the panel:

auto hubs = select link from intersect where in._radius>0.3 || out._radius>0.3;
foreach node in hubs set _x=rand(-5,5),_y=rand(-5,5),_z=0;
/* right click on graph to start and stop force-directed algorithm */
foreach node in hubs where _radius>0.3 set _z=3;
foreach node in hubs where __radius<0.3 && (in+out)>1 set _z=6;

The 3-layer hubs network is shown in the lower panel in the middle column of Fig. 1,
which contains other genes on the bottom layer, hub genes on the middle layer and in-
betweener genes on the top layer. It is worth mentioning that the in-betweener genes
on layer 3 would have been obscured by other genes in a simple list of genes ordered
by connectivity. We can further pull out the hubs and in-betweeners into another sub-
network for closer inspection with the following Gel code:

auto bipartite=select node from hubs where (in+out)>1;
int i=-20; foreach node in bipartite where _radius>0.3 set _x=-10,_y=i, i++;
i=-50; foreach node in bipartite where _radius<=0.3 set _x=10,_y=i, i++;
foreach node in bipartite set _text=name;
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This sub-network is laid out as a bipartite graph shown on the right panel in Fig. 1,
with hubs on the left and the in-betweeners on the right. This example shows how to
map informational attributes of a graph to its visual attributes usingMango. The resulting
visual displays help the user decide threshold values, extract sub-networks of interest, and
further explore the data.

Microarray expression combined with KEGG biological pathways

E. coli gene expression under control and multiple treatment conditions were measured
by microarrays (GSE61736, [14]). A subset of the data containing one control and one
treatment expression values was loaded into Mango and overlaid onto downloaded E. coli
KEGG biological pathways. The expression data, E. coli KEGG pathways, and Gel script
are available for download from https://github.com/j23414/Mango_Workshop.
The results of the visualization can be seen in Fig. 6. Genes are colored green or red

where their expression levels are up or down relative to the control condition. KEGG
pathway components that do not have mapped gene expression values are colored gray.
Compounds are colored blue and are largely ignored although they could be used to incor-
porate metabolomic concentration values. The Gel commands to color gene nodes are
given below:

foreach node in sum where tr2==control && type=="gene" set _r=0.2,_g=0.2,_b=0.2;
foreach node in sum where tr2>control && type=="gene" set _r=0,_g=1,_b=0;
foreach node in sum where tr2<control && type=="gene" set _r=1,_g=0,_b=0;

Fig. 6 Gene expression combine with KEGG. A 3D KEGG network visualization comparing the E. coli gene
expression values obtained under a treatment condition and a control condition. In addition to coloring and
resizing the genes (i.e., node) of the network based on expression changes related to the control, pathway
links are also highlighted in green or red depending on up or down expressed genes they connect in a
pathway. The highlighted links allow a whole pathway to be easily discerned as up or down regulated

https://github.com/j23414/Mango_Workshop
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More than coloring nodes in a network, we are able to color the links and thereby
highlight entire pathways that are up or down-regulated. This is possible because KEGG
pathways also contain gene to gene links, not just gene to compound links.

foreach link in sum where in._r==out._r && in._r>0.5 set _r=1,_width=4;
foreach link in sum where in._g==out._g && in._g>0.5 set _g=1,_width=4;

The final network can be saved and reloaded to regenerate the same 3D visualization.

save "sum.txt",sum;
clear; // clears all data objects
run "sum.txt"; // reloads the sum network

Mango networks are saved natively into Gel commands, thus running the saved code
recreates the original graphs in Mango. In addition, the networks can be exported to
tabular data using the export command. The tabular data can then be read by many
other software programs, e.g., Excel, R, Matlab, Cytoscape, and other graph software
or databases. Full descriptions of the interoperability and other features of Mango are
available in the User Guide.

Conclusion
We have developed a powerful new program Mango for multi-network analysis
and visualization. Mango enables scientists to test hypotheses on large heteroge-
neous networks, identify crucial features, and extract analysis results all within
its integrated environment. Compared with existing programs, Mango extends the
capability and convenience of large heterogeneous data analysis on a personal
computer.
The Mango system was designed to be data agnostic, meaning that any type of net-

work data can be loaded and analyzed – users have total control on node and link
attribute definitions and their associations within Mango. Mango can load networks
with millions of links, integrate and explore large amounts of data following Gel com-
mands, and help users deduce predictions or outcomes that can be validated in labs.
It is our goal to make this software widely available to all researchers to promote its
use in solving ever more complex biological research problems. As Mango developers,
we will continue to provide support and further develop the software according to user
needs.

Availability and requirements
• Project name:Mango 1.24.
• Project home page: http://www.complex.iastate.edu/download/Mango/
• Operating system(s):Mac OS X 10.9 or later, Windows 7 or later, and Linux

variants. Both 32- and 64-bit operating systems are supported.
• Programming language: C++
• Other requirements: An Internet connection for online database access.
• License: Free versions available; specific license agreement included with each

distribution.
• Any restriction to use by non-academics: Specific restrictions included with each

distribution and license agreement.

http://www.complex.iastate.edu/download/Mango/


Chang et al. BioDataMining  (2016) 9:25 Page 14 of 14

Abbreviations
2D, 2-dimensional; 3D, 3-dimensional; CSV, comma separated values; Gel, graph exploration language; GO, gene
ontology; GHz, Gigahertz; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein-protein interaction; RAM,
random access memory; WGCNA, weighted gene correlation network analysis
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