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Abstract

Introduction

Aerobic capacity is a strong predictor of cardiovascular mortality. Whether aerobic capacity
influences myocardial ischemia and reperfusion (IR) injury is unknown.

Purpose

To investigate the impact of intrinsic differences in aerobic capacity and the cardioprotective
potential on IR injury.

Methods

We studied hearts from rats developed by selective breeding for high (HCR) or low (LCR)
capacity for treadmill running. The rats were randomized to: (1) control, (2) local ischemic
preconditioning (IPC) or (3) remote ischemic preconditioning (RIC) followed by 30 minutes
of ischemia and 120 minutes of reperfusion in an isolated perfused heart model. The primary
endpoint was infarct size. Secondary endpoints included uptake of labelled glucose, content
of selected mitochondrial proteins in skeletal and cardiac muscle, and activation of AMP-
activated kinase (AMPK).

Results

At baseline, running distance was 20317 m in LCR vs 190551 m in HCR rats (p<0.01).
Infarct size was significantly lower in LCR than in HCR controls (49+5% vs 68t5%, p =
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0.04). IPC reduced infarct size by 47% in LCR (p<0.01) and by 31% in HCR rats (p = 0.01).
RIC did not modulate infarct size (LCR: 525, p>0.99; HCR: 69+6%, p>0.99, respectively).
Phosphorylaion of AMPK did not differ between LCR and HCR controls. IPC did not modu-
late cardiac phosphorylation of AMPK. Glucose uptake during reperfusion was similar in
LCR and HCR rats. IPC increased glucose uptake during reperfusion in LCR animals (p =
0.02). Mitochondrial protein content in skeletal muscle was lower in LCR than in HCR (0.77
10.10 arbitrary units (AU) vs 1.091£0.07 AU, p = 0.02), but not in cardiac muscle.

Conclusion

Aerobic capacity is associated with altered myocardial sensitivity to IR injury, but the cardio-
protective effect of IPC is not. Glucose uptake, AMPK activation immediately prior to ische-
mia and basal mitochondrial protein content in the heart seem to be of minor importance as
underlying mechanisms for the cardioprotective effects.

Introduction

Aerobic capacity is a strong predictor of cardiovascular mortality [1-3]. Regular exercise
increases aerobic capacity and favourably adjusts many known cardiovascular risk factors of
coronary artery disease [4]. In contrast, sedentary lifestyle and low aerobic capacity may
increase the risk of coronary artery disease by increasing the same risk factors [3,5], and even
cause obesity and metabolic syndrome, which may further complicate the disease profile. The
level of daily physical activity and exercise can modulate aerobic capacity, but other factors
such as genetic background also contribute [6]. Aerobic capacity may not only influence car-
diovascular mortality by modulating risk factors but also by influencing susceptibility to ische-
mia reperfusion (IR) injury [7].

A common method to induce cardioprotection is ischemic conditioning, which consists of
brief non-lethal episodes of ischemia and reperfusion prior to a lethal period of ischemia [8,9].
The concept of ischemic conditioning can be applied locally on the heart as ischemic precondi-
tioning (IPC) or as remote ischemic conditioning (RIC), which is a more clinically applicable
approach [10]. IPC and RIC have shown substantial cardioprotective effect in preclinical stud-
ies, but translating the favourable effect to significant clinical benefits remains challenging
[11,12]. Most preclinical studies have been performed in healthy young animals that do not
represent the complex nature of a clinical population suffering from acute myocardial infarc-
tion [13]. Differences in aerobic capacity may reflect parts of the variation in a clinical setting,
and exercise has been shown to interact and even share mechanisms with conditioning strate-
gies [14].

The aim of the present study was to investigate the impact of aerobic capacity on IR injury,
and to study the influence of aerobic capacity on the cardioprotective efficacy of IPC and RIC
in an experimental model using hearts from rats with high or low running capacity.

Methods

Animals

We studied male rats selectively bred to be either high capacity (HCR) or low capacity (LCR)
runners. 48 HCR rats and 50 LCR rats were included in total. The development of the rat
model of HCR and LCR rats has been comprehensively described previously [15,16]. The rat
model displays two very distinct phenotypes which, in addition to large differences in running
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Fig 1. Study design. Study protocols used. LCR: Low capacity runners, HCR: High capacity runners, IPC: Local ischemic preconditioning, RIC: Remote ischemic
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capacity, present substantial differences in both aerobic capacity and also other characteristics
such as body composition, blood levels of lipids and glucose [15,17,18]. The rats used in the

current study were from the 26th and 40th breeding generation, and had a mean age of 8

months. All animals were housed at a constant temperature of 23°C with a 12-hour light-dark
cycle and allowed unlimited access to standard chow and water. All animals were tested for
running capacity according to standard procedure in the breeding programme [17].

All animal experiments were carried out in agreement with the Danish law for animal research
(Act. No. 1306 of 23/11/2007, Danish Ministry of Justice) and the guidelines from Guide for the
Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Pub-
lication No. 85-23, revised 1996). The Danish Animal Experimental Inspectorate approved the
experimental work (authorization id. 2012-15-2934-00623 and 2018-15-0201-01446).

Experimental protocols

All animals were subjected to 40 minutes of in vivo procedure, followed by isolation and in
vitro perfusion of the heart in the Langendorff model. Hearts were then subjected to 30 min-
utes stabilisation, 30 minutes global no-flow ischemia and 120 minutes reperfusion. HCR and
LCR rats were randomized to either: group I. Control, group II. IPC, or group III. RIC (Fig 1).

Control and IPC groups received no intervention during the in vivo procedure. IPC was

applied in the isolated perfused hearts by two cycles of 5 minutes of global no-flow ischemia
and 5 minutes of reperfusion prior to index ischemia. RIC was applied in vivo by three cycles
of 5 minutes limb ischemia and 5 minutes reperfusion. Limb ischemia was achieved with a
tourniquet around the right hind leg. Ischemia was verified by paling of the foot followed by

hyperemia during reperfusion.

Skeletal muscle samples from the tibialis anterior muscle were harvested quickly after isola-

tion of the heart. Cardiac muscle from the left ventricle was harvested in a separate series, after

40 minutes of stabilisation (Fig 1).

Isolated perfused heart model

Animals were anesthetized with pentobabiturate (100 mg/kg body weight (Skanderborg Phar-
macy, Skanderborg, Denmark)), connected to a rodent ventilator (Ugo Basile 7025 rodent ven-
tilator, Comerio, Italy), and ventilated with atmospheric air during the in vivo procedure and
the isolation of the heart. The isolated perfused heart model was performed according to stan-
dard protocol in our laboratory, as previously described [19,20]. The rats underwent laparotomy

and thoracotomy, the hearts were rapidly dissected free from the surrounding structures, and a

In vivo procedure In vitro perfusion
I ) : I Stabilisation ! Ischemia I Reperfusion !
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CONTROL [ ] L I ]
L_ 1pC [ ] [ H>5H5] ]

g —
t t

Harvest of skeletal Harvest of cardiac
tissue for western blot tissue for western blot

preconditioning. The whole protocol was performed at 37+0.5°C.

https://doi.org/10.1371/journal.pone.0240866.9001

t

Harvest of heart for
TTC staining

PLOS ONE | https://doi.org/10.1371/journal.pone.0240866 October 27, 2020

3/16


https://doi.org/10.1371/journal.pone.0240866.g001
https://doi.org/10.1371/journal.pone.0240866

PLOS ONE

Impact of aerobic capacity on ischemia reperfusion injury

ligature with a tourniquet was placed around the aorta. The animals were heparinized by injec-
tion of 1,000 IU/kg heparin bolus through the femoral vein. A cannula was placed in the ascend-
ing aorta and retrograde perfusion was established in situ with Krebs-Henseleit buffer (11 mM
glucose). The hearts were rapidly excised and mounted in a Langendorff apparatus and perfused
at a constant pressure of 80 mmHg. The perfusion buffer was equilibrated with 95% O, and 5%
CO, to maintain a pH between 7.35-7.45. The temperature was kept constant at 37+0.5°C during
the whole perfusion protocol. The left atrial auricle was resected and a balloon-catheter (size 7,
Hugo Sachs Electronics, March-Hugstetten, Germany), connected to a pressure transducer, was
inserted into the left ventricular cavity for continuous hemodynamic measurements. The balloon
volume was adjusted to obtain a left ventricular end-diastolic pressure of 7-10 mmHg. The coro-
nary flow was continuously measured by an in-line flow probe (Hugo Sachs Electronics, March-
Hugstetten, Germany). All data were acquired and digitally analysed using a dedicated core soft-
ware platform (Notocord Hem evolution, Croissy sur Seine, France).

Exclusion criteria were left ventricular developed pressure (LVDP) below 110 mmHg at the
end of stabilisation, coronary flow of more than 20 mL/minute or continuous ventricular
fibrillation during stabilisation or reperfusion.

Infarct size

At the end of reperfusion hearts were removed from the perfusion apparatus and immediately
frozen at —80°C for a minimum of 20 minutes and subsequently cut into ~1.5 mm slices. Slices
were immersed in 1% 2,3,5-triphenyltetrazolium chloride (Sigma, St Louis, MO, USA) at 37°C
and pH 7.4 for 3 minutes rendering vital tissue deep red and infarcted tissue pale. Hearts were
stored in 4% formaldehyde (Lillies Solution, VWR-Bie & Berntsen, Herlev, Denmark) for
20-28 hours to enhance the contrast between vital and infarcted tissue. Each heart slice was
weighed and scanned on a flatbed scanner (Epson Perfection V600 Photo Scanner, Epson
America). The area of left ventricle (LV), which corresponded to the area at risk (AAR), and
area of infarction (IS) were assessed manually by observer delineation using computer assisted
planimetry (Image] 1.46r, Wayne Rasband, National Institutes of Health, USA). Infarct size
was expressed as a percentage IS of AAR. Measurements were adjusted to the wet weight of
each individual slice. All analyses were performed in a blinded manner.

Glucose uptake

Myocardial glucose uptake rate was assessed from the rates of *H,O production from d-[2-*H]-
glucose added to the KH buffer [21,22]. The *H,0O was measured in perfusate samples of 1 mL
withdrawn at 9 and 29 minutes of pre-ischemic perfusion, and at 2, 3, 5, 10, 15, 20 and 30 minutes
of post-ischemic perfusion. Separation of *H,O from d-[2-*H]-glucose was performed by anion
exchange chromatography on an AG 1-X8 resin column (Bio-Rad Laboratories, Hercules, CA,
USA). The *H,O was dissolved in 10 mL OptiPhase scintillation solution (Perkin-Elmer, Shelton,
CT, USA) and the amount was quantified by B-scintillation counting on a Tricarb™ 2900TR lig-
uid scintillation analyser (Packard). The glucose concentration was calculated by dividing the dis-
integrations per minute by the specific activity of glucose in the perfusate. The results were
plotted against time and coronary flow at sample time, and the glucose uptake rate was calculated.

Western blot analyses

Western blot analyses were performed in two separate series. In the first series, we used cardiac
tissue to assess how IPC and RIC affected enzymes involved in substrate metabolism and
related the mitochondrial proteins: AMP-activated Kinase (AMPK), Acetyl-CoA Carboxylase
(ACCQC), Glycogen Synthase (GS), Prohibitin-1 (PHB1) and Voltage-dependent anion channel
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(VDAQ). In the second series we used both skeletal and cardiac tissue to assess the content of 3
mitochondrial proteins: Cytochrome c oxidase IX (COX IX), B-hydroxyacyl-CoA dehydroge-
nase (B-HAD) and citrate synthase (CS).

The Western blot analyses were performed in accordance with standard protocols, as previ-
ously described [23,24]. In short, frozen skeletal and cardiac muscle tissue samples were freeze
dried, homogenized, and adjusted for equal protein concentration. Equal amounts of protein were
separated with SDS-PAGE and electroblotted onto PVDF membranes. Membranes were blocked
for 2 hours in a TBST solution with 5% BSA and incubated overnight at 4°C in primary antibod-
ies. The following primary antibodies were purchased from Cell Signaling Technology and utilized
as follows: P-AMPK (#2531), AMPK (#2532), P-ACC (#3661), ACC (#3662), p-GS (#3891), GS
(#3886), PHB; (#2426), VDAC (#4661), COX 1V (#4844, conc. 1:1000 (skeletal muscle) and
1:3000 (cardiac muscle) 5% skim milk). The following primary antibodies were purchased from
Abcam and utilized as follows: CS (#ab96600, conc. 1:1000 5% BSA), B-HAD (#ab81492, conc.
1:1000 5% BSA). After incubation with primary antibodies, membranes were incubated with
horseradish peroxidase-conjugated secondary antibody at RT for 1 hour in a 1:5000 TBST solution
with 1% BSA (for COX IV a 1:10.000 solution was used). The proteins of interest were visualized
with chemiluminescent substrate (#1705061, BIO-RAD, Hercules, CA, USA). Arbitrary protein
intensity were quantified with an UVP imaging system (UVP, CA, USA) and normalized to the
total amount of protein loaded in the corresponding lane using Stain Free Technology [25,26].

In the first series, data are presented as fold change and phosphorylated proteins are
expressed relative to their non-phospohorylated from. In the second series, data are expressed
as arbitrary units.

Statistical analysis. Data are presented as mean + SEM, unless otherwise indicated. Statis-
tical analyses of infarct size, myocardial glucose uptake during stabilisation and activation of
signalling pathways were performed by one-way ANOVA. Two-way ANOV A with repeated
measurements was used for hemodynamic function and myocardial glucose uptake during
reperfusion. Bonferroni post hoc test was perfomed for multiple comparisons. Analyses of
mitochondrial protein content were performed by t-tests. All statistical calculations were per-
formed using GraphPad Prism (GraphPad Software, CA, USA). p<0.05 was considered signif-
icant. The required sample size was estimated from previously published work using the
isolated heart model [20].

Results
Animal characteristics

At age 3-4 months, the animals underwent treadmill tests, and the longest distance of three sepa-
rate runs was lower in LCR than HCR rats (2037 m vs 1905+51 m; p<0.01). At 8 months of age,
LCR rats had a significantly higher body weight than HCR rats (4636 g vs 384+7 g, p<0.01).

Infarct size

LCR rats had lower IS than HCR rats (49+£5% vs 68+5%, p = 0.04) (Fig 2). In both phenotypes,
IPC reduced IS compared to controls (in LCR rats: 49+5% vs 26+3%, p<0.01; and HCR rats:
68+5% vs 47+5%, p = 0.01). RIC had no effect on IS in either LCR animals (49+5% and
52+5%, p>0.99) or HCR rats (68+5% and 69+6%, p>0.99).

Hemodynamic function

Stabilisation. During stabilisation, LCR control rats had higher LVDP than HCR control
rats (9 minutes: p<0.03, 29 minutes: p = 0.01) (Table 1). Rate pressure procuctn (RPP) was also

PLOS ONE | https://doi.org/10.1371/journal.pone.0240866 October 27, 2020 5/16


https://doi.org/10.1371/journal.pone.0240866

PLOS ONE Impact of aerobic capacity on ischemia reperfusion injury

1001

804

601

IS/AAR (%)

401

209

(VL ”

CON IPC RIC CON IPC RIC
LCR HCR

Fig 2. Infarct size. Ratio of infarct size over area at risk. IS: Infarct size, AAR: Area at risk, LCR: Low capacity runners,
HCR: High capacity runners, CON: Control, IPC: Local ischemic preconditioning, RIC: Remote ischemic
preconditioning. * p<0.05, ** p<0.01. n = 9-10. Values are presented as mean + SEM.

https://doi.org/10.1371/journal.pone.0240866.9002

higher in LCR control rats than in HCR controls (29 minutes: p<0.01). IPC reduced LVDP
prior to index ischemia in LCR (p = 0.05) as well as HCR rats (p<0.01). RIC lowered heart rate
(HR) in LCR (p = 0.03) but not in HCR rats. Coronary flow did not differ between groups.

Reperfusion. During reperfusion, LVDP, HR and RPP were similar in LCR and HCR
control rats (Table 1). IPC increased LVDP at both 30 minutes (p = 0.04) and 120 minutes
(p<0.01) in LCR rats, whereas the increment in HCR rats was not statistically significant. IPC
also improved RPP at 30 minutes in LCR rats (p = 0.02). RIC did not change LVDP or RPP in
either LCR or HCR rats.

Enzymes involved in substrate metabolism and mitochondrial proteins

The ratio of pAMPK/AMPK did not differ significantly between LCR and HCR control rats
(Fig 3). IPC did not change the pAMPK/AMPK ratio in LCR rats. IPC increased the pAMPK/
AMPK ratio two-fold in HCR rats, but the increment did not reach statistically significance
(ANOVA p =0.6). RIC did not alter the pAMPK/AMPK ratio.

The absence of AMPK activation was supported by similar ACC and GS phosphorylation in
LCR and HCR animals, and none of the regulators were affected by IPC or RIC. Similarly, the
mitochondrial proteins PHB1 and VDAC were not affected by animal type or IPC and RIC.

Myocardial glucose uptake

Stabilisation. Myocardial glucose uptake was similar in all groups during stabilisation
(Fig 4).

IPC increased myocardial glucose uptake in LCR (p = 0.10) and HCR rats, but only statisti-
cally significantly in HCR rats (p<0.01). RIC did not change the glucose uptake.

Reperfusion. During reperfusion myocardial glucose uptake was higher in LCR controls
than in HCR control rats (p<0.01). IPC did not change the uptake in LCR rats. IPC increased
myocardial glucose uptake in HCR animals (p<0.01) (Fig 4).
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Table 1. Hemodynamic function. Representative timepoints of hemodynamic function during stabilisation and reperfusion.

Stabilisation Ischemia Reperfusion
9 min 29 min 10 min 30 min 120 min

Left ventricular developed pressure (mmHg)

CON 189+4 177+3 20+3 57+10 50+5
LCR IPC 190+5 12619 T 42+10 90+8 T 6913 11

RIC 180+5 172+4 22+4 46+7 39+5

CON 160+9* 15246 * 2146 43+8 37+4
HCR IPC 169+6 11616 ## 25+7 64+7 50+7

RIC 181+5 167+6 13+4 43+8 35+4
Heart rate (beats/min)

CON 231+11 270£19 223+14 265+16 288+15
LCR IPC 213+16 213%17 278+26 285+22 355+53

RIC 235+8 210+12 ¥ 229+18 269+18 281+18

CON 235+22 228+16 195+18 213£20 240+12
HCR IPC 239+12 225%12 194+13 209+11 251+13

RIC 217+12 224+12 233+14 219+7 243+12
Rate pressure product (beats/minxmmHg)

CON 43613+1891 4727142465 4351+850 144262269 14458+1629
LCR IPC 40756+3389 26842+42081t 1097242896 2479242300 T 249404254

RIC 42560+2044 36320+2334 ¥ 4622868 12449+2050 11445+1703

CON 37636 +4269 34338+2277 ** 4345+1609 9357+1916 9091+1391
HCR IPC 40396+2503 25931+1641 # 4821+1355 13386+1557 12494+1819

RIC 39161+2505 37184+2154 2902+1026 9356+1765 8308+1087
Coronary flow (mL/min)

CON 19+3 18+2 16+2 14+2 9+2
LCR IPC 17+1 18+1 1742 1542 11+2

RIC 15+1 14+1 13+1 12+1 8+1

CON 1943 18+2 16+2 14+2 9+2
LCR IPC 17+1 18+1 17+2 15+2 11+2

RIC 15+1 14+1 13+1 12+1 8+1

LCR: Low capacity runners, HCR: High capacity runners, CON: Control, IPC: Local ischemic preconditioning, RIC: Remote ischemic preconditioning, min: Minutes.
During stabilisation two single timepoints were used: before IPC (9 min) and after induction of IPC (29 min). During reperfusion three timepoints were used: 10, 30
and 120 minutes of reperfusion. Statistical analyses of reperfusion were performed as ANOVA with repeated measurements.

* represents comparison between LCR CON and HCR CON

t Represents comparison between LCR CON and LCR IPC

Y represents comparison between LCR CON and LCR RIC

# represents comparison between HCR CON and HCR IPC. One symbol p < 0.05, two symbols: p < 0.01.

n = 9-10. Values are presented as mean + SEM.

https://doi.org/10.1371/journal.pone.0240866.t001

Basal expression of selected mitochondrial proteins

COX 1V, B-HAD and CS were measured in control rats. The mitochondrial markers COX IV,
B-HAD and CS in tibialis anterior muscle were lower in LCR rats than in HCR rats (p<0.05,
p<0.01 and p<0.01, respectively) (Fig 5B). In cardiac muscle there were no differences in con-
tent of any of the mitochondrial proteins (Fig 5C).
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https://doi.org/10.1371/journal.pone.0240866.9003

Discussion

The main finding of the present study is that LCR rats are less sensitive to IR injury than HCR
rats, indicating that aerobic capacity may influence endogenous sensitivity to IR injury.
Despite this difference, the efficacy of IPC was preserved and equal in both phenotypes, indi-
cating that the cardioprotective potential was independent of differences in aerobic capacity.
RIC was not effective in either phenotype and may reflect a challenge in translating the effect
of RIC to an older rat model [27].

Here, we used a rat model that was derived from a genetically heterogeneous stock (N/

NIH) and developed by selective breeding based on running capacity as a surrogate marker of
aerobic capacity (16). Through generations of selective breeding, two distinct phenotypes have
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Fig 4. Myocardial glucose uptake. During stabilisation two sample points are displayed, one before IPC (9 min) and one after induction of IPC (29 min). During
reperfusion samples are displayed over time. LCR: Low capacity runners, HCR: High capacity runners, CON: Control, IPC: Local ischemic preconditioning, RIC:
Remote ischemic preconditioning, min: Minutes. * p<0.05, ** p<0.01, *** p<0.001. n = 5-9. Values are presented as mean + SEM.

https://doi.org/10.1371/journal.pone.0240866.9004

evolved [18]. LCR rats have progressed to a phenotype of metabolic syndrome including obe-
sity, elevated blood glucose, and high levels of insulin, triglycerides and free fatty acids [15]. In
contrast, HCR rats have developed to become resistant to development of risk factors such as
diet-induced obesity and insulin resistance [28]. The favourable phenotype in HCR animals
has been linked to longevity, as life expectancy is increased by 45% in HCR compared to LCR
[18]. It may be unexpected that infarct sizes in HCR rats were larger than in LCR rats because
cardiac IR injury is usually attenuated in models with exercise-trained animals with high aero-
bic capacity [29-32]. The high intrinsic aerobic capacity of HCR rats is a result of a primarily
genetic phenotype rather than characteristic of the exercise trained animal models [33]. Dur-
ing running, cardiac gene expression of HCR rats shows a preference for lipid metabolism in
contrast to a preferential carbohydrate metabolism in LCR hearts [34]. Carbohydrates are well
known preferential substrates in the heart during IR because of its superior energy efficiency
[35,36]. The altered metabolic phenotype, including a state of metabolic syndrome, is a con-
founding factor in LCR rats. The effect of the metabolic disarray may be close to a state of early
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Fig 5. Expression of selected mitochondrial proteins. (A) Representative blots for all groups. (B) Mitochondrial
protein analyses on skeletal muscle and (C) cardiac muscle. HCR: High capacity runners, LCR: Low capacity runners,
COX1V: Cytochrome c oxidase, complex IV, B-HAD: B-hydroxyacyl-coenzyme dehydrogenase, CS: Citrate synthase. *
p<0.05, ** p<0.01. n = 8 in all groups. Values are presented as mean + SEM.

https://doi.org/10.1371/journal.pone.0240866.g005

onset type-2 diabetes mellitus with activation of endogenous cardioprotective mechanisms
[20,37].

Our results are consistent with the findings by Heydal et al, who demonstrated similar or
even worse cardiac- and cardiomyocyte contractile function following myocardial infarction
in HCR rats compared to LCR rats, measured by echocardiography and isolated perfused
heart evaluation [38]. Hussain et al evaluated the cardiac output in LCR and HCR rats at base-
line and after IR injury in an isolated working heart model. In contrast to our results, they
demonstrated no difference in restoration of cardiac output following IR in rats at the same
age as ours [39]. The rats in the study by Hussain et al. originated from an early breeding gen-
eration (3rd), and the hemodynamic performance during stabilisation of the LCR vs HCR rats
did not correspond with our results. During stabilisation, we observed that the LCR rats pro-
duced a higher RPP than HCR rats in the absence of any HR differences, whereas Hussain
et al found higher cardiac output in HCR than in LCR rats [39]. Others, who have investigated
isolated hearts from HCR and LCR rats of a younger age found no differences in cardiac func-
tion [40]. Hence, both animal age and advancement of phenotype may influence cardiac
function.

The cardioprotective effect of IPC is consistent and reproducible in all animal species stud-
ied until now. The efficacy is in the range of 25-45% IS reduction depending on the
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experimental setting, animal strain, and duration of ischemia [41,42]. We extend this finding
by demonstrating that the efficacy of IPC is similar in LCR and HCR rats irrespective of the
intrinsic difference in sensitivity to IR injury. In contrast, RIC did not yield cardioprotection
in either LCR or HCR rats. RIC seems to induce a weaker stimulus than IPC, but still yields
cardioprotection across strains in in vivo and in vitro models [43]. Most previous studies use
healthy rats of 2-4 months of age, we used rats at the age of 8 months, which could influence
the response [42]. A limitation of our study is that we did not study the influence of a more
powerful RIC stimulus. Finally, diabetes is known to attenuate the response to mechanical con-
ditioning strategies [44-46], and this may also apply to LCR animals.

LCR hearts produced enhanced cardiac work, with increased LVDP during stabilisation,
while there was no difference in glucose uptake compared to HCR. This finding could indicate
a more efficient handling of glucose in the LCR animals, possibly by the upregulated carbohy-
drate metabolism in LCR rats as described by Bye et al [34]. IPC increases glucose uptake dur-
ing stabilisation [36]. We documented this finding in HCR animals whereas the increase in
glucose uptake during stabilisation was not statistically significant in LCR hearts. During
reperfusion IPC only increased glucose uptake in HCR hearts. Considering the similar degree
of infarct size reduction, the difference in glucose handling between HCR and LCR did not
seem to influence the effect of IPC induced cardioprotection.

IPC as well as exercise induce cardioprotection by AMPK activation [47-49], such that IPC
and exercise may interact and modify the cardioprotective capability. We investigated preis-
chemic activation of both AMPK and the downstream AMPK target ACC. In addition, we
evaluated GS phosphorylation at S641, an inhibiting site phosphorylated by GSK3. However,
we observed no difference in the cardioprotective capacity by IPC between LCR and HCR rats.
Correspondingly, baseline AMPK activation and upregulation by IPC as well as downstream
targets, including ACC and GS, were similar in LCR and HCR rats. Our findings are in accor-
dance with previous results [50], supporting that the differences in IS between HCR and LCR
hearts may not depend on this signalling pathway.

The cardiovascular health benefits of physical activity are multifactual mediated by a favor-
able endocrine milieu [51]. IL-6 is a pro-inflammatory cytokine. Release of IL-6 by muscles
during exercise mediates anti-inflammatory effects by increasing the levels of an IL-1 receptor
antagonist and IL-10 [52]. Up to our experiments, the LCR and HCR animals in our study
were not subjected to any kind of structured exercise that might increase the circulating levels
of myokines prior to the ischemia reperfusion exposure. However, the spontaneous activity
level is higher in HCR than LCR animals [53]. Levels of circulating IL-10 are higher in LCR
than HCR animals, but not preceeded by an increase in IL-6 [18]. IL-10 has cardioprotective
potential [54]. Differences in circulating IL-10 in LCR and HCR animals were minor and
whether the anti-inflammatory effect of IL-10 interacts with the sensitivity to IR injury needs
further investigation.

Aerobic capacity is tightly linked to mitochondrial numbers and function, and in the heart
IPC modifies the deleterious effects of IR injury on mitochondria. In skeletal muscle, increased
content of mitochondrial oxidative enzymes are a classic marker of adaptation to increased
physical activity [55]. Our observation of increased content of three mitochondrial proteins in
skeletal muscle therefore verified the increased physical activity in HCR rats. In contrast, the
content of the same mitochondrial proteins in the heart was not increased in HCR rats com-
pared to LCR rats, which is consistent with observations by Souza et al [56]. Interestingly,
Souza et al observed only modest differences in mitochondrial respiratory rates which could
suggest that the differences in sensitivity to IR injury between HCR and LCR rats is not due to
variances in baseline myocardial mitochondrial function. Whether the mitochondria from
HCR and LCR rats react differently during IR is not clear from our data.
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Patients suffering from metabolic syndrome or diabetes mellitus have aggravated outcome
after acute myocardial infarction [57]. While this counteracts the findings of this study, our
results may be linked to the “obesity paradox”, showing that in heart failure cohorts obese
patients have a better clinical condition compared to lean patients [58].

Limitations

The use of an in vitro rat model limits transferability to human physiology. In vitro induction
of IPC may potentially lack in vivo elements of IPC including the neurohumoral response. We
aimed to study the impact of exercise in the most powerful conditioning modality, which is the
in vitro setting of IPC. When evaluating myocardial energy metabolism and signal transduc-
tion we are limited by glucose as the only available substate and rapid metabolic changes, such
that we may have missed windows of opportunity to detect rapid temporary changes.

Conclusion

Sensitivity to IR injury is associated with differences in intrinsic aerobic capacity but the car-
dioprotective efficacy of IPC is unchanged, while RIC is not effective in either HCR or LCR.
The cardioprotection in LCR rats is not associated with measurable differences in myocardial
glucose uptake, AMPK activation and mitochondrial protein content prior to onset of
ischemia.
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