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Abstract: We have developed the first example of hypervalent iodine(V)-catalyzed 

regioselective oxidation of phenols to o-quinones. Various phenols could be oxidized to 

the corresponding o-quinones in good to excellent yields using catalytic amounts of 

sodium salts of 2-iodobenzenesulfonic acids (pre-IBSes) and stoichiometric amounts of 

Oxone® as a co-oxidant under mild conditions. The reaction rate of IBS-catalyzed 

oxidation under nonaqueous conditions was further accelerated in the presence of an 

inorganic base such as potassium carbonate (K2CO3), a phase transfer catalyst such as 

tetrabutylammonium hydrogen sulfate (nBu4NHSO4), and a dehydrating agent such as 

anhydrous sodium sulfate (Na2SO4). 
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1. Introduction 

o-Quinones are useful synthetic intermediates for the synthesis of medicinally and biologically 

important compounds [1–11]. To date, numerous methods have been reported for the preparation of  

p-quinones by the oxidation of phenols or their derivatives [12–14]. For instance, the oxidation of 

phenols with Fremy’s radical [15], MeReO3 [16], dimethyldioxirane [17], or benzeneseleninic 

anhydride [18] mostly gives p-quinones, unless blocked by a substituent. However, there have been 

only a few studies on the direct conversion of a phenol into an o-quinone. In 2002, Pettus and colleagues 
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reported the regioselective oxidation of phenols with stoichiometric amounts of 2-iodoxybenzoic acid 

(IBX) to the o-quinones [19]. After Pettus’ pioneering findings, this method was applied to the 

synthesis of biologically active compounds such as catecholestrogen [20], catecholamine [21], 

hydroxytyrosol [22], and flavonoid [23] derivatives. In 2010, Harvey and colleagues reported the 

regiospecific oxidation of polycyclic aromatic phenols to quinones using hypervalent iodine(III and V) 

reagents [24]. Accordingly, oxidation with IBX in non-aqueous DMF gives o-quinones, while 

oxidation with bis(trifluoro-acetoxy)iodobenzene in aqueous DMF gives p-quinones selectively. 

The hypervalent organoiodine(III or V)-catalyzed oxidation reactions with co-oxidants have also 

been extensively investigated over the past seven years [25–29]. From 2007 to 2009, Yakura and 

colleagues reported that p-alkoxyphenols or p-arylphenols were oxidized to the corresponding  

p-quinones or p-quinols, respectively, in excellent yields using catalytic amounts of 4-iodophenoxyacetic 

acid with Oxone® (2KHSO5•KHSO4•K2SO4) as a co-oxidant in aqueous acetonitrile [30–32]. To the 

best of our knowledge, however, there are no successful examples of a catalytic hypervalent iodine 

system for the regio-selective oxidation of phenols to o-quinones. 

We recently reported a highly efficient and chemoselective oxidation of various alcohols to 

carbonyl compounds such as aldehydes, carboxylic acids, and ketones with powdered Oxone® in the 

presence of catalytic amounts (1–5 mol%) of 2-iodobenzenesulfonic acids (pre-IBSes) or their sodium 

salts (1a–c) under nonaqueous conditions (Scheme 1a) [33–36]. 2-Iodoxybenzenesulfonic acids 

(IBSes) 2a–c as iodine(V), which are generated in situ from 1a–c and Oxone®, serve as the actual 

catalysts for the oxidations (Scheme 1b) [33–36]. According to previous theoretical calculations [33], 

the relatively ionic character of the intramolecular hypervalent iodine-OSO2 bond of IBS 2a lowers the 

twisting barrier of the alkoxyperiodinane intermediate. In fact, 2a shows much more catalytic activity 

than IBX [33]. The oxidation rate in 2a-catalyzed oxidation under nonaqueous conditions is further 

accelerated by the use of powdered Oxone® due to its increased surface area. When Oxone® is used 

under nonaqueous conditions, Oxone® wastes can be removed by simple filtration. Furthermore, we 

developed the oxidative rearrangement of tertiary allylic alcohols to -disubstituted ,-unsaturated 

ketones with Oxone® catalyzed by in situ-generated 5-Me-IBS (2b) (Scheme 1c) [37]. The addition of 

inorganic bases such as K2CO3, and a phase transfer catalyst such as tetrabutylammonium hydrogen 

sulfate (nBu4NHSO4), extended the substrate scope for oxidative rearrangement reactions. Recently, the 

IBS/Oxone® catalytic oxidation system was applied to benzylic oxidation [38] and oxidation of fluorinated 

alcohols [39]. As part of our continuing interest in the IBS-catalyzed oxidation system, we report here 

the in situ-generated IBS-catalyzed regioselective oxidation of phenols to o-quinones with Oxone®. 

Scheme 1. In situ generated IBS (2)-catalyzed selective oxidation of alcohols and  

oxidative rearrangement of tertiary allylic alcohols with powdered Oxone® under  

non-aqueous conditions. 
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Scheme 1. Cont. 

 

2. Results and Discussion 

Initially, we investigated the reactivity and regioselectivity of the oxidation of 1-naphthol (3a)  

using conventional hypervalent catalysts under non-aqueous conditions (Table 1). A mixture of 3a, 

powdered Oxone® (2 equiv.) and nBu4NHSO4 (10 mol%) as a solid-liquid phase transfer catalyst was 

heated in ethyl acetate at 40 °C in the presence of 5 mol% of iodobenzene or Yakura’s pre-catalyst  

(4-iodophenoxyacetic acid, 6) [30−32] (entries 2 and 3). However only trace amounts of the desired 

products were detected, and more than 80% of 3a was recovered with small amounts of unidentified 

side-products. The reaction was somewhat messy, and more than 80% of 3a was recovered. 

Additionally, the use of pre-IBX (7) gave both 1,2-naphthoquinone (4a) and 1,4-naphthoquinone (5a) 

each in 5% yield, and 80% of 3a was recovered (entry 4). In sharp contrast, and to our delight, when 

pre-IBS (1a) was used, 3a was completely consumed in 11 h, and quinones 4a and 5a were obtained in 

respective yields of 64% and 5% together with highly polar compounds (entry 5). As expected from 

our previous works [33,37], the use of pre-5-Me-IBS (1b) or pre-4,5-Me2-IBS (1c) gave slightly better 

results, and the former gave the best results (entries 6 and 7). Interestingly, when the oxidation was 

conducted in aqueous acetonitrile, 5a was obtained selectively as a major product in 51% yield (entry 8). 

We found that the carbon(1)-carbon(2) bond of o-quinone 4a was oxidatively cleaved under identical 

aqueous conditions to highly polar compounds including trans-2-carboxycinnamic acid (8) [40] and 

other minor unidentified compounds (Scheme 2). These results indicated that non-aqueous conditions 

were essential for the preparation of o-quinones in high yields. According to our previous works, the 

selective oxidation of acid-sensitive alcohols could be achieved in the presence of anhydrous sodium 

sulfate as a dehydrating agent [33,37]. Additionally, the oxidation rate and selectivity could be further 

accelerated with the use of additional base to buffer the acidity of the reaction mixture [37]. Based on 

these previous findings, the reaction of 3a was carried out in the presence of 1 equiv. of potassium 

carbonate and anhydrous sodium sulfate under the modified conditions in entry 6. Thus, 4a was 

obtained in 78% yield after 1 h, when Oxone® and K2CO3 were sufficiently premixed in the presence 

of anhydrous Na2SO4 in ethyl acetate at room temperature for 24 h before the addition of 2b, 3a, and 
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nBu4NHSO4 (entry 9). Notably, the use of nBu4NHSO4 was essential for the present oxidation, since 

almost no reaction occurred in its absence (entry 10). 

Table 1. Hypervalent iodine-catalyzed oxidation of 1-naphthol 3a. 

  
Entry Pre-cat. Additive (equiv.) Time (h) 4a, Yield (%) a 5a, Yield (%) a 

1 – – 24 trace b trace b 
2 PhI – 24 trace b trace b 
3 6 f – 24 trace b trace b 
4 7 g – 24 5 b 5 b 
5 1a – 11 64 5 
6 1b – 8 69 6 
7 1c – 9 67 6 

8 c 1b – 3.5 trace b 51 
9 d 1b K2CO3 (1) 1 78 6 
10 e 1b K2CO3 (1) 24 trace b trace b 

a Isolated yield; b 1H-NMR analysis; c The reaction was performed in CH3CN-H2O (2:1, v/v) instead 
of EtOAc; d After a mixture of Oxone® and K2CO3 in ethyl acetate was vigorously stirred in the 
presence of Na2SO4 for 24 h at room temperature, 1a, 3a and nBu4NHSO4 were added; e In the 
absence of nBu4NHSO4; 

f 6: 4-Iodophenoxyacetic acid; g 7: 2-Iodobenzoic acid. 

Scheme 2. Oxidative carbon-carbon bond cleavage of 4a to dicarboxylic acid 8 under 

aqueous conditions. 

 

To explore the generality of the in situ-generated 5-Me-IBS-catalyzed oxidation of phenols with 

Oxone®, various naphthols, phenanthrols, and phenols 3b–l were examined as substrates under the 

optimized conditions: powdered Oxone® (2 equiv.) and potassium carbonate (1 equiv.) in ethyl acetate 

were vigorously stirred at room temperature for 24 h in the presence of anhydrous sodium sulfate, and 

then 1b (5 mol%), 3a and nBu4NHSO4 (10 mol%) were added and the resulting mixture was heated to 

40 °C (Table 2). As expected, 4a was obtained in slightly better yield by the oxidation of 2-naphthol 

3b than by the oxidation of 3a (Table 2, entry 1 versus Table 1, entry 9). 4-Bromo- or chloro-substituted  

1-naphthols 3c and 3d gave the corresponding o-quinones in high yields (entries 2 and 3). Notably, the 

desired 1,2-quinones were obtained as a major product under our catalytic conditions even with the 

oxidation of 4-methoxy-1-naphthol (3e) and 4-methoxyphenol (3j) (entries 4 and 9). Accordingly, the 

previous iodine(III)-mediated oxidation of para-alkoxy phenols gave 1,4-quinones exclusively [30–32]. 
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Additionally, the oxidation of phenanthrols 3g and 3h gave the desired 1,2-quinones in excellent yields 

(entries 6 and 7). These polycyclic aromatic quinones were obtained in only moderate yields by 

stoichiometric oxidations with IBX [24]. The oxidation of 2,4-di-tert-butylphenol (3k) gave desired  

o-quinone 4k in 73% yield after 24 h (entry 10). In contrast, the oxidation of 3-methoxy-1-naphthol 

(3l) gave 1,4-quinone 5l rather than 1,2-quinone 4l as a major product (Scheme 3). Additionally, the 

oxidation of 3l with Oxone® even in the absence of 1b also gave 5l selectively, but in lower yield 

(63%) after 6 h. 

Table 2. 5-Me-IBS-catalyzed oxidation of naphthols, phenanthrols and phenols 3 a. 

 
Entry 3 4 Time (h) Yield (%) b 

1 
 

4a 4 84 

3b 

 

 

  

2 3c (R = Cl) 4c 5 80 
3 3d (R = Br) 4d 3 75 
4 3e (R = OMe) 4e 2 50 c 

5 
 

4a 2 72 

3f 

6 

 

2 90 

3g 4g 

7 

 

2 97 

3h 4h 
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Table 2. Cont. 

Entry 3 4 Time (h) Yield (%) b 

8 

 

5 63 

3i 4i 

9 

 

5 66 d 

3j 4j 

10 24 73 

3k 4k 
a Reaction conditions: 3 (1 mmol), powdered Oxone® (2 mmol), K2CO3 (1 mmol), 1b (0.05 mmol), 
nBu4NHSO4 (0.1 mmol), Na2SO4 (1 g), EtOAc (10 mL), 40 °C. Oxone® and K2CO3 were  
pre-treated in EtOAc for 24 h at room temperature in the presence of anhydrous Na2SO4; 

b Isolated 
yield; c 1,4-Naphthoquinone (5a) was obtained in 15% yield; d 2-tert-Butyl-1,4-quinone 5j obtained 
in 16% yield. 

Scheme 3. Oxidation of 3-methoxy-1-naphthol 3i. 

  

Based on previous studies [24,33–37], a proposed reaction mechanism is depicted in Scheme 4.  

In situ-generated IBS (2) reversibly combines with 3 to give IBS-phenol complex 10, which serves to 

transfer oxygen from an iodoxy group (IV = O) to the ortho-site of the phenol through concerted 

intramolecular [2,3]-rearrangement. During this process, the iodine(V) atom is concurrently reduced to 

the iodine(III)-catechol complex 11, which gives o-quinones 4 and pre-IBS 1. The catalytic cycle of 

IBS 2 can be accomplished by the regeneration of 2 through the successive oxidations of 1 and 9 with 

tetrabutylammonium peroxymonosulfate, nBu4NHSO5, which can be generated in situ from KHSO5 

and nBu4NHSO4. 
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Scheme 4. Possible mechanism for the IBS-catalyzed oxidation of phenols. 

  

While, the reason for the para-selective oxidation of 3l is not yet clear, a plausible mechanism is 

depicted in Scheme 5. The peroxo-IBS complex 12 might be generated reversibly in situ from IBS and 

ammonium Oxone®. Electrophilic aromatic oxidation at the highly nucleophilic carbon(4) position of 

3l with 12 gives 13, which easily tautomerizes to IBS-hydroquinone complex 14. Finally, the oxidation 

of hydroquinone gives 1,4-quinone 5l and iodine(III) 9. Notably, 5l was also obtained by the oxidation 

of 3l with only Oxone® (Scheme 3) [41]. The reactivity of Oxone® should be accelerated by 

complexation with IBS [42]. Thus, the oxidation was faster and the chemical yield of 5l was higher in 

the presence of IBS (Scheme 3). 

Scheme 5. Possible mechanism for the para-selective oxidation of 3l. 
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3. Experimental 

3.1. General 

Infrared (IR) spectra were recorded on a Jasco FT/IR 460 plus spectrometer. 1H-NMR spectra  

(400 MHz) and 13C-NMR spectra (100 MHz) were measured on a Jeol ECS-400 spectrometer at 

ambient temperature. Data were recorded as follows: chemical shift in ppm from internal tetramethylsilane 

on the  scale, multiplicity (s = singlet; d = doublet; t = triplet; q = quartet; m = multiplet), coupling 

constant (Hz), integration, and assignment. Chemical shifts were recorded in ppm from the resonance 

of the solvent used as the internal standard (deuterochloroform at 77.0 ppm). For thin-layer 

chromatography (TLC) analysis throughout this work, Merck precoated TLC plates (silica gel 60 GF254 

0.25 mm) were used. The products were purified by column chromatography on silica gel (E. Merck 

Art. 9385). High-resolution mass spectral analysis (HRMS) and elemental analysis were performed at 

the Chemical Instrument Center, Nagoya University. Pre-catalysts 1a–c were prepared according to 

known procedures [33]. Additionally, 1a and 1b (as potassium salts) are also commercially available 

from Junsei Chemical Japan, TCI and Sigma-Aldrich. Starting materials 3d [43], 3f [44], 3g [24], and 

3l [45] were prepared according to known procedures. In experiments that required solvents, ethyl 

acetate, acetonitrile, and nitromethane were purchased from Wako Pure Chemical Industries, Ltd. in 

“anhydrous” form and used without any purification. Other simple chemicals were analytical-grade 

and obtained commercially. 

3.2. General Procedure for the Oxidation Phenol to Quinone 

A mixture of powdered Oxone® (1.2 g, 2.0 mmol), potassium carbonate (0.14 g, 1.0 mmol) and 

anhydrous sodium sulfate (1.0 g, dried by a heat-gun under vacuum before use), in ethyl acetate  

(4.0 mL) was vigorously stirred at room temperature for 24 h. To the resulting mixture were added 3 

(1.0 mmol), nBu4NHSO4 (34 mg, 0.10 mmol), 1b (17 mg, 0.050 mmol), and EtOAc (6.0 mL), and the 

resulting mixture was stirred vigorously at 40 °C. The reaction was monitored by TLC analysis. After 

the reaction was completed, the reaction mixture was cooled to room temperature and the solids were 

filtered-off and washed with EtOAc. The filtrate was washed with water, and the aqueous layers were 

extracted with EtOAc. The combined organic layers were washed by water and brine, and dried over 

anhydrous Na2SO4. The solvents were removed under vacuo, and the residue was purified by column 

chromatography on silica gel (hexane-EtOAc as eluent) to give the corresponding quinones 4 or 5. 

1,2-Naphthoquinone (4a) [46]. Brown solid; TLC, Rf = 0.21 (hexane–EtOAc = 4:1); 1H-NMR (CDCl3) 

 6.45 (d, J = 10 Hz, 1H), 7.25 (d, J = 8.2 Hz, 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.53 (dd, J = 6.4, 7.8 Hz, 

1H), 7.66 (ddd, J = 1.4, 5.9, 6.4 Hz, 1H), 8.13 (d, J = 7.3 Hz, 1H); 13C-NMR (CDCl3)  128.0, 130.0, 

130.3, 131.0, 131.7, 134.9, 136.0, 145.6, 179.0, 181.0. 

1,4-Naphthoquinone (5a) [47]. Yellow solid; TLC, Rf = 0.41 (hexane–EtOAc = 4:1); 1H-NMR (CDCl3) 

 6.99 (s, 1H), 7.77 (m, 2H), 8.10 (m, 2H); 13C-NMR (CDCl3)  126.6, 132.0, 134.1, 138.8, 185.2. 

trans-2-Carboxycinnamic acid (8) [40]. Pale yellow solid; 1H-NMR (DMSO-d6)  6.43 (d, J = 16 Hz, 

1H), 7.51 (t, J = 7.5 Hz, 1H), 7.60 (t, J = 6.8 Hz, 1H), 7.82 (d, J = 7.3 Hz, 1H), 7.88 (dd, J = 0.9, 7.8 Hz, 
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1H), 8.31 (d, J = 16 Hz, 1H), 13C-NMR (DMSO-d6)  121.4, 127.8, 129.8, 130.4, 131.1, 132.2, 134.9, 

142.6, 167.5, 168.2. 

4-Chloro-1,2-naphthoquinone (4c). Brown solid; TLC, Rf = 0.58 (hexane–EtOAc = 1:1); IR (KBr) 

1,658, 1,582, 1,322, 1,287, 1,242, 936, 769 cm−1; 1H-NMR (CDCl3)  6.76 (s, 1H), 7.63 (t, J = 7.8 Hz, 

1H), 7.77 (t, J = 7.8 Hz, 1H), 7.90 (d, J = 7.8 Hz, 1H), 8.17 (d, J = 7.8 Hz, 1H); 13C-NMR (CDCl3)  

 127.7, 128.0, 130.2, 130.6, 132.2, 132.7, 135.9, 152.8, 178.1, 178.4; HRMS (FAB+) m/z calcd for 

C11H14O3 (M+H) 193.0056, found 193.0054. 

4-Bromo-1,2-naphthoquinone (4d) [48]. Brown solid; TLC, Rf = 0.62 (hexane–EtOAc = 1:1); 1H-NMR 

(CDCl3)  7.05 (s, 1H), 7.61 (t, J = 7.5 Hz, 1H), 7.77 (t, J = 7.3 Hz, 1H), 7.90 (d, J = 7.8 Hz, 1H),  

8.15 (d, J = 7.3 Hz, 1H); 13C-NMR (CDCl3)  130.1, 130.6, 130.9, 132.1, 133.6, 136.0, 145.9, 178.2. 

4-Methoxy-1,2-naphthoquinone (4e) [49]. Yellow solid; TLC, Rf = 029 (hexane–EtOAc = 1:1);  
1H-NMR (CDCl3)  4.08 (s, 3H), 5.99 (s, 1H), 7.59 (dd, J = 7.3, 7.8 Hz, 1H), 7.71 (t, J = 7.8 Hz, 1H),  

7.87 (d, J = 8.2 Hz, 1H), 8.13 (d, J = 7.3 Hz, 1H); 13C-NMR (CDCl3)  57.0, 103.2, 124.9, 129.2, 

130.4, 131.7, 132.1, 135.1, 168.8, 179.5, 179.6. 

1,2-Phenanthraquinone (4g) [24]. Red solid; TLC, Rf = 0.54 (hexane–EtOAc = 1:1); 1H-NMR 

(CDCl3)  6.59 (d, J = 10 Hz, 2H), 7.70 (m, 2H), 7.91 (m, 1H), 7.98 (d, J = 8.2 Hz, 1H), 8.17 (d,  

J = 8.2 Hz, 1H), 8.31 (m, 2H); 13C-NMR (CDCl3)  123.6, 124.4, 127.7, 128.6, 129.4, 129.7, 129.8, 

131.4, 132.0, 137.3, 139.6, 179.5, 180.8. 

9,10-Phenanthraquinone (4h) [50]. Yellow solid; TLC, Rf = 0.50 (hexane–EtOAc = 1:1); 1H-NMR 

(CDCl3)  7.47 (dd, J = 7.3, 7.8 Hz, 2H), 7.72 (ddd, J = 1.4, 6.9, 7.3 Hz, 2H), 8.03 (d, J = 8.3 Hz, 2H), 

8.20 (dd, J = 1.4, 6.4 Hz, 2H); 13C-NMR (CDCl3)  124.1, 129.7, 130.5, 131.0, 135.9, 136.2, 180.3. 

4-tert-Butyl-1,2-benzoquinone (4i) [51]. Brown solid; TLC, Rf = 0.38 (hexane–EtOAc = 1:1); 1H-NMR 

(CDCl3)  1.24 (s, 9H), 6.29 (d, J = 2.2 Hz, 1H), 6.40 (d, J = 10 Hz, 1H), 7.19 (dd, J = 2.5, 10 Hz, 1H); 
13C-NMR (DMSO-d6)  27.4, 35.3, 123.2, 129.4, 140.2 161.5, 180.0. 

3-tert-Butyl-5-methoxy-1,2-benzoquinone (4j). Red solid; TLC, Rf = 0.42 (hexane–EtOAc = 1:1);  

IR (KBr) 1,649, 1,630, 1,589, 1,440, 1,367, 1,228, 1,007, 900, 783; 1H-NMR (CDCl3)  1.26 (s, 9H),  

3.84 (s, 3H), 5.73 (d, J = 2.7 Hz, 1H), 6.62 (d, J = 3.2 Hz, 1H); 13C-NMR (CDCl3)  28.9, 35.2 56.7, 

101.0, 133.0, 151.5, 170.0, 178.6, 179.9; HRMS (FAB+) m/z calcd for C11H14O3 (M+H) 195.1021, 

found 195.1013. 

2-tert-Butyl-1,4-benzoquinone (5j) [52]. Brown solid; TLC, Rf = 0.71 (hexane–EtOAc = 4:1); 1H-NMR 

(CDCl3, 400 MHz)  1.30 (s, 9H), 6.61 (d, J = 1.4 Hz, 1H), 6.69 (d, J = 1.4 Hz, 2H); 13C-NMR 

(CDCl3, 100 MHz)  29.2, 35.3, 131.6, 135.0, 138.7, 156.1, 188.5. 

3,5-Di-tert-Butyl-1,2-benzoquinone (4k) [52]. Brown solid; TLC, Rf = 0.71 (hexane–EtOAc = 1:1);  
1H-NMR (CDCl3)  1.23 (s, 9H), 1.27 (s, 9H), 6.22 (d, J = 2.3 Hz, 1H), 6.93 (d, J = 2.3 Hz, 1H);  
13C-NMR (CDCl3)  28.0, 29.3, 35.6, 36.1, 122.2, 133.6, 150.0, 163.4, 180.2, 181.2. 
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3-Methoxy-1,4-naphthoquinone (5l) [53]. Yellow solid; TLC, Rf = 0.46 (hexane–EtOAc = 1:1);  
1H-NMR (CDCl3)  3.90 (s, 3H), 6.17 (s, 1H); 13C-NMR (CDCl3)  56.6, 110.0, 126.3, 126.8, 131.1, 

132.1, 133.4, 134.5, 160.5, 180.2, 185.0. 

4. Conclusions 

We have demonstrated the in situ-generated IBS-catalyzed regioselective oxidation of phenols to  

o-quinones with Oxone®. The reaction rate is accelerated with the use of inorganic bases such as 

K2CO3, a phase transfer catalyst such as tetrabutylammonium hydrogen sulfate (nBu4NHSO4), and 

dehydrating agent such as Na2SO4. Various phenols are oxidized to the corresponding o-quinones in 

good to excellent yields. To the best of our knowledge, this is the first example of the hypervalent 

iodine-catalyzed oxidation of phenols to o-quinones. 
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