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Abstract
Identifying seasonal shifts in community assembly for multiple biological groups is 
important to help enhance our understanding of their ecological dynamics. However, 
such knowledge on lotic assemblages is still limited. In this study, we used biologi-
cal traits and functional diversity indices in association with null model analyses to 
detect seasonal shifts in the community assembly mechanisms of lotic macroinver-
tebrates and diatoms in an unregulated subtropical river in China. We found that 
functional composition and functional diversity (FRic, FEve, FDis, MNN, and SDNN) 
showed seasonal variation for macroinvertebrate and diatom assemblages. Null mod-
els suggested that environmental filtering, competitive exclusion, and neutral pro-
cess were all important community assembly mechanisms for both biological groups. 
However, environmental filtering had a stronger effect on spring macroinvertebrate 
assemblages than autumn assemblages, but the effect on diatom assemblages was 
the same in both seasons. Moreover, macroinvertebrate and diatom assemblages 
were shaped by different environmental factors. Macroinvertebrates were filtered 
mainly by substrate types, velocity, and CODMn, while diatoms were mainly shaped 
by altitude, substrate types, and water quality. Therefore, our study showed (a) that 
different biological assemblages in a river system presented similarities and differ-
ences in community assembly mechanisms, (b) that multiple processes play important 
roles in maintaining benthic community structure, and (c) that these patterns and 
underlying mechanisms are seasonally variable. Thus, we highlight the importance 
of exploring the community assembly mechanisms of multiple biological groups, es-
pecially in different seasons, as this is crucial to improve the understanding of river 
community changes and their responses to environmental degradation.
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1  | INTRODUC TION

Current theoretical and empirical frameworks emphasize that bi-
ological communities are structured by a combination of deter-
ministic and stochastic processes (Csercsa et al., 2019; Devercelli, 
Scarabotti, Mayora, Schneider, & Giri, 2016; Patrick & Swan, 2011; 
Swan & Brown, 2011). The deterministic perspective assumes that 
the distributions of species are under environmental filtering (i.e., 
local environmental conditions) and biotic interactions (e.g., Chase & 
Myers, 2011; Giam et al., 2016; Heino, Gröroos, Soininen, Virtanen, 
& Muotka, 2012; Isabwe et al., 2018), while the stochastic per-
spective assumes that species distributions are mainly determined 
by random births, deaths, and dispersal assembly (Grönroos et al., 
2013; Hubbell, 2001; Tonkin et al., 2018). Under the framework of 
stochastic and deterministic processes, both taxonomic and func-
tional measures have been used to disentangle the relative roles of 
multiple processes in lotic community assembly (e.g., Medina Torres 
& Higgins, 2016; Sokol, Benfield, Belden, & Valett, 2011). Among 
these measures, trait-based measures have the most extensive 
adoption, due to the fact that traits are sensitive to environmental 
changes and can provide key insights into ecosystem functioning 
(e.g., Adler, Fajardo, Kleinhesselink, & Kraft, 2013; Aiba et al., 2013; 
Mason, Bello, & Mouillot, 2013; Obertegger & Flaim, 2018).

Previous studies on community assembly in freshwater sys-
tems commonly focused on specific periods of time (e.g., Heino & 
Tolonen, 2017; Obertegger & Flaim, 2018). However, streams and 
rivers are highly heterogeneous ecosystems with significant spatio-
temporal variation in community structure (Ward, Tockner, Arscott, 
& Claret, 2002). For most rivers, hydrology, water temperature, and 
nutrients change seasonally (Fitzgerald, Winemiller, SabajPerez, & 
Sousa, 2017; Leung, Liao, & Dudgeon, 2012; Rosemond, Mulholland, 
& Brawley, 2000). Because of changes in these factors, harsh sea-
sons could strengthen environmental filtering to select the most 
suitable traits from the regional species pool to occur at a site 
(Chase, 2007; Hart & Finelli, 1999). For instance, Stenger-Kovács, 
Lengyel, Crossetti, Üveges, and Padisák (2013) demonstrated that 
high- and low-profile (i.e., tall and short stature, respectively; Passy, 
2007) diatom species increased with increased solar irradiance, be-
cause higher irradiance levels can penetrate the algal matrix and can 
reach the deeper layers of the epilithon (Dodds, 1992). In addition, 
macroinvertebrate scrapers and predators reached their highest 
abundance during summer due to maximal resource levels (Álvarez-
Cabria, Barquín, & Juanes, 2010). Moreover, biotic interactions, such 
as grazing and predation, are also important in the context of com-
munity assembly (Abe, Uchida, Nagumo, & Tanaka, 2006; Bolam, 
Rollwagen-Bollens, & Bollens, 2019; Vilmi, Tolonen, Karjalainen, 
& Heino, 2017), which can lead to temporal variation in lotic com-
munity structures (Fitzgerald et al., 2017; Rosemond et al., 2000; 
Tonkin et al., 2018; Yang, Tang, & Dudgeon, 2009).

Seasonal changes in community assembly mechanisms may also 
differ among assemblages (Heino et al., 2012; Isabwe et al., 2018). 
In freshwater systems, benthic macroinvertebrates and diatoms are 
both important groups in biodiversity monitoring and assessments, 

and their functional trait compositions can also be influenced by sea-
sonality in biotic and abiotic factors (Bêche, Mcelravy, & Resh, 2006; 
Stenger-Kovács et al., 2013). Benthic diatoms often show spatiotem-
poral patterns that are mainly shaped by water chemical conditions 
(Passy & Larson, 2011; Rosemond et al., 2000; Tang, Jia, Jiang, & Cai, 
2016; Yang et al., 2009). Moreover, diatom communities are often 
dominated by low-profile diatoms such as Cocconeis or Cymbella at 
high discharge periods (Poff, Voelz, & Ward, 1990). In addition, due to 
similar demands for nutrients, interspecific competition may also play 
an important role in the assembly of diatom communities (Hillebrand, 
2005). By comparison, benthic macroinvertebrates, the main consum-
ers in lotic ecosystems, comprise diverse species groups with different 
life cycles, functional roles, and trophic traits (Göthe, Angeler, Sandin, 
& Rasmussen, 2013). Temporal variation in community patterns 
is mainly caused by variation in a myriad of species life history fea-
tures (Johnson, Carreiro, Jin, & Jack, 2012), while species interactions 
only play a relatively weak role among lotic macroinvertebrates (de 
Mendoza et al., 2018). Therefore, the community assembly mecha-
nisms of lotic benthic macroinvertebrates and diatoms may be differ-
ent due to the difference in their responses to seasonal changes in 
physio-chemical conditions and intensity of interspecific interactions.

Although seasonal changes in benthic macroinvertebrate and 
diatom community structures have been well documented, little at-
tention has been given to seasonal shifts in the underlying assembly 
mechanisms (Bêche et al., 2006; Csercsa et al., 2019; Göthe et al., 
2013; Walters, 2011). This is the case that can be evaluated when 
macroinvertebrates and diatoms are sampled from the same sites. 
Here, we surveyed benthic macroinvertebrate and diatom assem-
blages in April and September (representing spring and autumn, 
respectively) in an unregulated subtropical river in China. We used 
trait-based null models to examine environmental filtering, niche 
differentiation, and neutral process in different seasons for the com-
munity assembly of the two taxonomic groups (Heino & Tolonen, 
2017; Sarremejane, Mykrä, Bonada, Aroviita, & Muotka, 2017; Ulrich 
& Gotelli, 2010). If environmental filtering was important, we further 
examined how local environmental conditions influenced the com-
munity assembly process. We aimed to detect whether (a) functional 
traits for each taxonomic group differ between April and September, 
and whether (b) community assembly mechanisms show seasonal 
shifts for each taxonomic group due to temporal fluctuations in en-
vironmental conditions. Answering these questions will provide in-
formation on whether lotic benthic macroinvertebrates and diatoms 
show different community assembly mechanisms and whether there 
is temporal variability in these mechanisms.

2  | METHODS AND MATERIAL S

2.1 | Study area

The Chishui River (31°25′–32°48′N, 109°10′–110°45′E) is located in 
the core area of the National Nature Reserve for rare and endemic 
fishes of the upper Yangtze River. The reserve was established in 
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2005 to provide a refuge for endemic fishes due to the construction 
of the Three Gorges Dam (Jiang et al., 2010; Wu, Huang, Han, Xie, 
& Gao, 2003). Thus, the mainstream of the Chishui River is less pol-
luted and contains rich species and high biodiversity. Besides, the 
Chishui River is located in a subtropical area and shows significant 
seasonal variation in river hydrology (Jiang et al., 2010; Jiang, Xiong, 
& Xie, 2017). Additionally, there are no dams built on the mainstream, 
providing an ideal place for identifying contributions of natural en-
vironmental filtering, biotic interactions, and dispersal limitation to 
lotic community assembly. The Chishui River covers a total drain-
age area of 20,440 km2 and has a mainstream length of 436.5 km. 
The annual precipitation is 1,027.2 mm, and approximately 60% of 
rainfall occurs between June and September (Mao, Guo, Deng, Xie, 
& Tang, 2018).

2.2 | Fieldwork and laboratory methods

Benthic Macroinvertebrates and diatoms were collected from 44 
mainstream sites in April and September 2016 (Figure 1). April has 
relative stable environmental conditions for aquatic organisms, 
while September is the recovery period after summer floods in the 
Chishui River (Jiang et al., 2017). At each site, we took three random 
quantitative samples using a Surber sampler (30 × 30 cm, 500 μm in 
mesh size) to collect benthic macroinvertebrates on each sampling 
occasion (Chi et al., 2017; Jiang et al., 2010). Then, macroinverte-
brate specimens were sorted on a white plate in the field and were 
preserved in 70% alcohol. In the laboratory, specimens were iden-
tified to genus or lower taxonomic level according to appropriate 
references (Brinkhurst, 1986; Dudgeon, 1999; Epler, 2001; Morse, 
Yang, & Tian, 1994; Zhou, Gui, & Zhou, 2003), and the abundance 
(i.e., number of individuals) was counted for each taxon.

At the same sites where macroinvertebrates were collected, five 
moveable stones (with a diameter range of 15–60 cm) were randomly 
selected to collect benthic diatom samples. The sampling area was 
confined using a circular lid (radius: 2.7 cm). For each stone, the surface 
within the lid was vigorously scrubbed using a nylon brush and rinsed 
three to four times with distilled water. All subsamples from each site 
were combined into one composite sample, and its volume was re-
corded. The diatom sample was preserved in 4% formalin for further 
identification and enumeration. In the laboratory, diatoms were identi-
fied and enumerated to species level, after the sample was acid-cleaned 
and slide-mounted, using 1,000 × magnification with an oil immersion 
objective under a compound microscope (Olympus CX21: Olympus 
Optical Co.) (Hu & Wei, 2006). Diatoms were identified following the 
taxonomic references of Qi (1995), Shi (2004), Krammer (2000, 2002, 
2003), and Lange-Bertalot, Bak, Witkowski, and Tagliaventi (2001), 
and relative abundance was calculated for each taxon.

We measured physical habitat and water chemistry variables at 
each sample site during each sampling occasion. Altitude was re-
corded with a GPS system (Garmin GPS-76 system). Current veloc-
ity was measured with a current flow meter (FP211; Global Water). 
Substrate types were classified into four main types (Barbour, 

Gerritsen, Snyder, & Stribling, 1999): cobble (64–256 mm), pebble 
(16–64 mm), gravel (2–16 mm), and sand and silt (0.25–2 mm), and 
measured according to the percentage of each type in the sam-
ple section. Conductivity (Cond), pH, and dissolved oxygen (DO) 
were measured with a portable Yellow Springs Instrument (YSI) 
meter (Model 33; YSI, Incorporated, Yellow Springs). Meanwhile, 
Additional 600 ml stream water sample was collected and pre-
served in acidic conditions to measure total nitrogen (TN), total 
phosphorus (TP), ammonium nitrogen (NH+

4
−N), and permanganate 

index (CODMn) in the laboratory based on the standard methods 
recommended by the national water monitoring protocol (Wei, 
2002). TN and TP concentrations were determined using a com-
bined persulfate digestion followed by spectrophotometric analy-
sis. NH+

4
−N concentrations were measured by the indophenol blue 

method (Apha, 1995; Wei, 2002), and CODMn was measured by ti-
tration with acidic potassium permanganate (Wei, 2002).

2.3 | Biological traits and functional diversity

Thirteen traits for macroinvertebrates and 14 traits for diatoms were 
selected to represent three trait categories characterizing body sizes, 
habitat associations, and functional groups (Table 1). These traits 
play important roles in community assembly processes for the two 
biological groups (Merritt & Cummins, 1996; Stenger-Kovács et al., 
2013; Tolonen, Hämäläinen, Holopainen, Mikkonen, & Karjalainen, 
2003). The body size determines key behavioral and life history 
characteristics such as growth rates and metabolism (Passy, 2007), 
as well as interactions between individuals within and between spe-
cies (Pawar, 2015). The habitat associations indicate living habitat 
for macroinvertebrates and how algal taxa associate with substrate, 
reflecting habitat preference of lotic organisms. Functional feed-
ing groups characterize resource use, food, and feeding behavior 
(Heino & Tolonen, 2017). All trait information was assigned to genus 
level following literature for each taxonomic group (Brinkhurst, 
1986; Jiang et al., 2010; Law, Elliott, & Thackeray, 2014; Liu, Zhang, 
Wang, & Wang, 1979; Morse et al., 1994; Poff et al., 2006; Rimet & 
Bouchez, 2012; Stenger-Kovács et al., 2013). Genus level has been 
proved to be adequate to preserve the biotic community informa-
tion in previous studies (Poff et al., 2006; Rimet & Bouchez, 2012). 
We used a fuzzy coding procedure (Chevenet, DolÉ Dec, & Chessel, 
1994; Usseglio-Polatera, Bournaud, Richoux, & Tachet, 2000) to de-
scribe the trait category for each taxon with a score ranging from 1 
indicating “low affinity” to 5 indicating “high affinity” to each trait.

We used the community-weighted mean (CWM) trait value, a 
trait-level index, to summarize the distribution of values within each 
trait for each measured assemblage (Garnier et al., 2004). The index 
is calculated as the sum across all species of the products of each 
species trait value and their relative abundance in a given assem-
blage (Garnier et al., 2004):

CWM=

n
∑

i=1

pi× traiti
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where pi is the relative abundance of ith species in the community, traiti 
is the trait values of species i, and n is the total number of species. 
CWM has been proved to be useful for summarizing shifts in mean trait 
values within communities due to environmental selection for certain 
functional traits (Ricotta & Moretti, 2011).

Five community-level functional diversity metrics were also 
calculated to examine the community patterns (Fitzgerald et al., 
2017). Functional richness (FRic) was measured as the convex 
hull and estimates overall niche volume, representing proportion 
of functional space filled by a community. Functional dispersion 
(FDis) was calculated as the mean distance to centroid and esti-
mates position relative to the center of niche space, represent-
ing the dispersion of species in trait space (Laliberté & Legendre, 
2010). Functional evenness (FEve) was measured as evenness of 
branches of a minimum spanning tree, representing the regular-
ity of abundance distributions in the functional space (Mason, 
Mouillot, Lee, & Wilson, 2005; Mouchet, Villeger, Mason, & 
Mouillot, 2010; Villeger, Mason, & Mouillot, 2008). Mean near-
est neighbor (MNN) distance and standard deviation of nearest 
neighbor (SDNN) distance estimate how close and even species 
are in functional trait space, respectively. These two metrics focus 
on distances between species, with the assumption that biotic 

interactions lead to more variable trait distribution (Aiba et al., 
2013; Webb, Ackerly, McPeek, & Donoghue, 2002).

2.4 | Statistical analysis

We first explored seasonal differences in functional composition 
and diversity for each taxonomic group by comparing the observed 
CWM for each trait and functional diversity metric between April 
and September. Then, we detected season-specific assembly pro-
cesses for each taxonomic group. We calculated the standardized 
effect size (SES) for each functional diversity metric of local assem-
blages (FRic, FEve, FDis, MNND, and SDNN). SES was calculated as 
(observed value–mean simulated value)/SD of simulated (Gotelli & 
McCabe, 2002), in which the observed value was measured func-
tional diversity and the simulated values were inferred from a null 
model using the matrix-swap algorithm with 1,000 random runs. SES 
values higher and lower than 0 indicate overdispersion and underd-
ispersion, respectively (Swenson & Enquist, 2009). Overdispersion 
suggests actions of competition, limiting similarity or character dis-
placement, whereas underdispersion indicates operations of abiotic 
or biotic filtering (de Bello et al., 2012). Furthermore, to explore 

F I G U R E  1   Map showing the 44 sampling sites (red circles) of benthic macroinvertebrates and diatoms collected in the Chishui River. The 
square box represents the location of the basin in China
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environmental driving forces the assembly process, generalized lin-
ear model with stepwise selection was conducted to select key envi-
ronmental variables. This analysis was only performed if a functional 
diversity metric showed significant underdispersion. Finally, by com-
paring the above metrics of the two biological groups between April 
and September separately, we determined whether community as-
sembly processes differed between benthic macroinvertebrates and 
diatoms.

Functional diversity metrics were calculated using the “dbFD” 
function in the R package “FD” (Laliberté, Legendre, & Shipley, 
2014). Seasonal differences in functional diversity metrics for 
each taxonomic group were examined using the Mann–Whitney 
U test. Significant dispersion from random assembly was assessed 
using a two-sided Wilcoxon rank sum test. The null model used 
the matrix-swap algorithm that was implemented via the function 
“RandomizeMatrix” in the R package “picante” (Kembel et al., 2010). 
The generalized linear model with stepwise selection was calculated 
using the function “glm” and “step” in the R package “stats.”

3  | RESULTS

A total of 224 macroinvertebrate and 183 diatom taxa were 
observed in the present study, with 191 and 146 for mac-
roinvertebrates and 120 and 107 for diatoms in April and 
September, respectively. Dominant macroinvertebrate taxa were 
Stictochironomus devinctus (with a mean relative abundance of 
13.13%), Chironomus sp. (6.12%), Cinygmina sp. (6.00%), Baetis 
sp. (5.43%) in April, and Baetis sp. (9.67%), Cinygmina sp (7.43%), 
Heptagenia sp. (6.83%), Cheumatopsyche sp. (6.61%), Baetiella 
sp. (5.04%) in September. For diatoms, Achnanthes minutissima 

(33.4%), Cocconeis placentula (19.3%), Gomphonema parvulum 
(14.3%), Achnanthes linearis (11.4%) were dominant in April, with 
A. minutissima (46.0%), C. placentula (13.7%), and G. parvulum 
(5.5%) dominating in September.

Several biological traits and functional diversitry metrics dis-
played significant seasonal differences for the both taxonomic 
groups (Figure 2). CWMs of macroinvertebrates with small body size 
(W = 1,247.5, p = .020), burrowers (W = 1,260.5, p = .015), and crawl-
ers (W = 1,271, p = .012) decreased in September when compared 
with those in April. As for diatoms, CWMs of size1 class (W = 604, 
p = .005), stalked taxa (W = 442, p < .001), and motile diatoms sig-
nificantly increased (W = 1,185, p = .023) in September. In contrast, 
CWMs of size2 class (W = 1,213, p = .013), size5 class (W = 1,200, 
p = .017), erect (W = 1,382, p < .001), P + M (W = 1,182, p = .024), and 
unattached taxa (W = 1,189, p = .022) decreased. Macroinvertebrate 
FRic (W = 638, p = .014) and SDNN (W = 699.5, p = .025) were sig-
nificantly higher, and FDis (W = 1,219, p = .037) was significantly 
lower in September than in April (Figure 3). For diatoms, only FEve 
(W = 1,174, p = .032) was significantly lower in September than in 
April. Observed MNN for the two biological assemblages showed 
nonsignificant differences between the two seasons (Figure 3).

By comparing the null models, we found seasonal differences in 
community assembly processes and different relations with environ-
mental forces for the two taxonomic groups. Macroinvertebrates in 
April showed significant underdispersion based on FRic, MNN, and 
SDNN, but most of the SES values (4 out of 5) in September showed 
no significant difference from zero (Table 2). Macroinvertebrate 
functional diversity metrics were mostly related to substrate, ve-
locity, and CODMn in April (Table 3). Diatom assemblages showed 
significant underdispersion based on FRic and FDis in April and FDis, 
MNN, SDNN in September. On the contrary, FEve in April and FRic 

Category

Macroinvertebrates Diatoms

Traits Code Traits Code

Body size Small (<9 mm) Size1 Size < 100 μm3 Size1

Medium (9–16 mm) Size2 100 ≤ Size < 300 μm3 Size2

Large (>16 mm) Size3 300 ≤ Size < 600 μm3 Size3

  600 ≤ Size < 1,500 μm3 Size4

  Size ≥ 1,500 μm3 Size5

Habitat associations Burrowers FFG1 Prostrate P

Crawler FFG2 Erect E

Semisessiles FFG3 Stalked S

Sessile FFG4 Filamentous F

Swimmers FFG5 Prostrate and mobile P + M

  Unattached U

Functional groups Gather–collecting Habit1 Low-profile Low

Filtering–collecting Habit2 High-profile High

Scraper Habit3 Motile Mot

Shredders Habit4   

Predators Habit5   

TA B L E  1   Functional traits and trait 
modalities used in this study selected for 
benthic macroinvertebrate and diatom 
taxa
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in September showed significant overdispersion (Table 2). The func-
tional diversity metrics for diatoms in April were related to substrate, 
velocity, TN, TP, and conductivity, while they were more strongly re-
lated to altitude, substrate, NH+

4
−N, and pH in September (Table 3).

4  | DISCUSSION

In this study, we used a trait-based approach to unravel seasonal 
community assembly dynamics of benthic macroinvertebrates and 
diatoms. Seasonal changes in CWMs and comparisons of functional 
diversity metrics with null models for the two taxonomic groups in-
dicated that environmental filtering on functional traits occurred in 
association with seasonal dynamics (Fortunel, Paine, Fine, Kraft, & 

Baraloto, 2013). Additionally, limiting similarity and stochastic pro-
cess also had important effects on assembly dynamics.

Shifts in trait CWMs indicated that environment filtering played 
important roles in driving seasonal shifts in community assembly 
through trait selections (Isabwe et al., 2018; Passy & Larson, 2011; 
Ricotta & Moretti, 2011). Small body-sized macroinvertebrates 
sharply decreased in September may due to the high flows in sum-
mer leading to elimination of some organisms. In addition, as high 
flows bring more food resources from the land to aquatic system, or-
ganisms no longer need “burrow” and “crawl” habits to avoid strand-
ing and to find food. For diatoms, increase in small cell taxa and 
motile guild and decrease in larger cell ones and high-profile guild 
in September may attribute to high flow condition in summer. Only 
taxa with small size and relatively strong attachment to the substrate 

F I G U R E  2   Comparisons of community-weighted means (CWMs) of functional traits for (a), (b), and (c) macroinvertebrates and (d), (e), and 
(f) diatoms between April and September based on the Mann–Whitney U test. *p < .05, **p < .01, ***p < .001
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can withstand high flow disturbance (Passy, 2007). Diatom trait 
CWMs might also been selected by nutrients (Stenger-Kovács et al., 
2013); for instance, high-profile taxa were dominant in high-nutrient 
conditions (such as TP in April; Table S1).

Differences in functional diversity metrics provide further ev-
idence on seasonal changes in community assembly processes. 
Macroinvertebrate functional diversity showed significant seasonal 
variation based on FRic, FDis, and SDNN. Functional richness was 
positively correlated with taxonomic richness (Mayfield et al., 2010; 
Schmera, Heino, Podani, Erős, & Dolédec, 2017), while functional 
dispersion was measured based on both richness and abundance 
(Laliberté & Legendre, 2010). In our study, macroinvertebrate rich-
ness and abundance decreased in September, which led to decrease 
in the convex hull of trait occupation and reduction in trait disper-
sion. In addition, since the SDNN measure is related to limiting sim-
ilarity or niche differentiation (Kraft, Valencia, & Ackerly, 2008), 
the significant increase in SDNN implies that macroinvertebrates 
showed potential competitive effects in September (such as grazing 
taxa Cinygmina sp. vs. Heptagenia sp.). Moreover, higher variation in 
MNN in September suggests that local assemblages were composed 
of taxa with complementary functional strategies (Fitzgerald et al., 

2017). It was evidenced by seasonal shifts in dominant functional 
groups, such as S. devinctus being replaced by Cheumatopsyche sp. 
and Baetiella sp., which showed differences in body size, habitat 
associations, and functional feeding mechanisms. Compared with 
the relatively longer life cycles of macroinvertebrates (Young et 
al., 2014), diatoms generally have shorter life cycles and may thus 
show more rapid trait-related changes associated with environmen-
tal changes. However, in this study, although there were seasonal 
changes in the taxonomic and functional composition of diatom 
communities, A. minutissima and C. placentula remained invariably 
abundant (Table S2). The convex hull volume and relative to the cen-
ter of niche space may largely depend on these two taxa, resulting in 
nonsignificant changes in functional diversity. However, due to tem-
poral replacement in taxonomic and trait composition and reduction 
in richness and abundance, functional evenness would significantly 
decrease from April to September. Additionally, due to the fact that 
these two taxa both belong to the low-profile group (Passy, 2007), 
there might potentially be competition for nutrients among diatoms 
in both seasons. The probability of competition was also suggested 
by SES significantly larger than zero for some functional diversity 
metrics (e.g., FEve) in April and September (e.g., FRic).

F I G U R E  3   Comparisons of observed functional diversity metrics of local macroinvertebrate and diatom assemblages during April and 
September. Functional diversity metrics refer to mean nearest neighbor distance (MNN), standard deviation of nearest neighbor distance 
(SDNN), functional richness (FRic), functional evenness (FEve), and functional dispersion (FDis). Test statistics refer to Wilcoxon rank sum 
test. *Significant difference (p < .05)
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Our analysis found that causes of environmental filter-
ing differed substantially between the two biological groups. 
Environmental filtering played an important role in macroinver-
tebrate assembly according to the null model analysis. In April, 
macroinvertebrate communities were largely influenced by sub-
strate types, velocity, and water quality (i. e. CODMn). Local habitat 
conditions are considered as the main driving factors of macroin-
vertebrate diversity (Beisel, Usseglio-Polatera, & Moreteau, 2000; 
Heino et al., 2012; Johnson, Goedkoop, & Sandin, 2004), and they 
also proved to be important factors for macroinvertebrate com-
munity variation in the Chishui River (Jiang et al., 2017). Relatively 
smaller habitat space in April, caused by a smaller amount of stream 
water, had resulted in more limited environmental conditions and 
stronger environmental filtering effects on biological traits than 
in September (Horrigan & Baird, 2008). Organic pollution (such as 
measures as CODMn) was also proved to be an important factor for 
the distribution of lotic organisms in the Chishui River (Chi et al., 
2017; Mao et al., 2018). In addition, suitable current velocity con-
ditions can provide resources (Schoen, Merten, & Wellnitz, 2013) 
and control sediment compositions (Fenoglio, Boano, Bo, Revelli, 
& Ridolfi, 2013) for certain species, thereby shaping the compo-
sition and abundance of macroinvertebrate communities in the 
Chishui River (Wang et al., 2018). For benthic diatoms, environ-
mental filtering through physicochemical factors drove commu-
nity assembly in both seasons. These results are consistent with 
Mao et al. (2018), who used multiple analytical methods to de-
tect the driving factors that influenced diatom communities in the 
Chishui River. Altitude and substrate were important for diatoms 
in both seasons. In the present study, altitude decreased longitu-
dinally from the headwaters to the river's mouth, and was asso-
ciated with changes in substratum varying from boulder to sand. 
Hence, diatom communities changed significantly along with these 
changes (Mao et al., 2018). Furthermore, nutrient supply is also 

important for diatom species distributions (Passy & Larson, 2011), 
and thus, traits in diatom communities were more strongly related 
to water quality variables. However, it is possible that different 
nutrient variables affect diatoms in different seasons. This may be 
attributed to increased flows in summer, which could increase the 
hydrological effects on the stream bed, leading to nutrients being 
washed from riparian farmland to a water body and resulting in the 
changes in nutrient concentrations in the river sites in September 
(Jiang et al., 2017; Mao et al., 2018).

Besides environmental filtering and limiting similarity, we also 
found that stochastic processes had effects on the community as-
sembly of the two biological groups. Nonsignificant null model re-
sults for some metrics (e.g., FDis and SDNN for macroinvertebrates 
and FEve, MNN, and SDNN for diatoms) are consistent with the idea 
of stochasticity (Fitzgerald et al., 2017), namely random draws from 
the regional species pool, random colonization, and drift (Vellend 
et al., 2014). Moreover, stochastic processes can also be important 
due to flow disturbances, leading to species extinctions that are de-
coupled from trait-based selection (Lepori & Malmqvist, 2009), and 
due to the random recolonization of some species after avoiding the 
flood disturbance. Also, previous studies have suggested that sto-
chastic community assembly may have occurred by the equalizing 
fitness-related processes and due to trade-off among traits (Heino 
& Tolonen, 2017; Mayfield & Levine, 2010; Spasojevic & Suding, 
2012). Finally, the simultaneous influence of opposing community 
assembly mechanisms can also result in random patterns even when 
the underlying assembly processes are actually highly deterministic 
(Mouchet et al., 2010; Spasojevic & Suding, 2012; Weiher & Keddy, 
1995). Our study focused on the mainstem river. It is likely that sea-
sonal turnover in the species pool may also be influenced by dis-
persal from tributaries to the mainstem. This effect could bias our 
results (see also Fitzgerald et al., 2017). However, due to the fact 
that macroinvertebrates and diatoms were sampled simultaneously 

 

Macroinvertebrates Diatoms

Median V p Median V p

April

FRic −1.121 3 <.001 −0.083 39 <.001

FEve −0.389 309 .029 0.781 1,213 .012

FDis 0.126 499 .963 −0.298 0 <.001

MNN −0.471 266 .008 −0.036 903 .856

SDNN −0.288 448 .583 −0.116 774 .196

September

FRic 0.169 418 .491 0.841 34 <.001

FEve −0.016 361 .686 0.570 1,126 .083

FDis 0.062 440 .521 −0.284 9 <.001

MNN 0.104 392 .229 −0.353 523 <.001

SDNN 0.225 589 .273 −0.279 507 <.001

Note: Median SES, test statistic (V), and p value are given. Significant results are presented in bold 
font. Negative/positive SES values represent underdispersion/overdispersion of trait distribution 
compared to the random expectation

TA B L E  2   Results of two-sided 
Wilcoxon signed rank test of standard 
effect sizes (SES) based on the two null 
modeling approaches for the functional 
diversity metrics
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on each site, our findings could reveal differences in the strength 
of assembly mechanisms between these two key biological groups.

5  | CONCLUSIONS

Our study showed that environmental filtering, biotic interactions, 
and stochastic processes were all important to community assem-
bly processes of benthic macroinvertebrates and diatoms in the 
Chishui River. Both physicochemical factors were important to the 
seasonal shifts of the two taxonomic communities. However, the 
causes of environmental filtering differed between the biological 
groups. Therefore, our study highlights the importance of explor-
ing seasonal shifts in assembly dynamics of different biological 
groups to provide more comprehensive understanding of commu-
nity assembly mechanisms. Our findings suggest that maintaining 
diverse substrate types and controlling excess nutrients inputs 
could be an effective way for sustaining biodiversity in the Chishui 
River.
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