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Modeling assortative mating and genetic
similarities between partners, siblings, and in-laws
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Assortative mating on heritable traits can have implications for the genetic resemblance
between siblings and in-laws in succeeding generations. We studied polygenic scores and
phenotypic data from pairs of partners (n=26,681), siblings (n=2,170), siblings-in-law
(n=3,905), and co-siblings-in-law (n=1,763) in the Norwegian Mother, Father and Child
Cohort Study. Using structural equation models, we estimated associations between mea-
surement error-free latent genetic and phenotypic variables. We found evidence of genetic
similarity between partners for educational attainment (ry= 0.37), height (r,=0.13), and
depression (rg=0.08). Common genetic variants associated with educational attainment
correlated between siblings above 0.50 (ry = 0.68) and between siblings-in-law (ry = 0.25)
and co-siblings-in-law (r;=0.09). Indirect assortment on secondary traits accounted for
partner similarity in education and depression, but not in height. Comparisons between the
genetic similarities of partners and siblings indicated that genetic variances were in inter-
generational equilibrium. This study shows genetic similarities between extended family
members and that assortative mating has taken place for several generations.
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ARTICLE

Ithough humans put considerable effort into finding sui-

table mates, genetic studies typically assume that mating is

random!-3, However, partners resemble each other for
many traits, including educational attainment*-, height®-8, and
psychopathology®10, The selection of partners based on similarity
is known as assortative mating. Partner similarity can have
genetic consequences in the following generations if the assort-
ment is based on heritable traits®!!, which almost all human
traits are!>13. When offspring inherit genetic variants from both
parents that deviate in the same direction from the population
mean, otherwise independent genetic variants can become cor-
related (gametic phase disequilibrium). This results in the ele-
vated resemblance between siblings and increased genetic
variation between families!’1415. Increased genetic variation
translates into larger variation between individuals in phenotypic
expression. Assortment based on educational attainment may
have particularly broad consequences. It could pose a societal
challenge by concentrating human and economic resources!¢ and
could present a health challenge because genetic influences on
educational attainment correlate with most health phenotypes!”.
Furthermore, educational attainment has increased massively
over the last few generations!S. Therefore, the genetic con-
sequences may not yet have fully unfolded. Studies of assortative
mating are needed to increase our understanding of social
inequalities.

There is evidence for substantial correlations between partners
at trait-associated genetic loci for educational attainment
(r=0.65) and height (r =0.20)°. Assortative mating in previous
generations can also be detected in samples of genomes from
unrelated individuals by estimating covariance between trait-
associated loci in distant parts of the genome!®. Previous studies
on assortative mating have mainly analyzed partners only.
Another source of evidence for assortative mating—as yet little
exploited in the literature - is systematic inflation of sibling
correlations. Genetic correlations between siblings are expected to
be 0.50 under random mating but could increase under assort-
ment in previous generations. When the assortment level is
stable, the sibling correlation and the genetic variance increase for
each generation until an equilibrium is reached'!°. Simulta-
neous use of partner and sibling correlations can be informative
regarding whether this equilibrium has been reached or whether
one can expect increasing genetic variation in the future.

In-laws are another valuable set of relationships that provide
information on assortative mating. Assortative mating should
induce resemblance, both phenotypic and genetic, between
siblings-in-law (siblings of partners or partners of siblings) and by
extension between co-siblings-in-law, who are the respective
partners of siblings. For brevity, we refer to these relationship
types as in-laws and co-in-laws, respectively. In-laws and co-in-
laws are only indirectly related, and are therefore informative for
understanding the mechanisms leading to the resemblance
between the partners that connect them. With direct assortment
(also called primary phenotypic assortment), the similarity
between partners results from assortment based on the phenotype
in question. This can be distinguished from indirect assortment
(also called secondary assortment), where partners resemble each
other because they assort on one or more traits associated with
the trait of primary interest2-22, An example of direct assortment
would be partner selection based on observed height. An example
of indirect assortment would be partner similarity in education
resulting from the assortment on a secondary trait such as cog-
nitive abilities. Under direct assortment, the expected correlations
between in-laws or co-in-laws correspond to the product of the
relations that connect them. Under indirect assortment, all cor-
relations between relatives should be equally deflated. Data from

in-laws and co-in-laws can therefore be used to separate between
direct and indirect assortment. In addition to providing infor-
mation on mechanisms, the genetic resemblance between in-laws
is a predictable but perhaps surprising phenomenon that displays
consequences of assortment. A few studies, primarily using twin
samples, have studied in-laws to distinguish between mechanisms
of assortment”-21:23:24, We are not aware of any pre-existing study
demonstrating resemblance between in-laws and co-in-laws for
measured genetic variants.

One way to investigate genetic resemblance between indivi-
duals is to calculate correlations between their polygenic scores. A
polygenic score summarizes an individual’s genetic predisposition
to a trait across many single nucleotide polymorphisms
(SNPs)2>26, Polygenic scores correlate with a trait to the degree
that the trait is heritable, and the polygenic scores capture that
heritable component. Polygenic scores capture the heritable
component when they include SNPs in linkage disequilibrium
with causal variants weighted according to the true associations
with the trait in the target sample. The variance in a trait
explained by polygenic scores is typically lower than its herit-
ability, indicating that polygenic scores usually do not fully suc-
ceed in capturing the heritable component?’. As long as polygenic
scores are imperfectly correlated with the genetic predispositions
to a trait, the correlation between multiple individuals’ polygenic
scores will likely be lower than the correlations between the true
set of trait-associated genetic variants. For instance, correlations
between spouses’ polygenic scores could be underestimated if one
partner has many trait-increasing alleles included in the polygenic
score whereas the other has many trait-increasing alleles not
included in the polygenic score. Polygenic scores for educational
attainment have been found to correlate lower in partners, at only
r=0.18%8 or r=0.112, than adjusted estimates of genetic cor-
relations based on genetic predictors and the phenotypes of
partners (r = 0.65)°. Several approaches to similar scaling issues
have been proposed®®3!, including structural equation
modelling3?.

In the present study, we introduce a model, the Correlation in
Genetic Signals (rGenSi) model, and demonstrate that phenotypic
data and polygenic scores from relatives can be used to estimate
signal versus noise in polygenic scores, account for the noise, and
estimate the correlation between their genetic signals. We estimate
the phenotypic and genetic similarity between 26,681 pairs of
spouses, 2170 pair of siblings, 3905 pair of in-laws, and 1763 pairs
of co-in-laws participating in the population-based Norwegian
Mother, Father, and Child Cohort Study (MoBa). We investigate
assortment on educational attainment, height, and depression
(symptoms of major depressive disorder), which are phenotypes
differentially influenced by genetic and environmental factors and
with varying levels of partner similarity. We find genetic similarity
between partners in all three traits, elevated (>0.50) genetic cor-
relations between siblings, and that the genetic similarity extends
to in-laws and co-in-laws. The inclusion of in-laws also allows us
to separate between direct assortment on the observed traits and
indirect assortment on secondary traits. We show that there is
indirect assortment on secondary traits for education and
depression, whereas direct assortment underlies partner similarity
in height. Because siblings provide information on the level of
assortment in previous generations and partners provide infor-
mation on the level of assortment in the current generation, we
test whether the results are consistent with stable levels of genetic
assortment across generations. The results suggest no deviations
from intergenerational equilibrium, indicating that assortment on
these traits has been going on for at least five generations and that
one should not expect further genetic consequences for succeeding
generations with the present level of assortment.
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Results

Phenotypic and polygenic similarities between relatives.
Figure 1 shows the relationship types that we study. Data on
educational attainment at age 30 were gathered from govern-
mental registers, whereas height and symptoms of depression
were self-reported at the start of the study (women: mean age
30.62, SD =4.66; men: mean age 33.18, SD =5.37). Table 1
presents an overview of correlations between partners, siblings,
in-laws, and co-in-laws in phenotype, polygenic score, and across
phenotype and polygenic score. We consider associations to be
significantly different from 0.00 or 0.50 when the 95% confidence
intervals do not include these numbers. For all three phenotypes,
there were positive correlations between partners, siblings, in-
laws, and co-in-laws. All three polygenic scores were significantly
associated with the individuals’ own phenotype, the phenotype of
their sibling, and the phenotype of their partner. For educational
attainment, the polygenic score was also associated with in-laws’
(r=0.11, 95% CI 0.09, 0.13) and co-in-laws’ (r = 0.08, 95% CI
0.05, 0.11) educational attainment. The polygenic scores were
correlated between partners for educational attainment (r=0.11,
95% CI 0.10, 0.12) and height (r=0.05, 95% CI 0.03, 0.06) but
not depression (r=0.00, 95% CI —0.01, 0.01). The polygenic
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Fig. 1 Relationship terminology. We study four types of relationships,

partners, siblings, siblings-in-law, and co-siblings-in-law (the respective
partners of siblings). m = assortative mating, r,, = similarity between

siblings. This is a conceptual model; it is not fitted to data.

scores were also correlated between in-laws for educational
attainment (r=0.06, 95% CI 0.03, 0.09) and height (r=0.03,
95% CI 0.00, 0.05), and between co-in-laws for educational
attainment (r = 0.06, 95% CI 0.01, 0.10).

Direct versus indirect assortment. Figure 2 shows the full
structural equation model. The parameter a measures the asso-
ciation between the observed phenotype and the latent phenotype
that is the basis of partner selection. To the extent that a < 1, this
is interpretable as evidence of indirect assortment operating
alongside direct assortment. The results of fitting to the data
rGenSi models are presented in Supplementary Note 1. Results
with a either freely estimated or fixed to 1.00 are presented in
Supplementary Table 5. The estimated parameters of these dif-
ferent versions of the model are presented in Supplementary
Table 6. Figure 3 shows the parameter estimates for the rGenSi
models with the best fit for each phenotype. Partner similarity in
educational attainment (a=0.77, 95% CI 0.75, 0.78) and
depression (a = 0.80, 95% CI 0.69, 0.91) appeared to result from
indirect assortment on secondary phenotypes highly correlated
with, but not identical to these primary phenotypes. Partner
similarity in height resulted from assortment directly based on
observed height (a estimated at 0.97, 95% CI 0.92, 1.02, fixed to
a=1 in the best fitting model).

Effects of shared environment. The parameter ¢ measures the
influence of environments that siblings shared. Supplementary
Tables 5 and 6 show results with this parameter either freely
estimated or fixed to 0.00. Shared environmental factors influ-
enced educational attainment. This model had wider confidence
intervals for heritability (h?) and genetic signal (s2) than the
model without ¢, but better fit. The shared environment did not
influence height and depression (c fixed to 0 in the best-fitting
models).

Correlation in genetic signal between relatives. Figure 4 illus-
trates the genetic correlations between relatives when estimated as
correlations between polygenic scores and with the rGenSi model.
For educational attainment, the latent genetic factors correlated
037 (95% CI 0.21, 0.67) between partners, which was

Relation r(phenotype)

Table 1 Phenotypic and genetic correlations between partners, siblings, in-laws, and co-in-laws.

r(phenotype, polygenic score)

r(polygenic score) r(genetic signal), rGenSi model

Educational attainment

Within individual
Partner

Sibling

In-law

Co-in-law
Height

Within individual
Partner

Sibling

In-law

Co-in-law
Depression
Within individual
Partner

Sibling

In-law

Co-in-law

1.00

0.42 [0.41, 0.42]
0.39 [0.38, 0.41]
0.27 [0.26, 0.28]
0.19 [0.17, 0.21]

1.00

0.16 [0.15, 0.17]
0.49 [0.47, 0.51]
0.08 [0.06, 0.10]
0.03 [0.00, 0.06]

1.00

0.18 [0.17, 0.18]
0.14 [0.12, 0.15]
0.05 [0.03, 0.06]
0.04 [0.02, 0.06]

0.28 [0.28, 0.29]
0.18 [0.17, 0.19]
0.20 [0.17, 0.23]
0.11 [0.09, 0.13]
0.08 [0.05, 0.11]

0.52 [0.51, 0.53]
0.09 [0.08, 0.11]
0.31[0.28, 0.34]
0.02 [-0.01, 0.04]
0.02 [-0.02, 0.05]

0.11 [0.10, 0.12]
0.03 [0.02, 0.04]
0.08 [0.05, 0.11]
0.01 [-0.01, 0.03]
0.01 [-0.02, 0.05]

1.00

0.11 [0.10, 0.12]
0.55 [0.52, 0.57]
0.06 [0.03, 0.09]
0.06 [0.01, 0.10]

1.00

0.05 [0.03, 0.06]
0.52 [0.49, 0.55]

0.03 [0.00, 0.06]
0.02 [-0.02, 0.07]

1.00

0.00 [-0.01, 0.01]
0.53 [0.50, 0.56]

0.00 [-0.03, 0.03]
0.01 [-0.04, 0.06]

0.37 [0.21, 0.67]
0.68 [0.61, 0.75]
0.25[0.14, 0.46]
0.09 [0.03, 0.31]

0.3 [0.11, 0.15]
0.55 [0.50, 0.59]
0.07 [0.06, 0.08]
0.01[0.01, 0.01]

0.08 [0.03, 0.11]
0.70 [0.48, 0.89]
0.05 [0.03, 0.10]
0.00 [0.00, 0.01]

1763 co-siblings-in-law.

Note: The first column shows phenotypic Pearson correlations between partners, siblings, in-laws, and co-in-laws; the second column shows Pearson correlations between the phenotype in one relative
and the polygenic score in another; the third column shows Pearson correlations of the polygenic scores in different individuals; the fourth column shows similarity in trait-associated genetic factors
estimated with the rGenSi model to adjust for noise in the assessment of polygenic scores and phenotypes. Based on 26,681 pairs of partners, 2170 pairs of siblings, 3905 pairs of siblings-in-laws, and
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Fig. 2 The Correlation in Genetic Signal (rGenSi) model. Triangles
represent observed variables and ovals represent latent variables. Correlations
in genetic signals between relatives can be estimated by following path tracing
rules. h = influence of latent genetic factor on phenotype, heritability when
squared; s = influence of latent genetic factor on polygenic score, genetic
signal; m = partner similarity in mated phenotype; a = association between
mated and measured phenotype; rs = correlation between siblings’ latent
genetic factors; C = shared environmental variance; ¢ = influences of shared
environment; Eg = residual variance of polygenic score (not related to latent
genetic factor); El = residual variance of latent phenotype (not related to latent
genetic factor); Ep = residual variance of phenotype (not related to mated
phenotype). A restricted version of the model can be estimated by
constraining ¢ to 0.00 and a to 1.00; otherwise, these can be freely estimated.
Variances are fixed to 1. The residual correlation between siblings' polygenic
scores (here fixed to 0.50) can be freely estimated if influences of C are fixed
to 0.00.

considerably higher than the correlation between polygenic scores
(r=0.11, 95% CI 0.10, 0.12). Genetic correlations were also
found for in-laws (r=0.25, 95% CI 0.14, 0.46) and co-in-laws
(r=10.09, 95% CI 0.03, 0.31). For height, the partner correlation
was estimated at 0.13 (95% CI 0.11, 0.15), the in-law correlation
at 0.07 (95% CI 0.06, 0.08), and the co-in-law correlation at 0.01
(95% CI 0.01, 0.01). For depression, the partner correlation was
estimated at 0.08 (95% CI 0.03, 0.11), the in-law correlation at
0.05 (95% CI 0.03, 0.10), and the co-in-law correlation at 0.00
(95% CI 0.00, 0.01). Genetic correlations between siblings were
estimated above expectation (>0.50) for all three phenotypes, but
only for educational attainment (r = 0.68, 95% CI 0.61, 0.75) did
the confidence interval exclude 0.50. Results were similar when
using alternative p-value cut-offs for including SNPs in the
polygenic scores (see Supplementary Note 2, Supplementary
Figs. 7 and 8, Supplementary Tables 7, 8, and 9).

Testing intergenerational equilibrium. Correlations between
partners in the genetic signal result from mating in the present
generation, and correlations between siblings in the genetic signal
result from mating in previous generations. Figure 4 shows

genetic correlations predicted across relationship types as
expected in intergenerational equilibrium. For all three pheno-
types, the predicted correlations matched well with the observed
correlations, and models with the equilibrium constraint fit well
(for educational attainment A-2LL 0.00, ADF =1, p = 0.987; for
height A-2LL=0.40, ADF=1, p=0.528; for depression A-
2LL=1.89, ADF=1, p=0.170). Similarly, the correlations
between the polygenic scores also fit well with the intergenera-
tional equilibrium, with no deviations detected at the 5% sig-
nificance level (for educational attainment A-2LL=0.55,
ADF = 1, p = 0.457; for height A-2LL = 0.01, ADF = 1, p = 0.935;
for depression A-2LL =2.78, ADF =1, p=0.095).

Discussion

We found genetic similarity between partners for educational
attainment, height, and depression and elevated genetic correla-
tions between siblings. The genetic similarity extended to in-laws
and co-in-laws. The partner similarity was particularly high for
educational attainment, which resulted from an assortment on
traits correlated with educational attainment. No deviations from
intergenerational equilibrium were found in the level of genetic
assortment in the three traits.

All three polygenic scores correlated with the phenotype of
partners and indicated correlations between partners’ genetic
factors. For educational attainment, the correlations between
partners’ polygenic scores were close to the results of the previous
studies>?%2%. The rGenSi adjusted genetic partner correlation was
lower than Robinson et al.’s® (0.37 vs 0.65), but the confidence
intervals overlapped with their estimate. High correlations
between partners in genetic factors for educational attainment
have now been found using several independent methods and in
different populations. This strengthens our confidence that the
results reflect the actual similarity between partners on common
genetic variants associated with educational attainment. The
genetic correlation of 0.37 is higher than what would be expected
among half-siblings (0.25) under no assortment and can induce
bias in genetic studies of educational attainment if not accounted
for!=3. For height, the rGenSi genetic partner correlation was
consistent with Robinson et al.’s® results from a different popu-
lation. For depression, we have less basis for direct comparison of
genetic partner correlations, but previous studies indicate low
assortment on this trait>!°. The observed resemblance between
in-laws or co-in-laws in measured genetic factors for educational
attainment was theoretically expected and implicit in quantitative
genetic models of siblings and their partners. Confirming that
they exist by using genomic data aligns with our expectations and
highlights the wide implications of assortative mating. This
implies that health and resources are concentrated not only at the
couple level but also in wider family networks. The mating within
subgroups of the population is an example of endogamy that can
concentrate resources and maintain social inequality.

Our results favored models where partner similarity in edu-
cational attainment and depression was accounted for by indirect
assortment on secondary traits. For partner similarity in height,
our results were consistent with partner selection directly on
manifest height. This means that “tall people choose other tall
people because they are tall”33 (p. 382) and that there is nothing
more to partner similarity in height. The direct assortment on
height is in line with previous genetic studies®. For educational
attainment and depression, the story is more complex. The
association between observed education and the latent mated
phenotype was not perfect, indicating that other traits than the
observed played a role. The results for educational attainment are
in line with previous studies finding that partner similarity in
education results from the indirect assortment on correlated
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Fig. 3 Parameter estimates. Estimates from the best fitting rGenSi models, including 95% likelihood-based confidence intervals. Values in red are freely
estimated and can take any value between 0.00 and 1.00. Values in blue are fixed (a = 1 or ¢ = 0) in the best fitting models. Exact numbers and freely
estimated values for all parameters are available in Supplementary Table 6. For height and depression, there are no effects of shared environment (c = 0).
For height, mating is fully based on the measured height (a = 1), whereas for education and depression, couples assort on a correlated phenotype. rG

sibling = correlation between siblings' latent genetic factors. Based on genotype data from n = 26,681 complete pairs of partners, n=2,1770 complete

sibling pairs, n=3,905 complete in-law pairs, and n=1,763 complete co-in-law pairs, and phenotype data from n= 63,781 complete pairs of partners,
n=13,455 complete sibling pairs, n= 21,496 complete in-law pairs, and n= 8,699 complete co-in-laws pairs.

traits®34, They are also consistent with reports of social homo-
gamy in twin samples3> because social homogamy and indirect
assortment can be indistinguishable in phenotypic data?0. If
unobserved secondary traits underlie the partner similarity,
individuals with highly educated families are likely to find highly
educated partners even if they do not have high education
themselves. Our results cannot tell us what these secondary traits
might be, but plausible candidates for educational attainment
include cognitive abilities, conscientiousness, other indicators of
academic abilities’®37, and the obtained education itself; most
likely a combination of these. This could be clarified by investi-
gating an assortment on these traits in tandem with educational
attainment. Our depression measure was intended to assess life-
time history of major depression but might more strongly capture
recent than past episodes3®. It therefore seems plausible that
factors underlying the observed partner similarity in depression
could include symptoms at the time of couple formation rather
than the time of observation, or phenotypes associated with
depression, such as neuroticism, other mental disorders, or a
general risk of psychopathology3%-40.

A genetic partner correlation can lead to increased genetic
variation in the next generation and a sibling correlation elevated
above 0.50. This is exactly what we found for educational
attainment, with a genetic sibling correlation of 0.68 (95% CI

0.61, 0.75). This indicates that the participants’ parents were also
engaged in assortative mating, a finding that is in line with pre-
vious findings of correlations between trait-associated alleles in
different parts of the genome!”. Higher education has been widely
available in Norway for only a few generations, but people may
have always selected partners based on traits that are correlated
with educational attainment today. Our results on direct versus
indirect assortment indicate that such factors were important,
meaning that assortment on genetic factors correlated with edu-
cational attainment may be older than assortment on education
itself. The genetic partner correlations could be predicted from
the genetic sibling correlations and vice versa. The results thus
indicate that an assortment on genetic factors correlated with
educational attainment has occurred long enough for it to be in or
close to equilibrium. Results from the polygenic scores and the
rGenSi model both supported this. The genetic variance increases
fastest in the first generations with assortment. Genetic variance
close to equilibrium can be observed after only five generations,
whereas 60% of the increase in variance is seen after two gen-
erations (see Supplementary Figure 6). Hence, one could observe
approximate equilibrium if assortment on variables associated
with educational attainment started as late as the end of the 19t
century. The larger part of the distance to equilibrium can also be
covered for even newer phenomena. Our finding of genetic
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Fig. 4 Genetic resemblance between relatives. Correlations between partners’, siblings’, in-laws’, and co-in-laws' genetic dispositions. Correlations were
estimated as Pearson’s correlations between polygenic scores (left) and as correlations between the latent genetic signals with the rGenSi model (right),
including 95% likelihood-based confidence intervals. Genetic correlations from the best-fitting models. Values in red are estimated in the current
generation. Values in yellow show results when partner correlations are used to predict sibling correlations and vice versa, assuming equilibrium. Predicted
and observed correlations are expected to match in equilibrium. Based on genotype data from n= 26,681 complete pairs of partners, n = 2,170 complete
sibling pairs, n=3,905 complete in-law pairs, and n=1,763 complete co-in-law pairs, and phenotype data from n= 63,781 complete pairs of partners,
n=13,455 complete sibling pairs, n= 21,496 complete in-law pairs, and n = 8,699 complete co-in-laws pairs.

equilibrium in educational attainment could therefore be expec-
ted from century-old descriptions of partner similarity in related
traits®10 and aligns with stable genetic spouse similarity among
individuals born in the first half of the 20th century®. It does,
however, contrast with Kong et al’s3* finding that genetic edu-
cational assortment is a recent phenomenon in Iceland. The
educational system in Iceland was developed later than in Nor-
way, from which our sample comes. Unlike Norway, most areas
of Iceland had few or no schools in the 19th century*! and the
first university was founded 100 years later than the first in
Norway (1911 vs. 1811). Hence, it is possible that education
became relevant as an assortment factor later in Iceland than in
Norway. A weakness with this explanation is that Icelanders
could have chosen partners based on factors that are related to
education today even with low access to formal education. Rur-
ality and unidentified cultural differences are therefore alternative
explanations. In addition, we cannot exclude that the contrast in
results is related to differences in methods, such as our use of
siblings and in-laws rather than only partners. This finding
therefore calls for further replication. Alternative versions of our
model, presented in the Supplementary Table 5, indicated
deviations from equilibrium, but those versions of the model
relied on assuming direct assortment and had poor fit. If our

results are correct, we do not expect changes in the genetic var-
iance of educational attainment!? and associated health
outcomes!” unless the level of assortment changes. For height and
depression, the results also did not indicate deviations from
intergenerational equilibrium.

We used a structural equation model to estimate the correla-
tion between partners and relatives in their genetic signal, or
underlying genetic factors, for a trait. This approach is compu-
tationally efficient and can be applied in cases where only poly-
genic scores are available but not raw genomic data. Nevertheless,
simulations showed that the model could reconstruct full genetic
correlations, as well as other parameters. Correcting for mea-
surement error is one of the main advantages of using structural
equation modelling. Correcting polygenic scores for measurement
error to extract the genetic signal is not yet common practice, but
approaches for estimating latent genetic effects have been
described3242, This allowed us to scale up the genetic correlations
to infer associations between the full set of genetic variants giving
rise to the phenotypes rather than between the polygenic scores.
The model disentangles the proportion of genetic signal (s2) in
the polygenic scores and may be informative about the compre-
hensiveness of the polygenic score as an indicator of genetic risk
in the target sample. Because of this, the results were consistent
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across different versions of the polygenic scores. Ideally, the latent
genetic factor should be modelled as the sum of two components
—trait-increasing alleles included in the polygenic score (A) plus
trait-increasing alleles not included in the polygenic (B) score4.
The polygenic score itself should then be modelled as the sum of
trait-increasing alleles (A) and measurement error. This would
have enabled us to distinguish measurement error from partial-
ness of the polygenic scores. However, there were not enough
degrees of freedom in the present data, and estimating the
resulting correlations was sufficient to reach our objectives.
Estimating direct versus indirect mating and shared environ-
mental influences provides a more comprehensive understanding
of the processes that give rise to phenotypic and genetic simi-
larity. The inclusion of shared environment did, however,
increase the width of the confidence intervals. Structural equation
models can flexibly be adapted. We therefore believe that varia-
tions of the model can be applied to other research questions
than ours.

Our study has several advantages, such as a large population-
based sample with a high participation rate. Nevertheless, the
findings must be interpreted in the light of some limitations: First,
the latent genetic factor includes variance shared by the polygenic
score and the mated phenotype. If the phenotypes are differen-
tially operationalized or assessed in discovery and target samples,
h and s may be smaller and the residuals larger. Thus, the
interpretation of the model depends on the similarity between the
GWASed and target phenotype and is only straightforward when
these are the same. Second, the rGenSi model makes certain
simplifying assumptions. Extensive simulations indicated that the
model provided the expected results. In addition, the empirical
results that could be compared with previous studies were mainly
in line with these. However, we did not include covariance
between an individual’s latent genetic and environmental factors,
which would be expected under vertical transmission. Assuming
independence is a limitation of the current model and it remains
to be determined how this influences the results in various sce-
narios. We also relied on previous GWAS to construct the
polygenic scores. Assortative mating and parental indirect genetic
effects may have influenced these studies and thereby also inflated
our estimates of heritability. If we have overestimated heritability,
genetic correlations between relatives will most likely also be
inflated. Recent studies are exploring how these phenomena
influence genomic studies and how to counteract this*3-4>. Third,
all participants were expecting parents as our sample was based
on a pregnancy cohort, and we could not study the role of
selective fertility for genetic variance. Fourth, there is some
selective participation in MoBa%® that is plausibly enhanced
among families where both parents participate. Fifth, although we
attempted to adjust for population structure by including the first
50 principal components, we cannot rule out the effects of resi-
dual population structure?$47. For example, some parts of the
spousal correlations could be due to assortment on social factors
such as place of birth rather than assortment on phenotypes.
Sixth, the MoBa sample is homogenous and mostly of European
ancestry, potentially constraining generalizability to similar
ethnicities.

This paper has four key findings. First, correlations between
relatives’ polygenic scores may reflect only a part of the genetic
similarity arising from assortative mating. We have presented a
structural equation modelling approach to estimate genetic cor-
relations between individuals when phenotypic data is available.
Second, the application of this model to partners, siblings, and in-
laws indicated high levels of genetic partner similarity for edu-
cational attainment and some partner similarity for height and
depression. Phenotypes were correlated with partners’ and, in
some cases, in-laws’ polygenic scores. Third, partner similarity in

educational attainment and, to a smaller degree, in depression
appeared not to be based directly on these phenotypes but rather
on correlated phenotypes that we did not observe. Partner simi-
larity in height resulted from direct phenotypic assortment only.
Fourth, the genetic variances of educational attainment, height,
and depression appeared to be in intergenerational equilibrium.
Even though higher education has only been widespread for a few
generations, individuals may in previous times have assorted on
traits that predict educational attainment today. Hence, this study
shows genetic similarities between extended family members and
that assortative mating has taken place for several generations.

Methods

Ethics. The establishment of The Norwegian Mother, Father, and Child Cohort
Study (MoBa) and initial data collection was based on a license from the Norwegian
Data Protection Agency and approval from The Regional Committees for Medical
and Health Research Ethics. The MoBa cohort is now based on regulations related
to the Norwegian Health Registry Act. The current study was approved by The
Regional Committees for Medical and Health Research Ethics, Southern and
Eastern Norway (project# 2017/2205). Informed consent was obtained from all
study participants. The consent allows linking with data from other sources. The
participants did not receive monetary compensation.

Sample. MoBa is a population-based pregnancy cohort study conducted by the
Norwegian Institute of Public Health?S. Participants were recruited from all over
Norway from 1999 to 2008. The women consented to participation in 41% of the
pregnancies. The cohort now includes 114,500 children, 95,200 mothers and 75,200
fathers. The current study is based on version 12 of the quality-assured data files.

We use data on the parent generation in the MoBa sample, that is, mothers and
fathers but not children, and study the following relationship types among them,
detailed in Fig. 1: Partners are the opposite-sex genetic parents of a child, regardless
of their past or current relationship status. Siblings descend from the same two
parents in the generation before the one represented in our study sample. We do
not use data from individuals with unknown parents. In-laws (siblings-in-law) are
separated by two degrees, one of partnership and one of siblingship, that is, either
one’s sibling’s partner or one’s partner’s sibling. Co-in-laws (co-siblings-in-law) are
the respective partners of siblings and are thus separated by three degrees: two of
marriage and one of siblingship, that is, one’s partner’s sibling’s partner. We
identified siblings and their partners mapped through a link with the population
register at Statistics Norway. This way, we identified 63,781 complete pairs of
partners, 13,455 complete pairs of siblings, 21,496 complete pairs of in-laws, and
8699 complete pairs of co-in-laws (after removing 3 extended families where the
co-in-laws were siblings). Women were on average 30.62 (SD = 4.66) years old and
men were on average 33.18 (SD = 5.37) years old.

Blood samples were obtained from both parents during pregnancy. After birth,
a second blood sample was taken from the mother. Genotyping of the entire MoBa
cohort is ongoing. We used genotype data based on 32,000 family trios. The
analytic sample included genotype data on 30,197 mothers and 28,691 fathers.
There were valid genomic data on 26,681 complete couples, 2170 complete sibling
pairs, 3905 in-law pairs, and 1763 co-in-law pairs (after removing 4 extended
families where the co-in-laws were siblings). Information about the genotyping,
imputation, and quality control is available in the Supplementary Methods 1 and
Supplementary Table 1 and in previous reports%0,

Measures

Educational attainment. Educational attainment of the participants at age 30 was
gathered from registers at Statistics Norway and coded according to the Nor-
wegian Standard Classification of Education®!. Seven categories were in use,
corresponding to 1 = Lower secondary school (9 years; mandatory education),
2 = Upper secondary school, basic (10-11 years), 3 = Upper secondary school,
completed (12 years), 4 = Post-secondary non-tertiary education, 5 = Bachelor’s
degree or equivalent, 6 = Master’s degree or equivalent, 7= PhD or equivalent.
Level of education (1-7) was used as the unit on these variables.

Height. Height in centimeters was self-reported by mothers and fathers in the first
questionnaire (15 weeks of gestation).

Depression. Symptoms of major depressive disorder were measured with 6 items
constituting the Life-Time History of Major Depression, which is based on DSM-
I11%2. The average of the items is used as an individual’s score on depression. The
genetic association between major depressive disorder and broader definitions of
depression has been reported to be very high (r = 0.86)°3. The internal consistency
in this sample was Cronbach’s « = 0.82 for women and Cronbach’s a« = 0.81
for men.
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Polygenic scores. Polygenic scores were calculated using PRSice2, based on Eur-
opean samples from the most recent GWAS of educational attainment®, height>,
and major depressive disorder®®. The main results are based on SNPs associated
with the phenotype at p<0.05 in the GWAS. The Supplementary Methods 1 pro-
vide further information on the polygenic scoring method and Supplementary
Note 2, Supplementary Figs. 7 and 8 provide sensitivity analyses where the main
analyses are re-run using nine different thresholds.

Statistical modelling. We used standardized residuals for all variables (mean = 0,
SD = 1) adjusted for population structure (top 20 principal components) and batch
effects for polygenic scores. We estimated Pearson correlations between relatives’
phenotypes and polygenic scores and across phenotypes and polygenic scores.
Including the principal components in the analyses only marginally changed the
correlations (see Supplementary Table 8). We provide 95% confidence intervals for
all estimates and perform null hypothesis significance tests with a 5% alpha level,
with the null value set to either 0.00 or 0.50 depending on the parameter in
question.

The correlation in genetic signal (rGenSi) model of phenotypes and polygenic scores.
The correlation between two individuals’ polygenic scores may not correspond to
the full resemblance on causal variants for the trait because a polygenic score may
not be identical to the weighted sum of true trait-associated genetic variants in the
target sample. We introduce a structural equation model (SEM), illustrated in
Fig. 2, where the genetic predispositions are included as a latent variable. This
latent variable influences both the phenotype and the polygenic score. It reflects
variance shared by these and is usually not identical to any of them. The correlation
between an individual’s phenotype and polygenic score can then be divided into
two components: i) the correlation between the latent genetic variable and the
polygenic score, s, and ii) the correlation between the latent genetic variable and the
phenotype, h. Usually, the correlation between phenotype and the polygenic score
(the product h * s) can be observed, but separating the two components is
impossible. Using data from relatives, we can identify 4 and s and provide corre-
lations in the genetic signal free from the residual noise. We call this model rGenSi
because we use it to study correlations in genetic signals among relatives. The
model estimates the genetic correlation (¥, = Tjyreys generic) between individuals
using data on polygenic scores and the corresponding phenotypes. The model also
provides estimates of the proportion of genetic signal in the polygenic score (s2),
the proportion of noise (n? = I-s?), and the heritability (h%) of a phenotype, and it
can be extended to distinguish between direct and indirect assortment.

The association between partners’ phenotypes is modelled as a co-path, m, that
results from direct (primary phenotypic) assortment. The correlation between
siblings’ genetic signals is estimated in the model as r, g, = 7. Correlations
between different individuals™ genetic signals can be estimated by following path
tracing rules allowing for co-paths. Co-paths connect valid chains of paths2032,
They contribute to the co-variance between variables, but not their variance. They
are useful for analyzing assortment processes, which do not change the values of
variables. For instance, the correlation between partners’ genetic signals is

rgwfr\w, = h% m*h = mh® and the correlation between co-in-laws’ genetic signals

is rgmi;flaw =hsxmxhsxr,xhsxmxh= rs(mhz)z.

The basic version of the rGenSi model has four free parameters, s, h, m, and r,.
It can be extended with two additional parameters, a and ¢, which are fixed to 1 and
0, respectively, in the basic model. The association between the observed phenotype
and a latent phenotype on which assortment takes place is represented by a. When
a = 1, assortment takes place directly on the observed phenotype (primary
phenotypic assortment). When it is lower, the assortment is indirect, as a correlated
phenotype underlies the assortment (secondary assortment). For instance,
academic abilities rather than obtained length of education could lead to partner
similarity in education, and partner similarity in manifest depression might be due
to similarity in neuroticism. The phenotype on which partners assort is modelled as
a latent variable, like in the Cascade model?2. When a is freely estimated, m
corresponds to the correlation between a polygenic score and the partner’s
phenotype divided by the correlation with one’s own phenotype. (A similar
comparison underlies Robinson et al.’s® phenotypic estimation.) The a parameter
reduces all correlations between observed phenotypes to the same degree, that is,
partner and co-in-law correlations are equally reduced by a2.

Finally, siblings’ phenotypes may be more similar than indicated by their genetic
similarity, which means that they may be shaped by having similar environments.
This can be modelled with a factor that is shared by siblings and that influences their
phenotypes (c). The genetic residual is defined as not being associated with the
phenotype. It is therefore assumed not to be a basis for partner selection and to not
correlate between partners. Likewise, we assume that assortment in the previous
generation is unrelated to the genetic residual, allowing us to set the residual genetic
correlation to the uninflated value of 0.50 in siblings. The model is further explained
in the Supplementary Methods 2, Supplementary Figs. 1-6, and Supplementary
Tables 2-4, where we provide simulations showing that the model can simultaneously
estimate all the parameters described here when the sample size is adequate. We used
OpenMx 2.19.1 in R 4.0.2 to fit the models to raw data, providing full-information
maximum likelihood estimates of all parameters.

Testing intergenerational genetic equilibrium. Assortative mating can lead to genetic
correlations between partners and elevated genetic correlations between siblings in
succeeding generations until an equilibrium is reached. In the rGenSi model, the
genetic correlations between partners and between siblings are estimated inde-
pendently. In equilibrium, however, the genetic correlation between partners can
easily be predicted from the genetic correlation between siblings and vice versa. If
the correlation between partners in additive genetic factors is 7 parimer the additive
genetic correlation between siblings in an equilibrium population is expected to be
rg_s/i,;”g =10+ rg_lmmer)19 (p. 158). (The source states this as 7 ping =
1%(1+p,h?), but we define p,h? = Tgpartner)- This formula allows us to compare
partner correlations, which result from the assortment in the current generation,
with sibling correlations, which results from the assortment in previous genera-
tions. An observed partner correlation higher than expected in equilibrium indi-
cates that the level of genetic assortment is increasing compared to previous
generations. We investigated deviations from intergenerational equilibrium by
constraining correlations between partners’ and siblings’ polygenic scores accord-
ing to the above formula and by adding this as a constraint to the rGenSi model.
We compared models that assumed equilibrium to the less restricted models that
did not assume equilibrium and tested whether they had a significantly worse fit to
the data.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The MoBa data are available under restricted access due to data privacy laws, access can
be obtained by application to MoBa and a Regional Committee for Medical and Health
Research Ethics in Norway. The data in this study were accessed under ethics approval
(project# 2017/2205, Regional Committees for Medical and Health Research Ethics,
Southern and Eastern Norway). If you would like to apply for access, please see the
following website for more details https://www.fhi.no/en/studies/moba/for-forskere-
artikler/research-and-data-access/.

Code availability
Scripts for the rGenSi model and the simulations are provided in Supplementary
Software 1 and at https://osf.io/v9ybu/.
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