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Background Brazil is one of the countries worst affected by the COVID-19 pandemic with over 20 million cases and
557,000 deaths reported by August 2021. Comparison of real-time local COVID-19 data between areas is essential
for understanding transmission, measuring the effects of interventions, and predicting the course of the epidemic,
but are often challenging due to different population sizes and structures.

MethodsWe describe the development of a new app for the real-time visualisation of COVID-19 data in Brazil
at the municipality level. In the CLIC-Brazil app, daily updates of case and death data are downloaded, age
standardised and used to estimate the effective reproduction number (Rt). We show how such platforms can
perform real-time regression analyses to identify factors associated with the rate of initial spread and early
reproduction number. We also use survival methods to predict the likelihood of occurrence of a new peak of
COVID-19 incidence.

Findings After an initial introduction in S~ao Paulo and Rio de Janeiro states in early March 2020, the epidemic
spread to northern states and then to highly populated coastal regions and the Central-West. Municipalities with
higher metrics of social development experienced earlier arrival of COVID-19 (decrease of 11¢1 days [95%
CI:8.9,13.2] in the time to arrival for each 10% increase in the social development index). Differences in the initial
epidemic intensity (mean Rt) were largely driven by geographic location and the date of local onset.

Interpretation This study demonstrates that platforms that monitor, standardise and analyse the epidemiological
data at a local level can give useful real-time insights into outbreak dynamics that can be used to better adapt
responses to the current and future pandemics.
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Research in context

Evidence before this study

Brazil is one of the countries worst affected by the
COVID-19 epidemic. The spread of the epidemic across
the country has been highly heterogeneous and this
unfolding pattern can potentially reveal important real-
time information about epidemiological risk factors and
the effectiveness of non-pharmaceutical interventions.
A variety of COVID-19 data dashboards provide real
time insights, but few present data down to local levels
or perform the data standardisation procedures neces-
sary to reveal the true patterns of spread and the factors
driving the differences in severity between places. Sev-
eral retrospective analyses using reported case and
population-based serological datasets have been per-
formed, but only for specific areas of Brazil and only at
particular times in the epidemic. As a result, such stud-
ies have, unsurprisingly, found conflicting risk factors
e.g. socio-economic status has gone from a risk to a pro-
tective factor.

Added value of this study

This study describes the development of the COVID-19
Local Information Comparison (CLIC Brazil) app (https://
cmmid.github.io/visualisations/lacpt) and demonstrates
the scientific insights possible with such local, standar-
dised, real-time platforms. The app provides access to
standardised case and death time-series of epidemic
data for each of the 5570 municipalities in Brazil and is
updated daily.

We found that the COVID-19 epidemic established
earliest in municipalities with higher population density,
higher social development index (SDI) and greater per-
centage of residences with piped sanitation, and latest
in areas geographically distant from the main popula-
tion centres. By looking at local early epidemic progres-
sion rates (Rt) we were able to map heterogeneity in
transmission intensity across Brazil and show its correla-
tion with socioeconomic and connectivity measures.

Implications of all the available evidence

The app provides a useful tool for comparing epidemic
severity between places and over time at a finer grained
spatial resolution. It shows how rapid insights can be
gained into the unfolding risk factors of epidemics. This
is increasingly important when such risk factors rapidly
evolve due to non-pharmaceutical interventions, emer-
gence of new variants and vaccination.

Brazil has experienced a second wave of the epi-
demic, driven by the emergence of a more transmissible
variant (Gamma (P1)). Continual tracking of this phase
of the epidemic using methods demonstrated in our
analyses will be important to assess similarities and dif-
ferences in the spatial spread of different COVID-19 epi-
demic waves.
Introduction
COVID-19 is a new respiratory and multi-organ illness
caused by infection with the severe acute respiratory
syndrome coronavirus type-2 (SARS-CoV-2) which
emerged in December 2019 in Wuhan, China. As of 4th

August 2021 over 200 million COVID-19 cases and
over 4¢2 million deaths had been reported worldwide.1

Brazil is one of the worst affected countries with over
20 million cases and 557,000 deaths reported by that date.1

Heterogenous patterns of propagation of the virus across
the country have been driven by a complex intersection of
causative factors including; continued movements of peo-
ple between urban centres throughout the epidemic, differ-
ential imposition of interventions designed to reduce
transmission and relative isolation of municipalities from
the major population centres.2 The country has experi-
enced a second wave of the epidemic driven by a viral vari-
ant which arose in the Amazonas region and has quickly
spread throughout the country.3

Comparisons of incidence between different local
areas can give important insights into the patterns of
spread and the burden of an epidemic and help to sepa-
rate generalisable from context-specifc transmission
trends. Such comparisons are complicated by differen-
ces in the characteristics of local populations that affect
the risk of disease even if levels of infection are equal.
In particular, age is a major risk factor for infection
with SARS-CoV-2 and subsequent COVID-19 disease.
Consequently, differences in the age distribution
need to be taken into account when comparing local
areas.4−6 The differences in epidemic severity between
places could also be driven by sociodemographic factors,
ethnicity, the relative isolation of different regions and
the levels of implementation and effectiveness of non-
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pharmaceutical interventions. A serosurvey conducted
in May and June of 2020 in cities across Brazil found
evidence that prevalence of SARS-CoV-2 antibodies, an
indicator of prior infection, was higher for those; living
in crowded conditions, of non-white ethnicity and those
in the lowest socio-economic groups.7 In contrast a
study of data from the early stages of the epidemic in
Brazil, up to May 2020, found that those in higher
socio-economic groups were more likely to have a posi-
tive test for COVID-19.8 This may imply a changing risk
profile over time or may reflect differential access to
testing among socio-economic groups.

With the increased roll-out of vaccinations, local dif-
ferences in vaccine uptake also need to be considered.9

All of these aspects could impact on the rate of spread
and onset time of the epidemic in a given locality. Quan-
tifying the role of these components, and the interplay
between them, is important for understanding patterns
of past infection and the likely severity of future waves
of infection.

The field of real-time analysis of infectious disease
data is rapidly expanding, in part due to greater automa-
tion, digitisation and online sharing of data.10 Projects
such as the Johns Hopkins University COVID-19 Dash-
board11 aim to provide a global overview of cases and
deaths with the goal of making international compari-
sons12 and a number of sub-national-level real-time data
dashboards have also been established for finer scale
domestic comparisons such as that for Italy.13 Such
dashboards are useful for rapid situation reports, yet
direct comparison between regions with differing age
distributions and onset times offers limited epidemio-
logical insight into the rate of spread and local burden
of the epidemic.

Websites such as EpiForecasts14,15 the CDC Covid-19
Forecasting Hub16−18 and ‘Short-term forecasts for mul-
tiple countries’19 aim to make and compare short-term
projections of disease incidence using mathematical
and statistical models. As part of this process, some
models aim to estimate the effective reproduction num-
ber Rt, an estimate of the average number of new infec-
tions that will occur from each infected person. Real-
time estimates of Rt over time20,21 are useful for plan-
ning interventions to mitigate the impact of the epi-
demic.22 Accurate estimation of Rt is complicated by the
need to correct for the delays between infection and
reporting of cases of disease and under-ascertainment
of cases. Due to the computational resources required
to run these forecasting models, most existing analysis
dashboards only give predictions at the national or first
administrative level (e.g. State in Brazil) and are not
updated daily to reflect the latest situation.23

There is a need for a new class of dashboards that are
able to perform basic data standardisation to account for
differing population age structures and allow for
regional comparisons. Additionally, such dashboards
should provide local summaries of key epidemiological
www.thelancet.com Vol 5 Month January, 2022
parameters and support rapid data analyses of outbreak
dynamics whilst retaining the contemporary focus of
real-time data streams. In response to this we have
developed an online application for the real-time visuali-
sation of COVID-19 cases and death data in Brazil at the
municipality (second-level administrative division) level.
This allows real-time comparisons of the development
of the epidemic in Brazil to be made at a local level to
allow local decision makers to track and compare epi-
demic progression rates between different areas. The
COVID-19 Local Information Comparison (CLIC Brazil)
app [https://cmmid.github.io/visualisations/lacpt] has
been active since May 2020, early in the Brazilian epi-
demic. The data underlying the app are updated daily
and relevant local data summaries and analytics re-com-
puted. Here we describe the CLIC Brazil app and the
insights about the early evolution of the COVID-19 out-
break in Brazil that it has helped reveal.
Methods

Context
Brazil is the largest and most populous country in
South and Latin America, with a total population esti-
mated at over 213 million in 2021.24 The country is com-
posed of 26 states and the Federal District and 5570
municipalities.
Data Sources
The numbers of COVID-19 cases and deaths, aggre-
gated by municipality were automatically downloaded
daily from the Brasil.io COVID-19 project reposi-
tory.25 This repository contains data extracted from
the bulletins of state health secretariats. Data on the
distribution of the population by age and the sociode-
mographic characteristics of each municipality were
obtained from the most recent national demographic
census, run by the Instituto Brasileiro de Geografia e
Estat�ıstica (IBGE) in 2010.26 To allow age standard-
isation of cases, data on the age distribution of
COVID-19 cases were derived from case reports
throughout Brazil between 2nd February and 25th

March 2020, collected by the Brazilian Ministry of
Health and were used with their permission. Using
these data enabled consistent standardisation
throughout the epidemic. In order to assess the effect
of geographical remoteness from major cities, the
travel time in hours from each municipality to the
most populous metropolitan area in the state was cal-
culated using WorldPop population data 27,28 and the
travel time friction surface using the Malaria Atlas28

accumulated cost route finding algorithm within the
“MalariaAtlas” R package.29,30 The socio-demographic
Index (SDI) is a composite average of the rankings of the
incomes per capita, average educational attainment, and
3
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Figure 1. Spatial progression of the COVID-19 epidemic in Brazil. Standardised case incidence is a measure that allows comparison
between municipalities with different population sizes and age structures. Standardised incidence for all 5570 municipalities has
been aggregated to microregion (n = 558) by population-weighted averaging for visualisation purposes. The bottom right panel
includes a map of the six macro regions of Brazil for reference.
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fertility rates scaled between 0 (lowest) and 1 (highest).31

The geographic region in which each place was located
was assigned using a standardised designation which
groups the States and the Federal District of Brasilia into
five macro regions32 (Fig 1). Data uploaded to Brasil.io
between 25th February 2020 and 14th July 2021 was used
for the analyses reported here, updated data can be down-
loaded from the CLIC-Brazil app. Data on the types of
non-pharmaceutical interventions implemented, and the
dates of their announcement were extracted from data
collated by the Cepal Observatory with edits and updates
on timing of interventions at the municipality and
state level by de Souza Santos et al.3,8,33 These were used
to compare the dates for the implementation and arrival
of the epidemic locally. Full details of the data sources
and data processing are included in the Supplementary
Materials.
Features of the application
The homepage of the app shows a map of Brazil with
the number of cases in each municipality and a timeline
for the development of the national epidemic. A series
of tabs provide the following functionality to users: a
comparison of standardised COVID-19 incidence
between municipalities, trends in the association
www.thelancet.com Vol 5 Month January, 2022
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between sociodemographic variables and incidence,
changes in Rt between selected municipalities over
time, predictions of the likelihood that a particular
municipality has reached peak incidence and the ability
to download incidence estimates, Rt predictions and
sociodemographic variables.
Development of the application
The COVID-19 Local Information Comparison (CLIC
Brazil) application was developed using the R package
“shiny”, version 1.5.0.34 CLIC Brazil provides users with
options for graphical display of information and all
computation required is handled remotely. Plots are
generated using the R package “ggplot2” version 3.3.2.35

Spatial data presented in the form of maps are portrayed
using the R package “leaflet” version 2.0.3.36 Screen-
shots from the app are shown in Figures S3 to S5 in the
Supplementary Materials. All code described in the
paper can be downloaded from this github repository -
https://github.com/Paul-Mee/clic_brazil.
Analytical methods
Calculating the comparable measure of stand-
ardised incidence. To enable comparison of
COVID-19 case counts between municipalities with dif-
ferent age structures and thus different probabilities of
disease given infection, we standardised each munici-
pality's incidence to the national-level age structure (see
Supplementary Materials). When comparing the pro-
gression of the epidemic in different municipalities
over time, a comparable outbreak start criterion had to
be established. We defined the arrival of COVID-19 in a
given municipality as the day in which cumulative
standardised incidence first exceeded 1 case per 10,000
residents.
Rt Estimation. The raw case count data was adjusted
to account for differential reporting (heaping) of
COVID-19 cases by day of the week (see Supplementary
Materials). The EpiFilter algorithm was used to estimate
Rt.

37 This method uses a recursive Bayesian filter to
derive estimates from a time series of all incident cases.
The serial interval (SI), defined as the time between the
onset of symptoms in the source of infection and in the
recipient, was modelled as a gamma distribution with a
mean of 6¢5 days and a standard deviation of 4¢03
days.38 A fixed value of 10 days was used for the delay
between symptom onset and case reporting, this was
consistent with an average value of 10¢2 days for
2,420,904 suspected COVID-19 cases reported between
March 1st and August 18th 2020 in all the state capitals
and Federal District of Brazil in the e-SUS notification
system.39 Predictions were only made for municipalities
www.thelancet.com Vol 5 Month January, 2022
with more than 30 days of data and more than 200
COVID-19 cases reported, to allow sufficient data for
the algorithm to give reliable estimates.40 The resultant
Rt curves were plotted to enable comparison between
selected cities in the CLIC Brazil app.
Regression analyses. Using data from the CLIC
Brazil app, two regression models were formulated to
quantify how the timing of arrival and growth rate of
the COVID-19 epidemic in each municipality could be
explained by sociodemographic characteristics and spa-
tial connectivity. Initially a series of univariable regres-
sion models were developed to test whether each
covariate was individually associated with the outcome.
The variables included were; population density, the
percentage of residences with i) piped water and ii)
piped sewage, the travel time to the largest city in the
state and the socio-demographic index (See Data Sour-
ces section in the Methods). Additionally, the geo-
graphic region Central-West, North, Northeast, South
and Southeast in which the municipality was located
was included as a fixed effect to partially control for
residual confounding based on other unmeasured geo-
graphically associated characteristics. Following this,
both forward and backward stepwise regression
approaches were used to develop multivariable models
(see Supplementary Materials).
Analysis of factors associated with time for
the epidemic to arrive in a municipality. To
assess which characteristics of a municipality were asso-
ciated with arrival time of COVID-19 we first defined
the date of epidemic outbreak (arrival) in each munici-
pality as the date when the standardised incidence first
exceeded 10 cases per 10,000 residents. These dates
were then compared to the date of arrival of COVID-19
in Brazil which we defined as 31st March 2020 (the date
on which the first municipality exceeded an incidence
of 1 per 10,000 residents) to calculate the number of
days until arrival. This formed the response variable for
the Tobit regression analysis41 as implemented in the R
package “VGAM”.42 A Tobit regression formulation
was necessary due to censoring, i.e. unknown number
of days for arrival for municipalities where incidence
had not crossed the threshold level. To assess the sensi-
tivity of these findings to our definition of COVID-19
arrival we repeated our analysis with a range of thresh-
old incidence values (5 to 15 cases per 10,000).
Analysis of factors associated with the rate of
growth in the early stages of the epidemic. To
assess which factors were associated with the growth
rate of epidemic in municipalities after COVID-19 had
arrived, we calculated the mean value of Rt over the
period 30-150 days after arrival in each municipality.
5
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Calculating Rt using data within this time window bal-
anced the need to include enough data for accurate esti-
mation40 with the need to estimate Rt before the build-
up of substantial immunity or reactive interventions
(therefore approximating R0 - the basic reproduction
number). To test the sensitivity of our findings to the
chosen width of this estimation window, we repeated
the analysis with the end point for the mean Rt estima-
tion varying between (100 and 180 days). The logarithm
of the estimated mean Rt was then included as the
response variable in a standard linear regression model
using the “glm” function in base R with covariate selec-
tion as described above. We included the calendar time
period in which the local epidemic commenced as an
additional covariate to control for residual temporal con-
founding. Initial univariate analyses suggested that
grouping the calendar time period into three roughly
equal categories, all within 2020 (14th March to 1st May,
2nd May to 21st May and 22nd May to 6th November) cap-
tured variation appropriately and that an interaction
between calendar time period and geographic region
should be considered as a separate (selectable) covariate.
Predicting whether a new maximum inci-
dence will occur. Here we used Cox regression as
implemented in the “coxph” function of the R package
“survival”43 to estimate the probability of each munici-
pality surpassing its previous maximum weekly standar-
dised incidence (i.e. a new “record” incidence) within
the following 4 weeks. The analysis time was the num-
ber of weeks since the start of the epidemic (cumulative
standardised incidence exceeded 1 case per 10,000 resi-
dents). The event of interest was the setting of a new
record incidence, which in general occured more than
once (see Supplementary Materials).

The reporting guidelines in the Reporting Of studies
Conducted using Observational Routinely-collected
health Data (RECORD) Statement were used.44 The
completed RECORD checklist is included in the Supple-
mentary Materials.
Role of the Funding Source
The funder of the study had no role in study design,
data collection, data analysis, data interpretation, or
writing of the report.
Results
To compare the spatial progression of the COVID-19
epidemic in Brazil, we mapped cumulative standardised
disease incidence in Fig. 1.

Despite the first introductions and local SARS-CoV-2
transmission events occurring in S~ao Paulo and Rio de
Janeiro states in early March 2020,45 the focus of the
outbreak quickly shifted to the North region of the
country where the first big outbreaks occurred in late
May/early June, particularly in the border states of Ama-
zonas, Roraima and Amap�a (Fig. 1). By August 2020,
COVID-19 transmission was widespread across the
North region and began to spread to major coastal cities,
particularly in the Northeast. By October, transmission had
spread along the highly populated coastal areas and into the
Central-West region. Between August and October, SARS-
CoV-2 spread to the final transmission-free areas in sparsely
populated inland regions and in the far South. By Decem-
ber 1st, transmission was widespread throughout the whole
country. During November to December 2020 the re-emer-
gence of large outbreaks occurred throughout the Central-
West region alongside renewed growth in coastal cities of
the Southeast and South. From February to July 2021, inci-
dence remained high in the North and increased elsewhere,
such that as of July 2021, most areas had cumulative stand-
ardised incidence rates comparable to some of the worst
affected areas in the North.

To compare the trajectory of COVID-19 outbreaks in
local areas once the first wave of epidemic had begun,
we plotted cumulative standardised case counts per
municipality in different states and regions in Brazil
(Fig. 2). This revealed that the outbreak was compara-
tively faster growing and reached higher cumulative
incidence in the North region of Brazil (Fig. 2A and F).
Within this region, the most northerly states of Amazo-
nas, Amap�a and Roraima were the most severely affected
with some municipalities experiencing cumulative case
prevalence as high as 45%. Areas in the Southeast and,
until recently, South regions had slower growing out-
breaks in the earlier stages of epidemic (Fig. 2D-F). Out-
break trajectories in the Central-West and Northeast
regions were between the high rates observed in the
North and low rates observed in the South in the first
wave, but have since increased to the high levels seen
elsewhere (Fig. 2F). Despite these trends, there was con-
siderable within-region and within-state heterogeneity in
outbreak trajectories, suggesting factors other than just
geographical location were important in shaping the tra-
jectory of the epidemic. Plots for specific municipalities
can be viewed in the CLIC Brazil app [https://cmmid.
github.io/visualisations/lacpt].

Between 28th February and 27th March 2020, a
range of state-level restrictions were announced to
limit the spread of SARS-CoV-2 including declaring
an emergency, industry, retail, service and transport
restrictions and school closures. At the time these
interventions were announced, only a very small
number of municipalities had reported a single
COVID-19 case (51 of 5,570 municipalities). This
indicates that the announcement of interventions in
Brazil occurred before the first COVID-19 cases
appeared in the majority of municipalities (mean of
54.8 days before the first case was reported in pre-
emptive municipalities). Even in municipalities
where interventions were announced reactively there
www.thelancet.com Vol 5 Month January, 2022
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Figure 2. Comparison of outbreak trajectories in different regions of Brazil. Each line represents a municipality within the geograph-
ical area. Cases per municipality have been age- and population-standardised, plotted cumulatively and aligned to the date of
detection of the first COVID-19 cases in each municipality (defined as an incidence of greater than 0¢1 standardised cases per 1,000
residents). Only municipalities that have reported 50 or more cases are shown. Panel F compares regional median trajectories.
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was only a mean 2¢2 days between reporting the first
case and their announcement (red area in Fig. 3).
Analysis of factors associated with time for the
epidemic to arrive in a municipality
Our “outbreak” threshold (standardised incidence of
10 cases per 10,000 residents) was first exceeded on
April 12th 2020. By the censoring date for this study
of July 14th 2021 all municipalities had exceeded the
threshold incidence.
www.thelancet.com Vol 5 Month January, 2022
Consistent with the patterns of observed spread in
Figures 1 and 2, the univariable analyses suggested that
municipalities in the North region exceeded the out-
break threshold earlier, followed by those in the North-
east and Central-West regions and finally those in the
South and Southeast regions (Table 1). After adjusting
for geographic region, the epidemic can be seen to have
arrived earliest in those municipalities with higher pop-
ulation density, higher social development index (SDI)
and greater percentage of residences with piped sanita-
tion. There was evidence that municipalities further
7



Figure 3. Timing of announcement of interventions relative to the first COVID-19 cases being reported locally (dashed black vertical
line). Dots in black represent municipalities where restrictions were announced prior to any cases being reported, while dots in
red show municipalities where restrictions were announced after cases were reported. 5,547 municipalities were included in this
analysis.
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from the main population centres in the state had a later
arrival of the epidemic.

Considering the magnitudes of the effect estimates,
a 10% increase in the population density shortened the
arrival time by 0¢9 days [95% CI:0¢8,0¢9]. An increase
of 10% in the travel time to the largest city in the State
was associated with a delay in arrival of 0¢4 days [95%
CI:0¢2,0¢5]. An increase of 10% in the SDI was associ-
ated with a decrease of 11¢1 days [95% CI:8.9,13.2] in the
time to arrival.

Sensitivity analyses were carried out to investigate
the effect of changing the threshold incidence for epi-
demic arrival from 5 to 15 cases per 10,000 residents
(Tables S1 and S2 Supplementary Materials). The inter-
pretation of the direction of the effect of the included
covariates remained the same within this range, whilst
there were variations in the magnitude of the effect
(Table S3 Supplementary Materials).
Analysis of factors associated with the rate of growth
in the early stages of the epidemic
To measure the intensity of the epidemic in each
municipality after arrival we calculated the mean
reproduction number (Rt) over the early phase of the
epidemic. A total of 2,757 municipalities contained
sufficient data for Rt calculation (i.e. at least
30 days of data from the first case report and more
than 200 cumulative cases) with the inter-quartile
range for the estimated values ranging from 0¢852
to 1¢094.

From the unadjusted analyses (Table 2), it can be
observed that the early epidemic was least intense in the
Central-West region, with the Rt of other regions being
higher by factors which ranged from an increase by a
factor of 1¢30 in the Southern region to 1¢46 in the
Northern region. Epidemic intensity decreased over
time, though the effect was significantly smaller
than that for geographic region; in the latter two
time periods, Rt was decreased by factors of 0.86
and 0.68 respectively compared to the first. In the
multivariable model, a high degree of heterogeneity
across space and time in mean Rt was seen (Fig 4).
In the Central-West region, mean Rt decreased from
1¢02 to 0¢61, over the three time periods. In the
North, the corresponding decrease was from 1¢13 to
0¢72 and in the Southeast from 0¢77 to 0¢54. There
was no statistical evidence for a change in the North-
east or South regions.

The effects on mean Rt of covariates other than geo-
graphic region and time period were relatively small,
indicating that a large amount of the variation was not
www.thelancet.com Vol 5 Month January, 2022



Characteristic of
the municipality

Frequency Median value
(Interquartile
range)

Unadjusted
(univariable)
model estimates[95% CI]

Adjusted
(multivariable)
model estimates[95% CI]

Geographic region Central- West 444 - -

North 449 -32¢1 [-36¢7,-27¢5] -34¢0 [-38¢6,-29¢5]
Northeast 1775 -15¢7 [-19¢4,-12¢1] -3¢6 [-7¢3,0¢2]
South 1157 3¢7 [-0¢1,7¢6] 20¢8 [16¢9,24¢6]
Southeast 1653 4¢4 [0¢7,8¢1] 26¢9 [23¢1,30¢8]

Population density

(logn) (population/km
2)

3¢20 (2¢45 - 3¢96) -5¢8 [-6¢5,-5¢2] -8¢5 [-9¢2,-7¢7]

Percentage of residences with piped water 72¢30 (56¢29 - 84¢59) 0¢0 [-0¢1,0¢0] 0¢0 [-0¢1,0¢0]
Percentage of residences

with piped sewage or septic tanks

37¢70 (12¢75 - 70¢25) 0¢0 [0¢0,0¢0] -0¢2 [-0¢2,-0¢1]

Travel time (logn) by road to

most populous municipality in the state (hours)

2¢96 (2¢34 - 3¢44) -1¢0 [-2¢5,0¢5] 3¢6 [2¢2,5¢1]

Social Development Index (SDI) 0¢25 (0¢22 - 0¢27) -140¢1 [-163¢4,-116¢7] -111¢1 [-132¢8,-89¢3]

Table 1: Tobit regression analysis of time to outbreak for each municipality (days since 31st March 2020). Starting incidence 1 case per
10,000 residents - epidemic onset incidence = 10 cases per 10,000 residents.

Characteristic of the municipality Median value
(Interquartile range)

Freq Unadjusted
(univariable) model
estimates(95% CI)

Adjusted
(multivariable)
model estimates(95% CI)

Geographic Region Central- West 228 1 - 1

North 314 1¢464 [1¢288,1¢665] - 1

Northeast 993 1¢328 [1¢191,1¢48] - 1

South 470 1¢301 [1¢155,1¢465] - 1

Southeast 752 1¢323 [1¢184,1¢48] - 1

Date of local epidemic start

(standardised incidence >

1 case per 10,000

residents)

14th March to 1st May

2020

875 1 - 1

2nd May to 21st May

2020

913 0¢859 [0¢802,0¢920] - 1

22nd May to 6th Nov

2020

969 0¢675 [0¢631,0¢723] - 1

Population density (logn) (population/km
2) 3¢31 (2¢52 - 4¢21) 1¢096 [1¢078,1¢116] 1¢067 [1¢042,1¢092]

Percentage of residences with piped water 72¢76 (56¢12 - 85¢20) 1¢004 [1¢003,1¢005] 1¢003 [1¢001,1¢004]
Percentage of residences with piped

sewage or septic tanks

36¢71 (12¢45 - 70¢80) 1¢003 [1¢002,1¢004] 1¢003 [1¢002,1¢005]

Travel time (logn) by road to most

populous municipality in the state (hours)

2¢96 (2¢32 - 3¢46) 1¢022 [0¢981,1¢065] 1¢012 [0¢966,1¢062]

Social Development Index (SDI) 0¢25 (0¢22 - 0¢28) 3¢834 [1¢978,7¢441] 3¢300 [1¢652,6¢593]

Table 2: Summary of unadjusted and adjusted multivariablemean Rt linear regression models.Mean Rt is calculated over a window
from 30 to 150 days since the arrival (standardised incidence > 1 case per 10,000 residents) of COVID-19 in the respective municipality.

1 As model contains an interaction between geographic region and start day the effect estimates for the interaction terms are shown in Figure 4.
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explained by these factors. From the univariable analy-
sis it was seen that municipalities that were more
densely populated, with higher levels of provision of
piped water and sanitation or a higher SDI had higher
mean Rt values (Table 2), whilst those further from the
main population centre in the state had lower values. In
www.thelancet.com Vol 5 Month January, 2022
the adjusted multivariable analysis these associations
were retained with marginally lower effect estimates.
There was no evidence that mean Rt was associated
with the travel time to the most populous municipality
in the state (adjusted coefficient = 1¢02 [95%
CI:0¢966,1¢062])
9



Figure 4. Estimated marginal values of mean Rt in the final adjusted multivariate linear regression model error bars show the 95%
confidence intervals around the mean value.

Figure 5. Area under the curve (AUC) for prediction of a new maximum incidence in the following 4 weeks (left vertical axis, blue
line) against calendar time (horizontal axis). The daily number of incident cases (rolling fortnightly average) is shown in the green
line, right axis. The dashed line shows the lower end of the range 0¢70-0¢90. There is one panel for each region (Central-West, North,
Northeast, South and Southeast), with the “BR” panel showing all Brazil.
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A sensitivity analysis was carried out in which the
end date for the calculation of mean Rt was adjusted
over a range from 100 to 180 days. The unadjusted
and adjusted models for the extreme values are pre-
sented in Tables S4 and S5 in the Supplementary
Materials. Whilst there were small changes for the
effect estimates the trends in the associations seen
for the 30 to 150-day range remained unchanged,
increasing the strength of evidence for the findings
reported.
www.thelancet.com Vol 5 Month January, 2022
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Predicting new maximum values of incidence
Figure 5 shows the values of the area (AUC) under the
receiver operating characteristic (ROC) curve for the
ability to predict a new maximum incidence in the fol-
lowing 4 weeks. The values are generally between 0¢70
and 0¢90, corresponding to accuracy described previ-
ously as “useful for some purposes”.46 For the Central-
West region, AUCs are high (between 0¢8 and 0¢9) after
a spike in incidence in late 2020, indicating that the
lack of subsequent peaks was predictable. Overall, the
AUC values are associated with incidence, suggesting
that the method is better able to learn across municipali-
ties when higher or lower rates are propagating across
the country, i.e. that increases elsewhere helped predict
peaks in each index municipality. From each ROC
curve, values of sensitivity and specificity were chosen
to maximize the sum of these two parameters. For sen-
sitivity, averaging over time, the regions had similar val-
ues, between 70% and 73%. For specificity, the average
values ranged from 63% for the Southeast region to
74% in the North.
Discussion
We describe the development of an online application,
CLIC Brazil, that allows comparison of the spread and
impact of the COVID-19 epidemic in Brazil between
local areas (municipalities). We show how basic analy-
ses, largely available through the application, can be
used to identify pathways and determinants of spread.
Further we identify and explain heterogeneities in bur-
den and assess the relative timeliness of reactive inter-
ventions. Underlying the application is a portable data
processing and analysis pipeline which enables real-
time comparisons of spatially disaggregated COVID-19
epidemic trajectories over time. The technical frame-
work described is modular and generalisable and could
be used for monitoring future disease epidemics, pro-
vided that real-time geographically located surveillance
data is available.

Our analyses show that despite an initial identifica-
tion of SARS CoV-2 in the large Southeastern cities of
S~ao Paulo and Rio de Janeiro47,48 the early focus of the
epidemic quickly shifted to the Northern region before
spreading to Northeastern coastal cities and then to the
Southern and Southeastern region of the country. This
was then followed by a resurgence of transmission and
higher levels of incidence in the Northern region linked
temporally to the emergence of the Gamma (P1) variant
in the same area. Subsequently, these higher rates of
infection have been seen in most areas of the country
and remained high by August 2021.

It might have been expected that individuals living in
wealthier areas would have experienced a less serious
impact of the epidemic due to those with serious illness
having better access to healthcare and being more likely
to be able to adopt social distancing measures designed
www.thelancet.com Vol 5 Month January, 2022
to mitigate infection. Our findings were in contrast to
this and suggest that in general, places with a higher
social development index experienced an earlier arrival
and more rapid early propagation of the epidemic. This
finding may be due in part to greater provision of and
access to testing in areas with higher SDI, particularly
given the greater role private sector testing played in the
earlier stages of the epidemic. Also, the covariates used
in the derivation of the social development index may
not fully reflect the impact of wealth and employment
type or the ability of individuals in different areas to
adopt social distancing and lessen their risk of infec-
tion.

A study using data aggregated at the country level
from the five BRICS countries (Brazil, Russia, India,
China, and South Africa) showed that COVID-19 case
numbers were associated with increasing levels of pov-
erty.49 Other studies have shown that COVID-19 mor-
tality rates were greater in areas of Brazil with lower
levels of various socio-economic indicators.50,51 Possible
explanations for the differences with our findings are
that these associations changed with time and also that
we were comparing trends between municipalities
within one country. Also as we used COVID-19 case
incidence rather than mortality as our outcome, it would
be expected that those in areas with higher levels of pov-
erty experience greater barriers to accessing adequate
healthcare and hence be likely to experience more
severe COVID-19 disease outcomes.

Places that were more distant from major population
centres experienced later onset though there was no evi-
dence that the propagation was slower once the infec-
tion became established locally. The delayed arrival may
be related to transport connectivity, however poorer
availability of testing, leading to delayed recognition,
may also be a factor.

There were large differences in the mean Rt between
local areas and over time that could not be explained by
the covariates included in our analysis. This may be
related to differences in patterns of social mixing or the
imposition of, and the level of adherence to non-phar-
maceutical interventions (NPIs), and the extent to which
the roll-out of public health measures designed to curb
the spread of the epidemic was devolved to a local level
by national and State authorities.33

There was evidence, at least for the Central-West,
North and Southeast regions, that the reproduction
number was lower in places where the epidemic arrived
later. Studies have shown that in general individuals are
more likely to change their health behaviour if they per-
ceive they are at a heightened level of risk52, hence it
may be hypothesised that individuals were more likely
to adhere to social distancing and other NPIs as their
awareness of the severity of COVID-19 infection grew.
A recent worldwide assessment of changes in adherence
to NPIs to mitigate COVID-19 indicated that whilst this
may be true for interventions with a low economic cost,
11
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such as mask wearing, it was not the case for adherence
to social isolation which had a higher economic cost.53

More work on adherence to NPIs in Brazil is urgently
needed given the unique socio-political approach the
country took to COVID-19 control, particularly in the
early stages of the epidemic.

The algorithm developed to predict the likelihood of
a place experiencing a new record level of incidence in
the following 4 weeks showed reasonably good predic-
tive values once the epidemic had become established
in each region and nationally. This suggests that the
approach would be useful for assessing the immediate
local impact of measures taken to mitigate the COVID-
19 epidemic.
Limitations
There are several limitations of this study that should be
acknowledged. It is likely that the consistency of report-
ing of COVID-19 cases and COVID-19 related deaths by
state health departments differed both between places
and over time. In this study we used case counts as the
data source for the analyses rather than death counts.
We chose to use cases because they estimate changing
transmission dynamics with a shorter lag time and
allow more accurate small-scale short-term comparisons
in low population areas because the event is less rare.
We also prioritised analytical methods that measure rel-
ative, not absolute, changes over time to minimise the
effects of, for example, differential availability of
COVID-19 testing.

Also, the travel time covariate, a measure of geo-
graphical isolation, estimates the time for within-state
journeys to the most populous city in the state. Those
living on the border region of a state may be distant
from the most populous city in that state but closer to a
large city in a neighbouring state, however, given the
small effect sizes for the association with travel time the
effect on the outcome would be small. The stratification
of municipalities into five broad regions whilst provid-
ing a reasonable number of strata for the analyses was
not able to account for within-region variation in geo-
graphically associated characteristics. Additionally we
recognise that as a clearer understanding of the determi-
nants of COVID-19 infection in the Brazilian population
becomes available, future studies comparing disease
incidence between different areas should include stand-
ardisation by a wider range of risk factors possibly
including gender, co-morbidities and race.

In December 2020 cases began to increase again,
initially focussed on cities such as Manaus in Amazonas
state.3,54,55 There is evidence this was driven by the local
emergence of a variant of concern, Gamma (P1). which
has higher transmissibility and can exhibit the ability to
evade the neutralising effect of antibodies to previous
infection.54 The Gamma (P1) variant rapidly spread to
become the dominant strain in Amazonas state and
throughout the country.55 Analyses of factors associated
with early development of the epidemic may be useful
in predicting the spread of this new variant. Continual
tracking of this next phase of the epidemic using meth-
ods demonstrated in our analyses will be important to
assess similarities and differences in the spatial spread
of different COVID-19 epidemic waves. These analyses
should include spatially disaggregated data on vaccine
coverage9 to assess the impact of vaccination on the
development of the epidemic. Pairing these outputs
with phylogenetic analyses3,54 of SARS-CoV-2 virus
samples would enable a more detailed picture of past
and present subnational spread of the epidemic.
Conclusion
This study demonstrates that by monitoring, standardis-
ing, and analysing the development of an epidemic at a
local level, insights can be gained into spatial and tem-
poral heterogeneities. Such insights are often impossi-
ble to achieve using raw case counts or when data are
aggregated over larger areas. We show the utility of
using age-standardised incidence as a comparable epi-
demiological metric for a variety of analyses and have
developed an on-line application that allows a range of
stakeholders to simply compare and contrast the evolu-
tion of the COVID-19 epidemic in different areas. This
approach could prove useful for real-time local monitor-
ing and analysis of a range of other emerging infectious
disease outbreaks.
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