
Computational and Structural Biotechnology Journal 19 (2021) 1620–1634
journal homepage: www.elsevier .com/locate /csbj
A multiscale study on the mechanisms of spatial organization in
ligand-receptor interactions on cell surfaces
https://doi.org/10.1016/j.csbj.2021.03.024
2001-0370/� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding authors.
E-mail address: yinghao.wu@einstein.yu.edu (Y. Wu).
Zhaoqian Su, Kalyani Dhusia, Yinghao Wu ⇑
Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States

a r t i c l e i n f o
Article history:
Received 18 November 2020
Received in revised form 21 March 2021
Accepted 21 March 2021
Available online 23 March 2021

Keywords:
Ligand-receptor oligomerization
Multiscale simulation
a b s t r a c t

The binding of cell surface receptors with extracellular ligands triggers distinctive signaling pathways,
leading into the corresponding phenotypic variation of cells. It has been found that in many systems,
these ligand-receptor complexes can further oligomerize into higher-order structures. This
ligand-induced oligomerization of receptors on cell surfaces plays an important role in regulating the
functions of cell signaling. The underlying mechanism, however, is not well understood. One typical
example is proteins that belong to the tumor necrosis factor receptor (TNFR) superfamily. Using a generic
multiscale simulation platform that spans from atomic to subcellular levels, we compared the detailed
physical process of ligand-receptor oligomerization for two specific members in the TNFR superfamily:
the complex formed between ligand TNFa and receptor TNFR1 versus the complex formed between
ligand TNFb and receptor TNFR2. Interestingly, although these two systems share high similarity on
the tertiary and quaternary structural levels, our results indicate that their oligomers are formed with
very different dynamic properties and spatial patterns. We demonstrated that the changes of receptor’s
conformational fluctuations due to the membrane confinements are closely related to such difference.
Consistent to previous experiments, our simulations also showed that TNFR can preassemble into dimers
prior to ligand binding, while the introduction of TNF ligands induced higher-order oligomerization due
to a multivalent effect. This study, therefore, provides the molecular basis to TNFR oligomerization and
reveals new insights to TNFR-mediated signal transduction. Moreover, our multiscale simulation
framework serves as a prototype that paves the way to study higher-order assembly of cell surface
receptors in many other bio-systems.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Signaling pathways have been evolved in cells in order to adapt
to their surrounding environments [1]. The first step of these path-
ways is to detect external stimuli to trigger the corresponding phe-
notypic variations of cells [2–5]. The detection of cellular stimuli is
conducted by the dynamic interactions between cell surface
receptors and extracellular ligands [6]. One typical example of
extracellular ligands is called tumor necrosis factors (TNF), which
is a major class of cytokines [7–9]. The binding of TNF with its tar-
get, TNF receptor (TNFR) on cell surface initiates multiple intracel-
lular signaling pathways involved in inflammation [10–13].
Membrane receptors such as TNFR are anchored on cell surfaces.
As a result, their ligand binding has very different properties from
the interactions between proteins in solution. One major reason is
that the movements of these membrane receptors are confined
within cell surfaces. Intuitively, unlike freely diffusive soluble
proteins which possess of three translational and three rotational
degrees of freedom, cell surface receptor not only endure the loss
of one translational degree of freedom, perpendicular to the
membrane surface, but also experience the constraints on their
rotational degrees of freedom [14,15]. Anchoring on the surface
of plasma membrane, the conformational fluctuations of a receptor
also highly depend on the flexibility of the linker region between
its extracellular and transmembrane domains. These factors play
important roles in mediating the kinetics of ligand-receptor inter-
actions on cell surfaces. More importantly, it has been observed
that a large variety of cell surface receptors, including TNFR
superfamily, can aggregate into nanoscale oligomers upon ligand
binding [16–20]. The organization of these supramolecular struc-
tures is a critical step towards the activation of intracellular signal-
ing pathways [21]. The driven force beneath this cell-surface
spatial organization, however, is multifaceted. Lipid raft [22] or
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Fig. 1. More and more recent evidences show that spatial organization of ligand-
receptor complexes on cell surface play a pivotal role in regulating cell signaling
pathways. Here we use members in TNF and TNFR superfamily as a specific
example. The cytokines TNFa and TNFb form trans-interactions with cell surface
receptors TNFR1 and TNFR2. These signaling complexes can further aggregate into
oligomers through additional cis-interactions between receptors (a). In the cyto-
plasmic region, while activation of TNFR1 and TNFR2 modulates different pathways
in immune responses, their signaling networks can also crosstalk with each other
(b).
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cytoskeletal activities [23] were believed to function in some
systems, while in many other examples, such as cadherin and
TNFR, a lateral binding interfaces between receptors exists, which
is directly responsible to regulate their oligomerization [24].
Unfortunately, the molecular mechanism of how ligand-receptor
interactions and additional interactions between receptors on the
atomic level lead to their spatial organization on the subcellular
level is not fully understood.

Traditionally, the in vivo binding between ligands and receptors
on cell surfaces is relatively difficult to measure, and has only been
successfully carried out in a limited number of cases [25]. Atomic
force microscopy provides high spatial resolution to the dynamics
of membrane proteins [26], but it is not suitable to study binding
kinetics [27]. Fluorescence-based microscopy can be used to image
membrane protein interactions on surfaces of individual cells
[28–32]. However, it requires careful development of the appropri-
ate labels for target proteins which may affect their activities in
cells. On the other hand, binding constants of ligand-receptor
interactions measured by in vitro experimental methods such as
Isothermal Titration Calorimetry (ITC) [33] and surface plasma res-
onance (SPR) [34] isolate the interacting components from their
usual biological surrounding, in order to permit a more convenient
analysis that can’t be done within the whole organisms. This leads
to the large discrepancies between the in vitro and in vivo measur-
ing systems [35,36]. In addition to the experimental studies, com-
putational modeling possesses of unique advantages that permit
one to test conditions that may currently be difficult to attain in
the laboratory. Molecule-based techniques such as molecular
dynamic (MD) [37–39] and Brownian dynamic (BD) [40–42] simu-
lations have been used to study the dynamic properties of biomo-
lecules. These approaches depend on the high-resolution structural
information of individual molecules, and thus require extremely
high computational resources. They are challenging to reach the
timescale in which receptors form interactions with their ligands
within the highly heterogeneous membrane environment. In
contrast, a variety of low-resolution simulation approaches aimed
to describe how collective behaviors of membrane receptors lead
to spatial patterning on the subcellular level [43–52]. However,
molecular details of receptors are rarely incorporated in these
methods. As a result, multiscale modeling recently becomes a
promising technique that can compensate the limitations within
each computational model and bridge the dynamic information
among different scales [53–55]. Some of these models combine
atomic MD simulation with BD [56] or Monte-Carlo (MC) [57] sim-
ulations on a more coarse-grained (CG) level. In some other exam-
ples, CG force fields, such as MARTINI [58], were integrated into the
multiscale models of MD simulations [59]. These methods have
been applied to a large variety of biological systems over the last
decade [60], including cell surface receptors on the plasma mem-
brane [61]. Extension of these multiscale modeling approaches to
understand the mechanisms of how ligand-receptor interactions
form higher-order spatial organization on cell surfaces therefore
is highly demanding.

In this article, a multiscale simulation framework was con-
structed to address these problems in ligand-binding induced
receptor oligomerization. The complexes formed between ligands
and receptors in TNF and TNFR superfamily is used as a test model
(Fig. 1a). We compared the dynamics of receptor oligomerization
between two specific systems: the complex formed between ligand
TNFa and receptor TNFR1 versus the complex formed between
ligand TNFb and receptor TNFR2. The structural mode of ligand
binding in these two systems is highly similar, but the regulation
of their downstream signaling is very different [62]. TNFR1 is a
type of death receptors (DR). Its cytoplasmic region contains a
death domain (DD) [63]. On the other hand, there is no DD in the
cytoplasmic region of TNFR2 and it activates intracellular signals
1621
through interacting with different members in the TNF receptor
associated factor (TRAF) family [64]. Both receptors share ligands
TNFa and TNFb and both TNFa and TNFb ligands organize into
homo-trimeric quaternary structures. Each subunit in the trimeric
ligand adopts a b-sandwich ‘‘jelly-roll” fold [65]. On the other
hand, the extracellular regions of both receptors TNFR1 and TNFR2
contain four tandem repeats of cysteine-rich domains (CRDs) [66].
Consequently, each trimeric ligand can simultaneously bind to
three receptors, leading into the assembly of a ligand-receptor
complex with a stoichiometry of 3:3. Within this complex, a TNFR1
or TNFR2 receptor binds at the interface between two consecutive
subunits of its corresponding ligand. The structures of these
ligand-receptor complexes are available between human TNFb
and TNFR1 at resolution 2.85 Å (PDB id 1TNR) [67] and between
human TNFa and TNFR2 at resolution 3.00 Å (PDB id 3ALQ) [68].
Very recently, a structure of asymmetric complex between mouse
TNFa and human TNFR1 has also been derived at resolution 3.15 Å
(PDB id 7KP8) [20]. Finally, a dimeric structure was obtained
between two TNFR1 at resolution 2.25 Å (PDB id 1NCF) [69].

Based on the structural information and our multiscale simula-
tions, we found that the interactions in TNFb-TNFR2 complex are in
general weaker than TNFa-TNFR1 complex. In contrast, the con-
finement of plasma membrane introduces less restriction to
TNFb-TNFR2 complex. As a result, the difference of conformational
flexibility between the monomeric and ligand-bound receptors in
TNFa-TNFR1 system is larger than the difference in TNFb-TNFR2
system. Interestingly, this relatively lower ratio of rigidity between
the ligand-bound and monomeric receptors in TNFb-TNFR2 com-
plexes leads to the fact that the maximal size of oligomers formed
by these complexes is statistically much larger than the oligomers
formed by TNFa-TNFR1 complexes, although the binding in
TNFb-TNFR2 system is weaker. We speculate that the dynamic
competition between monomeric receptors and ligand-receptor
complexes due to the change of their conformational rigidity causes
the difference of oligomerization in these two systems. Our results,
therefore, provide new biological insights to the molecular basis of
TNF-mediated receptor oligomerization and signal transduction.
The framework of our multiscale simulation methods also serves
as a prototype that paves the way to study higher-order assembly
of cell surface receptors in many other signaling systems.
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2. Results

2.1. A general description of the multiscale model on TNF ligand-
receptor oligomerization

Experimental evidences suggest that the activation of TNFR1
and TNFR2 receptors not only triggers distinct signaling pathways,
but their signaling networks can also crosstalk with each other
(Fig. 1b) [70]. These findings imply that TNFR1 and TNFR2 may
be selectively targeted for therapeutic purposes, offering opportu-
nities to the context-specific treatment for autoimmune diseases
[71]. Recent single-molecule imaging experiments further discov-
ered that TNFa can induce the oligomeric state of functional TNFR1
clusters on plasma membrane of living cells [19]. The follow-up
fundamental questions based on these experimental discoveries
are: how differences in spatial patterns formed by other members
of TNF and TNFR superfamily other than TNFa-TNFR1 oligomers
can be captured; what are the molecular basis and functional
implication of these differences. To tackle these problems, a multi-
scale computational framework was proposed to simulate the
physical process of ligand-induced receptor oligomerization for
TNFa-TNFR1 and TNFb-TNFR2 complexes on their membrane
surface.

The simulation of TNF ligand-induced receptor oligomerization
is based on the diffusion–reaction algorithm with a domain-based
coarse-grained model [72], as shown in the blue panel of Fig. 2. The
bottom surface of the three-dimensional simulation box represents
the plasma membrane, while the space above represents the extra-
cellular region. TNFR receptors are distributed on the plasma
Fig. 2. The multiscale computational platform developed in this study integrates
three simulation modules that spans from atomic to subcellular levels. The
associations of all pairwise protein–protein interactions were simulated by a
residue-based kinetic Monte-Carlo method, as shown in the green panel. In parallel,
all-atom molecular dynamic simulations were applied to estimate conformational
dynamics of receptors on plasma membrane, as shown in the red panel. Using the
equation indicated in the middle of the figure, the impacts of membrane
confinement on binding between receptors can be theoretically incorporated.
Finally, these 2D binding rate constants were integrated into the domain-based
diffusion reaction simulation (blue panel), so that the dynamics of receptor
oligomerization on cell surfaces can be studied. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)
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membrane, while TNF ligands are placed in the extracellular
region. Moreover, the molecular geometry was specifically
designed to describe the structural arrangement of each TNF ligand
and receptor. In detail, each subunit in a TNF ligand trimer is sim-
plified by a rigid body with a radius of 3 nm [65], while these three
rigid bodies are spatially organized into a three-fold symmetry in
our model. On the other hand, four CRD domains in a receptor
are coarse-grained into rigid bodies with radii of 2 nm, which are
straightly aligned into rod-like shape [7]. The model consists of
two types of interactions: the trans-interaction and the cis
interaction. The ‘‘trans-interaction” is specifically defined by the
interaction formed between a TNF receptor and one subunit in a
trimeric TNF ligand. Since the ligands and receptors bind to each
other through the trans-interactions, the trimeric ligand can simul-
taneously bind to three receptors and form a basic unit of signaling
complex (Fig. 1a). The ‘‘cis interaction”, on the other hand, is specif-
ically defined by the interaction between two TNF receptors. The
existence of a cis binding interface between two TNFR receptors
is based on the evidence that a functionally conserved extracellular
region across the TNFR superfamily was identified to modulate
receptor assembly. This region is known as ‘‘pre-ligand assembly
domain” (PLAD) and does not overlap with the trans binding inter-
faces [73,74]. As a result, the cis binding interface in a receptor is
assigned on the opposite side of the trans binding interface, provid-
ing the possibility that ligand-receptor complexes are able to
further aggregate into higher-order oligomers (Fig. 1a).

Given the model representation, an initial configuration can be
generated by randomly distributing receptors on the plasma mem-
brane and ligands in the extracellular region with predefined
ligand concentration and receptor surface density. Starting from
this initial configuration, the dynamics of the system is evolved
by a standard diffusion reaction algorithm [75]. The detailed simu-
lation procedure is described in the Methods. The binding rates in
the simulations that are used to regulate the association and disso-
ciation of the ligand-receptor trans-interactions and the cis-
interactions between receptors are computationally estimated.
Specifically, the protein–protein association rates are calculated
by a residue-based kinetic Monte-Carlo (KMC) method developed
in our previous study (green panel in Fig. 2) [76]. The KMC simula-
tions are conducted in three-dimensional (3D) environments.
However, the receptors involved in a cis-interaction are anchored
on the surface of plasma membrane, which is a two-dimensional
(2D) environment. In order to taken the effect of membrane con-
finement on cis-interactions into account, full-length structural
models of receptors, as well as ligand-receptor complexes were
built and embedded into lipid bilayers. All-atom molecular
dynamic simulations were further applied to extract the informa-
tion about conformational dynamics in these systems (red panel
in Fig. 2). Using the equation indicated in the figure, as we origi-
nally derived based on the statistical thermodynamics, the 3D
binding constants calculated from KMC simulations can be theo-
retically transferred into 2D. Finally, these 2D binding rate con-
stants are integrated into the domain-based coarse-grained
mode, so that we can compare the spatial patterns and dynamics
of TNFa-TNFR1 and TNFb-TNFR2 oligomerization on cell surfaces
with atomic details.

2.2. Calculate the association rates for binding involved in ligand-
receptor oligomerization

The oligomerization of TNF ligand-receptor complexes requires
both trans-interactions between TNF ligands and TNFR receptors,
as well as the cis-interactions between TNFR receptors. We used
our previously developed residue-based kinetic Monte-Carlo simu-
lation method to estimate the association rates for these two types
of interactions. The detailed algorithm of the simulation is
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described in the Methods. In practice, trans and cis interactions
were simulated separately. The association of trans-interactions
between TNFa and TNFR1 was first tested and compared with
the trans-interactions between TNFb and TNFR2. Since of the
experimental structures are not available for both
trans-interactions, computational models were used to assess the
conformation of encounter complexes formed in the simulations.
Specifically, the trans-binding interface between a trimeric TNFa
ligand and a monomeric TNFR1 receptor was adopted from a previ-
ous model built by Chen and coworkers [77]. Similarly, the atomic
coordinates of trans-interaction between a trimeric TNFb ligand and
a monomeric TNFR2 receptor was modeled by using the crystal
structure of TNFa-TNFR2 complex (PDB id 3ALQ) as a template.

After the model construction of the final complex in both sys-
tems, ligands and receptors were coarse-grained with a residue-
based representation described in the Methods. They were then
separated from each other and randomly placed in the 3D space
such that the distance between their binding interfaces is con-
strained within a cutoff value dc, as shown in Fig. 3a. Following
the initial conformations, both molecules move towards each other
with the presence of a simplified force-field to describe the inter-
molecular interaction. For each specific value of distance cutoff,
103 simulation trajectories were generated from different initial
conformations. By comparing the conformations of ligands and
receptors in the simulations with the model of final complex, we
found that they diffused away and failed to find each other in some
trajectories, but successfully form encounter complexes in others.
We further changed the distance cutoff from 15 Å to 20 Å, and cal-
culated the association probability by counting how frequently
encounter complexes were formed among all trajectories under
each cutoff value.

The relations between the distance cutoff dc and the association
probability are plotted for both TNFa-TNFR1 (black circles) and
TNFb-TNFR2 (red circles) systems in Fig. 3b. The figure shows that
Fig. 3. We simulated the association between TNF and TNFR by a residue-based kine
different values of distance cutoff dc. We counted the association probability by counti
compared the probabilities of association between TNFa and TNFR1 (black) with the asso
are plotted in (b) with error bars. We further simulated the association of cis-interactions
(black) under different values of distance cutoff were compared with the probabilities be
the references to colour in this figure legend, the reader is referred to the web version o
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the highest association probabilities in both systems are obtained
when the value of distance cutoff equals 15 Å. However, the asso-
ciation probabilities then drop as the distance cutoff increases,
indicating that the TNF-TNFR complexes are more difficult to form
if they are initially separated farther from each other. Moreover,
comparing the association probabilities of interactions between
TNFa and TNFR1 with the interactions between TNFb-TNFR2, we
found that the former is much higher than the latter. This result
suggests that the formation of TNFa-TNFR1 complex is much faster
than TNFb-TNFR2 complex. Finally, the profiles of association prob-
ability in both systems were used to derive the association rates of
trans-interactions. As a result, the rate of TNFa-TNFR1 association
equals 0.025 ns�1; while the rate of TNFb-TNFR2 association is
about five-fold lower (0.0055 ns�1). These parameters later will
be used in the domain-based simulations.

In parallel to the trans-interaction, the association of cis-
interactions formed between two TNFR1 or TNFR2 receptors was
evaluated by the same residue-based kinetic Monte-Carlo simula-
tion approach (Fig. 3c). Two TNFR1 receptors were observed to
form a lateral dimer in a recent x-ray crystal structure [69], which
is thought to be in the cis configuration. The atomic coordinates of
a TNFR1-TNFR1 cis-dimer therefore were taken from this experi-
mental structure (PDB id 1ncf). Based on the experimental evi-
dences that the PLAD region is functionally conserved across
various members in TNFR superfamily, as well as the high struc-
tural similarity between TNFR1 and TNFR2, we assume that TNFR2
receptors can form cis-interactions through the same interface. As
a result, the PDB structure 1ncf was used as a template to build the
model of TNFR2-TNFR2 cis-dimer using rigid-body structural align-
ment. Following the same simulation procedure, we changed the
distance cutoff from 15 Å to 20 Å. For each specific value of dis-
tance cutoff, 103 simulation trajectories were carried out and the
association probabilities were calculated. The relations between
the distance cutoff and the association probability are plotted for
tic Monte-Carlo algorithm (a). Multiple simulation trajectories were started from
ng of how many encounter complexes were formed among these trajectories. We
ciation between TNFb and TNFR2 (red) under different distance cutoff values. They
between two TNFR receptors (c). The association probabilities between two TNFR1

tween two TNFR2 (red). They are shown in (d) with error bars. (For interpretation of
f this article.)
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both TNFR1-TNFR1 (black circles) and TNFR2-TNFR2 (red circles)
systems in Fig. 3d. The figure indicates that cis-interactions in gen-
eral have lower association probability than the trans-interaction,
while the association of TNFR1-TNFR1 dimer is much faster than
TNFR2-TNFR2 dimer. The association rates were finally derived
from the distributions for TNFR1-TNFR1 cis-interaction
(0.017 ns�1) and TNFR2-TNFR2 cis-interaction (0.0025 ns�1).

2.3. Estimate the effect of membrane confinement on cis-interactions
between receptors

It has been found that members in TNFR superfamily, including
TNFR1 and TNFR2, are able to preassemble into lateral dimers on
cell surfaces through their functionally conserved PLAD regions.
The formation of this cis-interaction between TNFR monomers is
independent of ligand binding. Its association rate has been esti-
mated by our residue-based kinetic Monte-Carlo simulations, in
which two receptors can freely diffuse in 3D space. However, these
receptors are anchored on plasma membrane in real cellular envi-
ronments. This 2D membrane confinement can cause unneglect-
able impacts on kinetic properties of binding between receptors.
Moreover, experimental evidences showed that ligand-binding
induces higher-order oligomerization, indicating that the cis-
interactions between receptors can be regulated by the formation
of signaling complexes through the ligand-receptor trans-binding
interfaces and thus trigger their lateral assembly. The molecular
mechanism of the interference between the trans- and cis-
interactions, unfortunately, is not well understood. We hypothe-
size that the conformational fluctuations of TNFR receptors in their
monomeric and ligand-bound states are different. Intuitively, all
three receptors in a signaling complex are tethered to plasma
membrane and thus there are more constraints in dynamics of
the complex than monomers. The difference in the configurational
entropy between monomeric and ligand-bound states of receptors
can further affect the rate of their association. As a result, we
assume that the 2D association rates of a cis-interaction between
two monomeric receptors should be different from the interaction
between receptors in their ligand-bound states.

Fortunately, the effects of membrane confinements and confor-
mational fluctuations on molecular binding can be theoretically
estimated. Based on the theory of statistical thermodynamics
[78], and assuming that membrane confinements only affect the
process of association between two proteins but not their dissoci-

ation, the relation between the rate kcis
onð3DÞ in which two receptors

form a cis-interaction in solution and the rate kcis
on 2Dð Þ in which

they form a cis-interaction on plasma membrane has the following
form.

kcis
onð3DÞ

kcis
onð2DÞ

¼ 1
8p2 � DxDh ð1Þ

In Eq. (1), Dh represents the range of conformational fluctuations in
membrane-bound receptors along membrane normal, while Dx
corresponds to the volume in the rotational phase space of
membrane-bound receptors. The value of 3D association rate

kcis
onð3DÞ for the cis-interactions was estimated in the last section.

Moreover, the difference between the rate kcis
onð2D;MÞ in which a

cis-interaction is formed by two monomeric surface-bound recep-

tors and the rate kcis
on 2D;Cð Þ in which the same cis-interaction is

formed by ligand-bound receptors, or ligand-receptor signaling
complexes on cell surfaces, can be written as follow.

kcis
onð2D;CÞ

kcis
onð2D;MÞ

¼ DxMDhM

DxCDhC
ð2Þ
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In Eq. (2), DhM and DhC represent the range of conformational
fluctuations along membrane normal for membrane-bound
receptors in their monomeric (M) or ligand-bound complex (C)
states, respectively. Similarly,DxM andDxC correspond to the vol-
ume in the rotational phase space of membrane-bound receptors
in their monomeric or ligand-bound complex states. Detailed pro-
cedure of deriving Eqs. (1) and (2) can be found in the Supporting
Information.

Practically, the distributions of conformational parameters Dh
and Dx in both Eqs. (1) and (2) were derive from all atom molec-
ular dynamic simulations. In detail, the conformational fluctua-
tions in four systems were specifically considered: 1) the system
contains a single TNFR1 receptor on lipid bilayer (Fig. 4a); 2) the
system contains a single TNFR2 receptor on lipid bilayer
(Fig. 4b); 3) the system contains a TNFa-TNFR1 signaling complex
on lipid bilayer (Fig. 4c); and 4) the system contains a TNFb-TNFR2
signaling complex on lipid bilayer (Fig. 4d). Details about the
model constructions and simulation protocols are described in
the Methods.

The distributions of receptor’s conformational fluctuations
along membrane normal are plotted in Fig. 4e for the above four
systems, while the ranges of Dh are defined as twice the standard
deviation of these distributions. The figure shows that the ranges
of distributions in two TNFR2 involved systems (the lower two
panels of Fig. 4e) are wider than the corresponding TNFR1
involved systems (the upper two panels of Fig. 4e). For instance,
the calculated value of DhM for TNFR1 monomer equals 24 Å,
while the value for TNFR2 monomer equals 47 Å. For ligand-
receptor complex, the values of DhC for TNFa-TNFR1 and TNFb-
TNFR2 complexes equal 13 Å and 20 Å, respectively. This suggests
that the structural flexibility of TNFR2 on membrane surfaces is
higher than TNFR1. Moreover, comparing the conformational fluc-
tuations in monomeric receptors (the left two panels of Fig. 4e)
with the fluctuations in ligand-bound receptors (the right two
panels of Fig. 4e), we found that the fluctuations of monomers
are much wider than their corresponding complexes, confirming
our assumption that ligand-binding adds more restrictions to
the dynamics of receptors.

In addition to the range of translational fluctuations, we also
measured the conformational dynamics in the rotational phase
space, which can further be characterized by three Euler angles
as Dx ¼ Dw� Duð1� cosDhÞ [78]. As shown in Fig. 5a and 5b, u
is defined as the angle around the membrane normal z, w is
defined as the angle around the long principal axis z0 of the protein,
and h is the tilting angle between this principal axis and the mem-
brane normal. The detailed distributions of these angles in the four
testing systems are shown in Fig. 5c-5f, while the ranges of these
distributions are defined as twice of their standard deviations
and can be found in the supporting information as Table S2. Similar
to the translational fluctuations, the angular fluctuations in mono-
mers (Fig. 5c and 5e) are much wider than in the corresponding
complexes (Fig. 5d and 5f). Finally, when we integrated the ranges
of all conformational parameters into equation (2), we found that

the ratio between kcis
onð2D;CÞ and kcis

onð2D;MÞ in TNFR1 equals 20,
much larger than the ratio of TNFR2 (11). Both ratios are one order
of magnitude larger than 1, indicating that the association rates of
cis-interactions between ligand-bound receptors in both systems
are significantly enhanced. We suggest that this is due to the loss
of configurational entropy in the TNFR receptors after their ligand
binding. Moreover, the higher ratios in TNFR1 indicate that its cis-
interaction after ligand binding is more affected than TNFR2. This
difference leads to the result that TNFR1 and TNFR2 attain distin-
guishable patterns during their oligomerization, as we will show
in the next section.



Fig. 4. In order to evaluate the differences in conformational fluctuations between monomeric and ligand-bound TNFR receptors, four structural models were constructed as
inputs for all-atommolecular dynamic simulations. Specifically, these are the system contains a single TNFR1 receptor on lipid bilayer (a); the system contains a single TNFR2
receptor on lipid bilayer (b); the system contains a TNFa-TNFR1 signaling complex on lipid bilayer (c); and the system contains a TNFb-TNFR2 signaling complex on lipid
bilayer (d). Based on the molecular dynamic simulation result, the distributions of receptor’s conformational fluctuations along membrane normal, h, were derived for the
above four systems, as shown in (e).
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2.4. Observe the difference in spatial patterns of oligomerization
between TNFR1 and TNFR2

In order to study ligand-receptor oligomerization, binding
parameters, including the association and dissociation rates of
1625
the ligand-receptor trans-interactions and the cis-interactions
between receptors, were incorporated into our domain-based dif-
fusion–reaction simulations. Binding constants of trans-
interactions between members in TNF and TNFR superfamily have
been measured by various experimental methods such as



Fig. 5. The conformational dynamics in the rotational phase space can be characterized by three Euler angles, as illustrated in (a) for monomeric receptor and (b) for ligand-
receptor complex. The detailed distributions of these angles frommolecular dynamic simulations are shown in (c) for the system containing a single TNFR1 receptor; in (d) for
the system containing a TNFa-TNFR1 signaling complex; in (e) for the system containing a single TNFR2 receptor; in (f) for the system containing a TNFb-TNFR2 signaling
complex.
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homogenous time resolved fluorescence (HRTF) and surface
plasma resonance (SPR) [79]. Unfortunately, these measurements
often varied over several orders of magnitude due to different
experimental conditions. Moreover, the binding rates of
cis-interactions among receptors have never been previously char-
acterized. As a result, the association rates of both trans and cis
interactions were computationally calculated by our residue-
based kinetic Monte-Carlo simulations. The association rates of
cis-interactions have further been transformed from 3D to 2D form
based on theoretical analysis and the statistical distributions from
all-atom molecular dynamic simulations. In order to obtain the
value of dissociation rateskoff , we plugged the calculated associate
rates along with binding affinity DG into the equa-
tionkoff ¼ kon � expðDG=RTÞ, in which the values of binding affinity
for trans-interactions in TNFa-TNFR1 and TNFb-TNFR2 complexes,
as well as for cis-interactions of TNFR1-TNFR1 and TNFR2-TNFR2
dimer, were calculated by the program DCOMPLEX. DCOMPLEX
provides an accurate prediction to binding affinity of protein
complexes using the structure-derived statistical potential [80].
All detailed values of these calculated binding rates and
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affinities can be found in Table S3 for both TNFR1 and TNFR2
systems.

In addition to the binding rates, values of other parameters in
the domain-based simulations are specified as follow. The lengths
of each side along both X and Y directions of the simulation box are
1000 nm, which gives the surface of plasma membrane a total area
of 1 mm2. Along the Z direction, the height of the simulation box is
100 nm. The number of trimeric TNF ligands was fixed at 150 and
the number of TNFR1 or TNFR2 receptors was fixed at 450. Conse-
quently, the surface density of receptors is on the order of
~102mol/mm2. This surface density is within the typical range that
was experimentally observed in T cells [81]. The soluble ligands
TNFa and TNFb undergo three-dimensional diffusions freely in
the extracellular region. The translational diffusion coefficients
for both TNFa and TNFb are 72.6 lm2/s and their rotational coeffi-
cients is 0.34�ns�1, calculated by a precise boundary element
method [82]. Relatively, due to the restriction of plasma mem-
brane, the two-dimensional diffusions of a TNFR1 or TNFR2
receptor are much slower, with a translational constant of
10 lm2/s and rotational coefficient of 1�ns�1. These values were
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adopted from our previous all-atom molecular dynamic
simulations [83]. Moreover, diffusions of a signaling complex on
membrane surface are considered as even slower, with a transla-
tional constant of 5 lm2/s and rotational coefficient of 0.28�ns�1.
Finally, in order to attain statistically meaningful result, multiple
simulation trajectories were carried out. In specific, 13 replicas
were generated for TNFa-TNFR1 system and 16 replicas were gen-
erated for TNFb-TNFR2 system. Each trajectory was started from a
randomly generated initial configuration, as shown in Fig. 6a. All
trajectories were terminated when their time length reached
6 � 108ns, while the length of each simulation step is 10 ns.

We compare the kinetic profiles of patterns formed in the
TNFa-TNFR1 system with the TNFb-TNFR2 system. These profiles
were averaged over all the simulation trajectories. The numbers
of trans-interactions were first plotted in Fig. 6b as a function of
simulation time. The interactions formed between TNFa ligands
and TNFR1 receptors are shown in the black curve, while the inter-
actions formed between TNFb ligands and TNFR2 receptors are
shown in the red curve. The figure shows that more trans-
interactions were formed in the TNFa-TNFR1 system than the
TNFb-TNFR2 system, which is consistent with the previous exper-
imental information. Moreover, the TNFa-TNFR1 system reached
Fig. 6. All parameters estimated from residue-based and all-atom simulations were incor
trajectories were carried out and each one was started from a randomly generated initia
TNFa-TNFR1 system with the TNFb-TNFR2 system as a function of simulation time. These
cis-interactions (c); the numbers of monomeric cis-interactions (d); and the average siz
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equilibrium before 1 � 108ns, while the TNFb-TNFR2 system
reached equilibrium after 1� 108ns. This is based on the result that
the association rate of trans-interaction between TNFa and TNFR1
is higher than between TNFb and TNFR2. In comparison, the num-
bers of cis-interactions between ligand-bound and monomeric
receptors were further plotted in Fig. 6c and 6d, respectively.
Fig. 6c shows that more cis-interactions between ligand-bound
TNFR1 receptors were formed than between ligand-bound TNFR2
receptors. In contrast, as the numbers of ligand-bound cis-
interaction increased and then reached equilibrium, Fig. 6d shows
that the number of monomeric cis-interaction reached maximal
level at the very early stage of the simulations and then dropped.
Different from the TNFR1 system in which almost no monomeric
cis-interaction left, the monomeric cis-interaction in the TNFR2
system remained at a low level throughout the simulation.

In order to quantify the spatial characteristics of ligand-receptor
oligomers formed in both systems, the average size of clusters
observed along simulations were plotted in Fig. 6e. This average
size of oligomers is directly comparable to a recent single-
molecule image experiment [19]. In the meanwhile, a final
snapshot was taken from one representative trajectory of each sys-
tem to further visualize the spatial distribution of these clusters.
porated into our domain-based diffusion–reaction simulations. Multiple simulation
l configuration, as shown in (a). We compare the kinetic profiles averaged from the
profiles include the numbers of trans-interactions (b); the numbers of ligand-bound
es of oligomers formed in the simulations (e).
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The top-view from the final configuration of the TNFa-TNFR1
system is shown in Fig. 7a, while Fig. 7b is the TNFb-TNFR2 system.
In both figures, ligand-receptor complexes are organized into
hexagonal lattice. The same spatial pattern of ligand-induced clus-
tering was also proposed for TNFa-TNFR1 system based on recent
experimental studies. Specifically, precipitation was observed in a
recent in vitro experiment by spectrophotometry and gel
densitometry, when TNFa and TNFR1 were mixed [20]. The author
suggested that these aggregates are an ordered protein network
stabilized by specific TNFa–TNFR1 and TNFR1–TNFR1 interactions.
Moreover, in another recent study, clustering of TNFR1 upon bind-
ing of TNFa was directly detected by quantitative, single-molecule
Fig. 7. Final snapshots were taken from one representative trajectory of TNFa-TNFR1 (a
oligomers. We further compared the maximal (c) and probability distribution (d) of olig
are summarized in (e). In brief, we suggest that the oligomers formed by TNFa-TNFR1 com
TNFb-TNFR2 complexes is much slower but dynamic, while the largest TNFb-TNFR2 oligo
(For interpretation of the references to colour in this figure legend, the reader is referre
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super-resolution microscopy at physiological cell surface
abundance and in native cellular settings [19]. The authors high-
lighted the importance of cis dimerization between TNFR1 in the
assembly of higher-order oligomers. Unfortunately, the experi-
mental measurement of oligomerization in TNFb-TNFR2 system
has not been documented.

Surprisingly, although Fig. 6e suggests that average size of
TNFa-TNFR1 oligomers is slightly larger than TNFb-TNFR2
oligomers, we found that some oligomers formed by TNFb-TNFR2
signaling complexes (Fig. 7b) are much larger than the oligomers
formed by TNFa-TNFR1 signaling complexes. This is further con-
firmed by Fig. 7c, in which the sizes of the largest oligomer
) and TNFb-TNFR2 (b) systems to further visualize the spatial configuration of these
omer sizes between TNFR1 (black) and TNFR2 (red) systems. Our simulation results
plexes can be stabilized very fast (left-hand side). In contrast, the oligomerization of
mers almost double the size of the largest TNFa-TNFR1 oligomers (right-hand side).
d to the web version of this article.)
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observed from all trajectories of two systems are compared with
each other. The figure also shows the difference in the dynamics
of their oligomerization. While the large oligomers formed by
TNFa-TNFR1 signaling complexes were stabilized very fast (black
curve in Fig. 7c), the growth of oligomers formed by TNFb-TNFR2
signaling complexes was relatively much slower. This growth
was not stopped until the end of the simulation (red curve in
Fig. 7c). As a result, the largest TNFb-TNFR2 oligomers more than
doubled the size of the largest TNFa-TNFR1 oligomers. Finally,
the probability distributions of all cluster sizes in two systems
are compared, as shown in Fig. 7d. Given the logarithmic scale of
the y-axis, the figure indicates that the cluster size distributions
in both systems can be fitted by a single exponential function.
The size distribution functions also verify that TNFa-TNFR1 signal-
ing complexes tend to have higher probability to form oligomers
with smaller sizes, while TNFb-TNFR2 oligomers have the feasibil-
ity to grow into very large clusters. Our computationally predicted
features in cluster size distributions and the differences between
TNFR1 and TNFR2 systems can be directly validated by experi-
ments such as single-molecular tracking or super-resolution
imaging.

Our simulation results suggest that TNFa-TNFR1 signaling
complexes prefer forming oligomers with smaller average size
and standard deviation. We speculate that the differences in the
binding rates of trans-interactions between TNFa-TNFR1 and
TNFb-TNFR2 systems, and more importantly, their ratios of confor-
mational fluctuations between the monomeric and ligand-bound
receptors play important roles. Specifically, the TNFa-TNFR1 sys-
tem has stronger binding affinity and higher association rate of
trans-interaction. Meanwhile, its higher ratio of conformational
fluctuations embedded in Eq. (2) leads into the result that the
cis-interaction between ligand-bound TNFR1 receptors is much
more strengthen, comparing with the cis-interaction between
monomeric receptors. As a result, TNFa and TNFR1 can form com-
plexes more easily, while these complexes are more difficult to dis-
sociate and thus kinetically trapped in small oligomer due to the
strong cis-interactions between ligand-bound receptors, as shown
on the left-hand side of Fig. 7e. Unlike TNFa-TNFR1 system, the oli-
gomers formed by TNFb-TNFR2 signaling complexes are more
dynamic. Relatively weaker binding and slower association of its
trans-interaction result in a number of unbound receptors in the
system. Meanwhile, the cis-interaction between ligand-bound
TNFR2 receptors is less strengthen, reflected by its relatively lower
ratio of conformational fluctuations embedded in equation (2).
This leads to the result that an equilibrium state between oligo-
mers formed by ligand-bound receptors and lateral dimers formed
by monomeric receptors remains throughout the simulation, as
indicated by Fig. 6d. This dynamic equilibrium ensures that the oli-
gomers are constantly reorganized. As a result, small oligomers
have higher probabilities to dissolve or merge into oligomers with
larger size, as shown in the right-hand side of Fig. 7e. This is con-
sistent with what we observed in the cluster size distribution:
TNFb-TNFR2 signaling complexes prefer forming oligomers with
larger maximal size and wider standard deviation.
3. Concluding discussions

The cytokines TNFa and TNFb are key regulators of immune
system through their binding with cell surface receptors TNFR1
and TNFR2. While signaling activated by TNFR1 modulates inflam-
matory and pro-apoptotic responses, TNFR2 mainly contributes to
immune regulation and tissue regeneration. A comparative study
on the ligand-receptor interactions between these two systems
thus can provide a mechanistic understanding to TNF-mediated
signaling in immune responses and further bring insights to the
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development of novel protein therapeutics that selectively target
TNF receptors [71]. Using a residue-based kinetic Monte-Carlo sim-
ulation algorithm, we first showed that the binding between TNFa
and TNFR1 is stronger and faster than the binding between TNFb
and TNFR2. Based on theoretically analyzing the data from all-
atom molecular dynamic simulations, we further estimated the
impacts of membrane confinement on the cis-interactions between
receptors. We found that the cis-interactions between receptors
will be drastically strengthened after ligand binding. Moreover,
this effect on TNFR1 is almost twice as much as on TNFR2. Through
the incorporation of all the information into a domain-based
diffusion–reaction model, oligomerization of ligand-receptor com-
plexes was simulated on a subcellular level. Different from the oli-
gomers formed by TNFa-TNFR1 complexes which were stabilized
very fast, the oligomerization of TNFb-TNFR2 complexes is much
slower but dynamic. More surprisingly, we found that the largest
TNFb-TNFR2 oligomers can almost double the size of the largest
TNFa-TNFR1 oligomers. As we know, the intracellular regions of
TNFR1 and TNFR2 associate with different downstream signaling
molecules. For instance, the activation of TNFR1 leads to the
recruitment of TNF receptor 1 associated protein with death
domain (TRADD) in the cytoplasm [84], whereas the activation of
TNFR2 leads to the recruitment of TNF receptor associated factor
2 (TRAF2) [85]. The recruitment of these signaling molecules is clo-
sely regulated by the dynamics and spatial patterns of receptor
oligomerization. As a result, the difference in oligomerization
between TNFR1 and TNFR2 described above throws light on the
spatial–temporal regulation of TNF-mediated signaling pathways.

On a general level, oligomerization has also been observed for
many other receptors in TNFR superfamily. For an example, highly
organized oligomers of death receptor 5 (DR5) were observed on
cell surfaces after the binding of TNF-related apoptosis-inducing
ligand (TRAIL) [86]. In another case, experiments found that the
formation of supramolecular clusters can be induced by the inter-
actions between the extracellular domains of receptor Fas and its
ligand FasL [87,88]. In principle, our multiscale modeling method
can be naturally extended to compare the similarity and difference
of oligomerization in these systems other than TNFR1 and TNFR2.
Additionally, previous experimental measurements [79] and our
comparative study [89] shows that the complexes formed between
most receptors in the TNFR superfamily and their ligands are very
similar on the structural level, but their binding constants span a
wide range. Here, our simulation results further demonstrated that
the difference in binding can lead into distinctive patterns of
oligomerization. More specifically, we illustrated that the lower
ratio of conformational fluctuations between monomeric and
ligand-bound receptors plays an important role in maintaining
the higher level of dynamics during oligomerization, which is able
to result in the formation of ligand-receptor clusters with larger
sizes. Therefore, our study provides insights to understand the
mechanism of ligand-induced oligomerization for receptors in
the entire TNFR superfamily. Finally, this approach will also poten-
tially be used to study the functions of spatial organization in many
cell surface receptors other than TNFR superfamily.

One issue which could lead to questionable results is the initial
configuration. At the beginning of our simulations, we assume that
TNFR receptors are arranged randomly in a monomeric state when
they start to form interactions with ligands on the cell surface.
However, previous experimental data indicate that TNFR receptors
can form preassembly on the cell surface via their PLAD regions
prior to ligand binding. This receptor preassembly was not taken
account into our original simulations. In order to address this prob-
lem, an alternative starting model was carried out in which no TNF
ligands were included in the systems during the early stage of sim-
ulations, so that monomeric TNF receptors had the opportunity to
preassemble before ligand binding. Detailed simulation results
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from this alternative model are summarized in Fig. S3. As shown in
the figure, the TNFR1 system is represented in black and the TNFR2
system is represented in red. In both systems, ligands were intro-
duced only after 3.5 � 107ns. The numbers of cis-interactions
formed between receptor monomers were plotted in Fig. S3a as
function of simulation time. The figure indicates that monomeric
cis-interactions increased before they exposed to ligands, suggest-
ing the ligand-independent preassembly of TNFR receptors on cell
surface. These monomeric cis-interactions decayed soon after the
introduction of ligands. In the meanwhile, the numbers of cis-inter-
actions between ligand-receptor complexes started to increase, as
shown in Fig. S3f. This indicates that the ligand-bound receptors
have competed over the monomeric receptors to form cis-
interactions. Similar phenomena were then observed as before in
terms of the differences between the TNFR1 and TNFR2 systems.
Oligomers with larger sizes were more likely to form by TNFb-
TNFR2 complexes (Fig. S3b and Fig. S3c), although less trans-
interactions were attained in the system (Fig. S3e). All curves and
distributions in the figure were derived by the average from 10
independent simulation trajectories.

Two representative snapshots were selected from one of these
simulation trajectories. Fig. S5a shows the configuration of the
TNFR1 system right before the ligand exposure, while final config-
uration of the trajectory is shown in Fig. S5b. Fig. S5a indicates that
receptors were dimerized before ligand exposure through their cis-
binding interfaces. The dimerization of TNFR1 prior to ligand bind-
ing has been recently observed in experiments using fluorescence
resonance energy transfer (FRET) [90,91]. Fig. S5b further suggests
that the introduction of TNF ligands induced higher-order
oligomerization due to a multivalent effect. In detail, oligomeriza-
tion of ligand-receptor complexes was achieved by the combina-
tion of trans- and cis-interactions, given the fact that the binding
interfaces of these two interactions do not overlap in the extracel-
lular region of TNFR. While cis-interactions link two receptors
together, trans-interactions further link these dimerized receptors
to trimeric TNF ligands which can simultaneously bind to three
receptors. As a result, this spatial organization between dimeric
receptors and trimeric ligands can lead into the formation of a
hexagonal lattice on two-dimensional cell surface [20]. We further
tested this model with simulations under a higher concentration
and the results are illustrated in Fig. S4. Consistent results were
obtained. Altogether, our tests confirmed that ligand-receptor
complexes can still form oligomers when receptors are preassem-
bled before ligand binding. Moreover, under this condition, the
TNFR2 system still has the higher probability to form large
oligomers than the TNFR1 system.

One limitation in this study is the calculation of configurational
volume in Eqs. (1) and (2), in which the ranges of the Euler angles
and height distributions are simply taken as twice the standard
deviation. This simplification is based on the assumption that the
conformational fluctuations of receptors and complexes follow
normal distributions. In reality, however, the MD simulation
results show that some of these distributions are not exactly
Gaussian-like, especially the distributions for the Euler angles u
and w in TNFR1 and TNFR2 monomers (Fig. 5c and e). Although
we believe that the wideness of conformational distributions can
still be approximately captured by our simplified calculation, a
thorough estimation of configurational volumes could be carried
out by more rigorous method such as thermodynamic integration.
Ideally, each potential microstate in the integral of these configura-
tional volumes (Eq. S4 in the Supporting Information) should also
be weighted with a Boltzmann distribution. There are also some
other factors which are not taken account into current model.
For instance, diffusions of TNFR receptors on the plasma mem-
brane are much slower than soluble TNF ligands in the extracellu-
lar region, given the friction exerted by the lipid bilayer on their
1630
transmembrane domains. This effect is captured in our
domain-based simulation by using different diffusion constants
for TNF and TNFR. However, it is not included in equation (1), when
the impact of membrane confinement on the association rates of
cis-interaction between receptors was estimated. Fortunately, we
expect that the effect of plasma membrane on diffusions of TNFR1
is very close to the effect on TNFR2, considering that both receptors
are single-pass transmembrane proteins [62]. Finally, in current
model, the system only contains TNF ligands and TNFR receptors.
In reality, however, more than 20% of the cytoplasmic volume in
a living cell is occupied by biomolecules [92]. Similarly, the plasma
membranes of cells are crowded by various receptors and chan-
nels. Under these conditions, the kinetics of ligand-receptor bind-
ing is significantly affected [93,94]. This effect is neglected in
current study, but can be considered in the future as follows.
Specifically, in our domain-based simulation, many other proteins
can be placed on the cell surface or in the extracellular region
besides the interacting TNF ligands and receptors. Receptors and
ligands will form repulsive collisions with these background mole-
cules. The effect of crowding on both diffusion and association can
therefore be studied.
4. Materials and methods

4.1. Domain-based diffusion–reaction simulation for ligand-receptor
oligomerization

As described in our previous study, a simplified model is
designed to simulate the dynamics of TNF ligand-receptor
oligomerization on cell surface [72]. In brief, each subunit in a tri-
meric TNF ligand and each extracellular domain in a TNFR receptor
is represented by a spherical rigid body which size is comparable
to the corresponding protein structure. Cell plasma membrane is
further represented by a flat surface at the bottom of a 3D simula-
tion box, and the space above represents the extracellular region.
Binding sites for the trans-interaction are assigned to each ligand
subunit, as well as on the surface of the second domain in each
receptor. Additionally, binding sites for the cis-interactions
between receptors are assigned on the opposite side of their trans-
binding sites. Given the initial configuration in which receptors are
randomly distributed on plasma membrane and ligands are ran-
domly distributed in the extracellular region, the dynamics of the
system is evolved by following a diffusion–reaction algorithm.
Within each simulation time step, ligands and receptors are
selected by random order for stochastic diffusion as the first sce-
nario. TNF ligands are free to move throughout the simulation
box, while the movements of TNFR receptors are confined within
plasma membrane. The probability and amplitude of these transla-
tional and rotational movements are determined by their corre-
sponding diffusion coefficients. Moreover, periodic boundary
condition is applied to move the molecules along x and y direc-
tions. As for the movements along z direction, if ligands move
beyond the top of the simulation box, they will be bounced back.
They are also not allowed to move below the plasma membrane.
After the translational and rotational diffusions, the configuration
of the system is updated. The new configuration will be accepted
if there is no clash between any pair of proteins, otherwise the
movements will be rejected.

The binding kinetics of ligand-receptor trans-interactions and
receptor-receptor cis-interactions are followed after the new con-
figuration is generated by the diffusion scenario. The distances
between the binding sites of each protein are changed in the
new configuration. These newly calculated distances are used to
determine whether association can occur between a ligand and a
receptor, or two receptors. Specifically, within each simulation
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time step after diffusions, association between a TNF ligand and a
TNFR receptor is triggered if the distance between the trans-
binding sites of two molecules is below a predetermined cutoff
value. The probability to form a trans-interaction is further deter-
mined by its association rate. Relatively, the probability to break
a complex between a TNF ligand and a TNFR receptor is regulated
by the dissociation rate of trans-interaction, which can be further
calculated from its association rate and binding affinity. Similarly,
association between two TNFR receptors is triggered if the distance
between their cis-binding sites is below the same predetermined
cutoff. The probability to form a cis-interaction is further deter-
mined by its association rate. Relatively, the probability to break
a complex between two TNFR receptors is regulated by the cis dis-
sociation rate, which can be further calculated from the cis associ-
ation rate and binding affinity. If a TNF ligand binds to a receptor,
or two receptors form a lateral dimer, the entire complex will move
as a single unit on plasma membrane. When more ligands and
receptors join through their trans or cis interactions, the size of
the oligomer will continue growing and its diffusions become
slower. An oligomer will stop diffusing if it contains more than
two full-size signaling complexes. This assumption is based on
the following evidences. It was found in previous single molecule
imaging experiment that upon oligomerization, diffusions were
reduced by at least an order of magnitude for membrane proteins
on the same cell surface [95]. Furthermore, as the size of oligomers
grew, diffusions became even slower. It was speculated that these
oligomers formed through cis-interactions between receptors were
trapped due to the enhancement of connections between their
intracellular domains and cytoskeleton. Given this information, in
order to avoid further computational complexity, oligomers con-
sisting of more than two ligand-receptor complexes are set as sta-
tic in our simulation, even though their mobility was still
detectable in the experiment. We believe that our simulation out-
puts will not be significantly affected by this simplification.

As above diffusion–reaction process iterates in both Cartesian
and compositional spaces, the spatial patterns in the system will
evolve and finally reach equilibrium. Finally, in order to evaluate
the dependence of modeled systems on different factors, sensitiv-
ity analysis was applied to the simulations under different concen-
trations and various binding rates of ligand-receptor interactions.
Detailed results from the analysis are summarized in Fig. S1 for
lower concentration and Fig. S2 for higher concentration.

4.2. Residue-based kinetic Monte-Carlo simulation for protein–protein
association

We applied a previously developed kinetic Monte-Carlo
simulation algorithm [76] to estimate the association between
TNF ligands and TNFR receptors, as well as the association between
two TNFR receptors. A coarse-grained model is used in the simula-
tion to represent protein structures. Each residue in a protein is
simplified by two beads: its Ca atom and a representative center
of its side-chain which was selected based on the chemical proper-
ties of each specific type of amino acid. At the beginning of simu-
lation, the coarse-grained models of two proteins are separated
and placed randomly in the 3D simulation space as an initial con-
formation whereas their corresponding binding interfaces are
within the range of a given distance cutoff dc. Following this initial
set-up, random diffusions are carried out for each protein along its
three translational and rotational degrees of freedom. A physics-
based scoring function that contains electrostatic interaction and
hydrophobic effect is used to estimate the binding energy between
two proteins and guide their diffusions of proteins. The probability
whether diffusional movements can be accepted or not is based on
the Metropolis criterion in which the binding energies before and
after the diffusions are compared. At the end of each simulation
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step, the newly formed configuration of the protein complex will
be further inspected. The simulation will be terminated if an
encounter complex is successfully formed between two proteins
through their corresponding interface, through predefined associa-
tion criteria. Otherwise, above simulation procedure will be
repeatedly iterated until the trajectory reaches the maximal time
duration.

In order to practically estimate the effective association rate,
above simulation algorithm is performed under different distance
cutoffs in parallel, while a large number of trajectories are gener-
ated under each specific value of distance cutoff. All these trajecto-
ries start from different initial conformations in which two
proteins are placed with different positions and relative orienta-
tions, but the initial distances between their binding interfaces
are all below the same cutoff value. Proteins fail to form a complex
and diffuse away within some trajectories, while native-like
encounter complexes can be successfully formed at the end of
other trajectories. By counting how many encounter complexes
were successfully formed among all trajectories, the probability
of association can be calculated for a given distance cutoff. As
shown in Fig. 3b and d, the association probabilities for both
trans- and cis-interactions drop when the values of distance cutoff
increase. Based on the distribution of these calculated probabili-
ties, the values of association rates for these interactions can be
derived as follows. According to our previous study [96], an effec-
tive distance of association is assigned where the association prob-
ability falls below 30% of its highest value. The effective association
probability is further defined as the average value of all probabili-
ties which distance cutoffs are below the effective distance. The
association rate is thereby the effective association probability
divided by the simulation time step. Using the trans-interaction
between TNFa and TNFR1 (black curve in Fig. 3b) as an example,
its highest value of association probability is 0.33. This gives the
effective distance of association equals 17 Å and the effective asso-
ciation probability equals 0.25. As a result, we obtain the associa-
tion rate of 0.025 ns�1 for a simulation time step of 10 ns.

In order to link the residue-based and the domain-based simu-
lations within the same time-scale, the maximal time duration to
terminate each residue-based simulation trajectory was set to be
equal to the length of each time step in the domain-based simula-
tion, so that the association rates calculated from the residue-
based method can be effectively used in the domain-based model.
In detail, each trajectory of residue-based simulation contains
maximally 103 steps and the length of each step is 0.01 ns. As a
result, the maximal length of each residue-based simulation trajec-
tory is 10 ns, which is the time step adopted in the domain-based
simulation [96]. Here it is also worth pointing out that the associ-
ation rates calculated from the residue-based simulations have a
different definition from the on rates which are experimentally
measured by SPR or ITC. These rate constants are derived as input
parameters for our domain-based diffusion–reaction simulations.
They estimate the probability of association within each time step
of domain-based simulations, if the distance of binding sites
between a single pair of interacting proteins is below a predeter-
mined cutoff value. Therefore, while the experimental on rates
have the standard unit in M�1s�1, our association rates have the
unit in ns�1. This association rate can be converted to the standard
on rate with the unit of M�1s�1 by the analysis used in our previous
study [75]. Finally, although the rotational degrees of freedom have
already been incorporated in the calculation of association rates,
they only cover the situation after the binding sites of two interact-
ing proteins are close enough to each other. On the other hand, the
corresponding degrees of freedom for ligands and receptors sepa-
rated farther than the distance cutoff are taken into account by
the translational and rotational diffusions in the domain-based
simulations.
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4.3. All-atom molecular dynamic simulation for protein
conformational fluctuations

In order to estimate the difference between 3D and 2D
association rates of receptor cis-interactions due to the membrane
confinement, all-atom molecular dynamics simulation was applied
to study the conformational fluctuations of single TNFR receptors,
as well as the entire signaling complexes in lipid bilayer. The
model of a single receptor contains its extracellular domains, the
transmembrane helix, and a linker region that connect these two
segments, while the model of a signaling complex comprises a tri-
meric ligand and three bound receptors. The atomic coordinates of
TNFR10s extracellular domains were adopted from the crystal
structure with PDB id 1EXT, while TNFR20s extracellular domains
were obtained from the crystal structure with PDB id 3ALQ. For
TNFa-TNFR1 system, a structure of the complex became available
very recently [20]. However, the trimeric ligand in this asymmetric
complex is distorted. Therefore, it is not used in our study. The
initial structure of TNFa-TNFR1 complex was adopted from the
computational model that was previously built by Xie’s group
[77]. In contrast, no experimental structure is available for TNFb-
TNFR2 signaling complex. As a result, the initial conformation of
ligand TNFb in the complex was taken from the PDB id 1TNR. The
relative orientations between TNFb and TNFR2 were adopted from
the crystal structure of TNFa-TNFR2 complex. Rigid-body superposi-
tion and alignment were applied using VMD to obtain the final
model of TNFb-TNFR2 complex. Transmembrane regions of receptors
in all these systems were built as standard a-helices, and their link-
ers between transmembrane and extracellular regions were modeled
by the online server, ModLoop [97]. The transmembrane domain of
each receptor was further embedded in a lipid bilayer comprised of
around 500 POPC molecules. Counter-ions (Na+, Cl-) were added to
neutralize the net charge in the simulation box and to maintain an
appropriate ionic strength (0.1 M).

After the construction of the initial models, all systems were
equilibrated at 310 K and 1 atm to remove unrealistic contacts.
After equilibration, simulations were carried out using GROMACS
with the CHARMM36m force field and the TIP3P water. Covalent
bonds were constrained using the LINCS algorithm, and an integra-
tion time step of 2 fs was used together with the leapfrog integra-
tor. A cutoff of 13 Å was used for van der Waals interactions, and
electrostatic interactions were calculated with the particle mesh
technique for Ewald summations, also with a cutoff of 13 Å. Tem-
perature and pressure are controlled using the v-rescale ther-
mostat (sT = 0.1 ps) and the Parrinello-Rahman barostat
(sP = 0.1 ps), respectively. An overview of the simulation systems
in this study can be found in Table S1. A 400 ns trajectory was gen-
erated for TNR1. For TNR2, because the linker region between its
extracellular and transmembrane domains is longer, two indepen-
dent simulation trajectories were produced to enhance conforma-
tional sampling. The length of each trajectory is 300 ns. Different
initial conformation of the linker region was adopted in each tra-
jectory. For ligand-receptor complexes, a 500 ns trajectory was
generated for both TNFa-TNFR1 and TNFb-TNFR2 systems. In sum-
mary, the total all-atom MD simulation time for this study is 2
microseconds.

Based on the all-atom simulation results, we first calculated the
backbone root mean square deviation (RMSD). The RMSD of the
extracellular domain for TNFR1 and TNFR2 are plotted in Fig. S6a
as a function of simulation time. The figure indicates that the
RMSD of TNFR1 is lower than TNFR2. Similarly, the RMSD of
TNFa-TNFR1 and TNFb-TNFR2 complexes are compared in
Fig. S6b as a function of simulation time. The figure indicates that
the RMSD of TNFb-TNFR2 is higher than TNFa-TNFR1 complex. In
addition to RMSD, the root mean square fluctuations (RMSF) were
also calculated for each residue. The RMSF of TNFR1 and TNFR2 are
1632
plotted in Fig. S7a along with the residue number in their
extracellular domains, while the RMSF of TNFa-TNFR1 and
TNFb-TNFR2 complexes are plotted in Fig. S7b. The figures suggest
that residue fluctuations in both monomeric and ligand-bound
TNFR2 are higher than TNFR1. Moreover, the range of translational
fluctuations along the z axis, Dh, in the single receptor and the sig-
naling complex, as well as the rotational distributions of their three
Euler angles, Du, Dh, and Dw were further calculated. Detailed
analysis is described in the Results.
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