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Abstract

Calcium dependent protein kinases are unique to plants and certain parasites and comprise

an N-terminal segment and a kinase domain that is regulated by a C-terminal calcium bind-

ing domain. Since the proteins are not found in man they are potential drug targets. We

have characterized the calcium binding lobes of the regulatory domain of calcium dependent

protein kinase 3 from the malaria parasite Plasmodium falciparum. Despite being structur-

ally similar, the two lobes differ in several other regards. While the monomeric N-terminal

lobe changes its structure in response to calcium binding and shows global dynamics on the

sub-millisecond time-scale both in its apo and calcium bound states, the C-terminal lobe

could not be prepared calcium-free and forms dimers in solution. If our results can be gener-

alized to the full-length protein, they suggest that the C-terminal lobe is calcium bound even

at basal levels and that activation is caused by the structural reorganization associated with

binding of a single calcium ion to the N-terminal lobe.

Introduction

Malaria is a life-threatening disease caused by apicomplexan parasites of the Plasmodium fam-

ily. Despite progress in treatment and prevention strategies there are still around 200 million

cases of malaria resulting in approximately half a million deaths annually [1]. It is thus of vital

interest to characterize the Plasmodium proteome in search for additional drug targets. For

apicomplexan parasites, calcium is required for vital functions such as protein secretion, host

cell invasion and parasite motility [2]. Cytosolic calcium is regulated by several mechanisms

and elevated levels trigger activation of pathways that are gated by calcium sensing proteins. In

plants and certain protozoa, including apicomplexan parasites, one such class of proteins is the

calcium dependent protein kinases (CDPKs). In P. falciparum, there are seven CDPKs termed

pfCDPK1 through pfCDPK7 [3].
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The CDPK domain organization is shown in Fig 1A. The kinase domain of CDPKs is typi-

cal of Ser/Thr kinases but conserved acidic residues in the activation loop enable activation

without phosphorylation of activation loop residues [4]. Instead it is regulated by the CDPK

activation domain (CAD) that consists of a junction domain and a calmodulin like domain

(CLD). The junction domain can be further subdivided into an autoinhibitory pseudo-sub-

strate sequence (AS) and a regulatory helix (AH). The CLD consists of two lobes, in the follow-

ing referred to as the CLD N-lobe and CLD C-lobe, respectively, where each lobe comprises a

pair of EF-hands [5]. At conditions of low calcium, the AS blocks the active site of the kinase

domain but upon calcium binding, the CLD sequesters the AH, which leads to release of the

AH and activation [6]. Crystal structures of autoinhibited and active CDPKs from Toxoplasma

Fig 1. Domain organization of pfCDPK3 and properties of its N-terminal EF-hand loop. (A) Domain organization of pfCDPK3 [6]. The

line represents the unstructured N-terminal sequence (NS), the black box shows the position of the autoinhibitory pseudo-substrate

sequence (AS) which is followed by a regulatory helix (AH). These elements form the regulatory junction (J) that interacts with the kinase

domain when the protein is inactivated. The C-terminal calmodulin like domain (CLD) consists of an N-terminal and a C-terminal lobe, each

comprising a pair of EF-hands. CLD and the junction form the CDPK activation domain (CAD). (B) The consensus EF-hand calcium binding

loop [10]. The residues at positions I, III and V ligate calcium using one side-chain oxygen each, the residue at position IX bridges a water

ligand with its side-chain oxygen and the highly conserved glutamate at position XII ligates calcium using both side-chain oxygens as

indicated by lines. A seventh ligand is provided by the backbone carbonyl at position XII. (C) The disrupted N-terminal EF-hand loop of CLD

N-lobe where two substituted residues result in missing calcium ligands. These residues are highlighted in red and the failure to bind calcium

is indicated by the broken lines. (D) Sequence alignment of CLD N-lobe and CLD C-lobe. The EF-hand loops are shown in bold italics and

the linker between the EF-hands is highlighted in red.

https://doi.org/10.1371/journal.pone.0181721.g001
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gondii and Cryptosporidium parvum show that the entire CAD translocates to the opposite face

of the kinase domain upon activation [7]. The length of the disordered segment upstream of

the kinase domain varies among CDPKs and contains potential phosphorylation sites for

known protein kinases, suggesting that function also can be regulated by phosphorylation of

the N-terminal segment [8]. Crystal structures show that the CLDs of some CDPKs in their

autoinhibited states coordinate magnesium and others bind other (unspecified) metal ions [7]

while the CLD C-lobe from a CDPK from Arabidopsis thaliana has been suggested to bind cal-

cium even at basal levels [9].

The third CDPK that was discovered in Plasmodium falciparum, pfCDPK3, is predomi-

nantly expressed during the sexual stage of the parasite life cycle [8], which is functionally and

biochemically different from the asexual stage [11]. In this regard it is noteworthy that activa-

tion of gametocytes in the mosquito midgut depends on elevated calcium levels [12]. The regu-

latory domain of pfCDPK3 is special in different ways. Compared to the consensus EF-hand

loop (Fig 1B) two ligands for calcium are missing because of amino acid substitutions in the

N-terminal loop of CLD N-lobe (Fig 1C). This effectively mitigates calcium binding to this

loop and pfCDPK3 can thus only bind three calcium ions, one in the N-lobe and two in the C-

lobe. A further difference between the lobes is that the linker between the EF-hands of CLD N-

lobe is significantly shorter than the corresponding linker of CLD C-lobe (Fig 1D).

The crystal structure of calcium bound CAD (PDB ID: 3K21) revealed an activated state

with the two lobes oriented side by side [13]. The autoregulatory helix interacts primarily with

the CLD C-lobe where a hydrophobic cleft is found. As expected, the first calcium binding

loop of CLD N-lobe is unoccupied. The overall structure of this lobe does not seem to be

affected by the shortened linker between the EF-hands except that the fold is slightly more

compact than that of CLD C-lobe.

Despite their potential clinical value as drug targets [14], CDPKs have remained poorly

characterized and most biophysical studies on how the proteins behave in solution have

focused on CDPKs from plants rather than from parasites [9,15,16]. For pfCDPK3, the focus

of this study, no solution structures are available. Also, there are no reports on the calcium

binding properties of the two lobes and the dynamical properties of the protein. To address

these questions we have calculated the solution structures, measured calcium affinity and per-

formed detailed dynamical characterization on different time-scales of CLD from pfCDPK3.

In order to deconvolute the properties of the two lobes, the studies have been performed on

isolated CLD N-lobe and CLD C-lobe, respectively.

Materials and methods

Protein expression and purification

A gene encoding pfCDPK3 was purchased from GenScript. The fragments for CLD N-lobe

(residues 416–484), CLD C-lobe (residues 487–562) and entire CLD (residues 416–562) were

subcloned into a pNIC28-Bsa4 vector. The constructs were transformed into BL21(DE3) cells

and expressed in M9 medium supplemented with 0.5 g/l NH4Cl and 2 g/l glucose. Expression

and purification of the two lobes and intact CLD are detailed in S1 Text.

Circular dichroism spectroscopy

Thermal stability of CLD C-lobe was measured by circular dichroism (CD) spectroscopy at

222 nm using a ChiraScan spectrometer (Applied Photophysics Ltd). Sample conditions were

2–4 μM protein in 4 μM Tris pH 7.1, 0.3 mM NaCl and 20 μM CaCl2. The temperature was

raised from 16˚C to 94˚C in 1˚C increments and at each temperature the sample was equili-

brated for one minute before measurements. The data was analyzed using CDpal [17].
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NMR spectroscopy

All experiments were recorded at 25˚C using Varian Inova 500 MHz and 600 MHz spectrome-

ters equipped with cryogenically cooled probe heads. Protein concentrations were 0.5–0.8 mM

in 20 mM Tris pH 7.1, 150 mM NaCl, 100 μM NaN3 and 10% D2O. 10 mM CaCl2 was added

for CLD N-lobeCa and CLD C-lobeCa and 4 mM TCEP was added for CLD C-lobeCa.

HNCACB, CBCA(CO)NH, HN(CA)CO, HNCO, HBHA(CO)NH [18] experiments were

recorded to assign the protein backbone. Calcium binding to CLD N-lobe was analyzed by

recording 15N-HSQC experiments at different concentrations of CaCl2.
15N R1, 15N R1ρ and {1H}-15N NOE experiments at were recorded at 600 MHz using stan-

dard pulse sequences [19,20]. For measurement R1, experiments with relaxation delays in the

range 20–645 ms and 20–800 ms were acquired for CLD N-lobe and CLD C-lobe, respectively.

R1ρ was measured by recording experiments with relaxation delays in the range 6–100 ms for

both lobes. The amplitude of the spin lock fields was�1800 Hz and they were centered at

119 ppm. The heteronuclear NOE was measured by recording experiments with or without a 5

s period of saturation pulses. The total recovery delay was 12 s.
15N (and 13CO for CLD N-lobeCa) CPMG [21,22] relaxation dispersion experiments [23,24]

were recorded using effective fields of 33–1000 Hz and for CLD N-lobeapo, also 1HN R1ρ relax-

ation dispersions were recorded [25]. On-resonance experiments employed spin lock field

strengths in the range 738–14535 Hz with the spinlock carrier centered at 8.5 ppm. Off-reso-

nance experiments were recorded at a spin lock field strength of 2115 Hz with nominal tilt

angles between 11.9˚ and 64.5˚.

Isothermal calorimetry

Purified proteins were dialyzed twice against 4 mM EDTA and then three times against a

buffer containing 20 mM HEPES, pH 7.1, 150 mM NaCl. Titrations were performed using a

MicroCal PEAQ-ITC system (Malvern Instruments Ltd) at 25˚C using 37 injections of 1 μl

(first injection 0.8 μl) of ligand in 20 mM HEPES pH 7.1, 150 mM NaCl and a delay of 100 s

between injections. The concentration of the ligand was 3 mM (CLD N-lobe) or 2 mM (CLD).

The data was fitted to a one set of sites site model. The experiments were performed in tripli-

cate and the results are reported as the mean ± the standard deviation of these.

Data analysis

All NMR data were processed with NMRpipe [26] and visualized in Sparky (Gordon and Knel-

ler, University of California, San Francisco). Backbone resonances were assigned using the

software COMPASS [27]. Peaks were integrated and relaxation rate constants were fitted using

PINT [28]. Uncertainties in peak volumes were estimated from duplicate data points. R2 was

calculated from R1ρ and R1 as

R2 ¼ R1r=sin
2y � R1=tan

2y ð1Þ

where θ = arctan(B1/O) is the tilt angle of the effective field, oeff ¼ 2p½B2
1
þ O

2
�
1=2

, with respect

to the static magnetic field, where B1 is the spin lock field strength in frequency units and O

the resonance offset from the radio frequency carrier [29]. Errors in the fitted parameters were

estimated by the jack-knife approach [30].

Peak volumes from 15N CPMG relaxation dispersion experiments were converted into

effective transverse relaxation rates R2,eff (vcpmg) = ln(I0/I)/T, where I and I0 are the intensities

with and without the constant time relaxation delay of duration T and vcpmg is the repetition
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rate in the CPMG pulse train. Residues with significant chemical exchange (p<0.01) in indi-

vidual fits were fitted to a global two-state model using the software CATIA [31].

R1ρ relaxation dispersions were fitted on a per-residue basis to the expression for two-state

dynamics in the fast exchange limit

R1r ¼ R1cos
2yþ R2;0sin

2yþ kex�ex=ðk
2

ex þ o2

eff Þsin
2y ð2Þ

where kex is the exchange rate constant and ϕex = pB(1 − pB)Δω2 in which pB is the population

of the alternative state and Δω is the difference in resonance (angular) frequency between the

two states [32]. The data was also fitted to a model excluding dynamics by omitting the last

term in Eq 2. The exchange rates for residues with significant exchange (p<0.01) were clus-

tered using k-means where each residue was represented as a gaussian centered at kex and with

a width corresponding to the uncertainty in kex.

Structural ensembles

CS-Rosetta [33] was used to calculate structural ensembles guided by NMR chemical shifts to

generate local backbone fragments. To avoid including existing crystal structure fragments

with sequence similarity to our target structure, all fragments were generated with the -nohoms
flag. The calcium binding sites were modeled by restraining the pairwise distances for the

coordinating residues across the binding site to distances obtained from known calcium bind-

ing sites. In total 83176, 86711, and 70698 structural models were sampled for CLD N-lobeapo,

CLD N-lobeCa and CLD C-lobeCa, respectively. Models were clustered using 3 Å cutoff using

Rosetta’s clustering application and the lowest energy model with a chemical shift root-mean-

squared difference between experimental and chemical shifts predicted by SPARTA+ [34] bet-

ter than one standard deviation from the ensemble mean was selected as the structural repre-

sentative. The generated structures were used in hydrodynamic calculations of correlational

times for rotational diffusion [35].

Results

The two isolated CLD lobes of pfCDPK3 are well-folded and CLD C-lobe

cannot be prepared calcium-free

We were not able to obtain samples of intact CLD or indeed CAD in sufficient concentrations

and at conditions suitable for NMR spectroscopy. Therefore most experiments involved the

two CLD domains in isolation. Furthermore, since calcium could not be removed from CLD

C-lobe we were not able to perform any studies of its apo state. The 15N-HSQC spectra of CLD

N-lobe in its apo state (CLD N-lobeapo), CLD N-lobe in the presence of calcium (CLD N-

lobeCa) and CLD C-lobe in the presence of calcium (CLD C-lobeCa) shown in Fig 2 demon-

strate that they all are well-folded. As expected, the chemical shift dispersion is larger for the

calcium bound forms. The spectra show many hallmarks of EF-hand proteins, the most obvi-

ous being that the amide proton resonances of the glycine residues at position VI of the cal-

cium binding loops resonate above 10.5 ppm in the calcium bound forms. This also applies to

G436 in the N-terminal loop of CLD N-lobe that is expected to be unoccupied [13] and we

point out that these chemical shifts do not reflect calcium-binding per se but formation of

hydrogen bonds with the side-chain of the residue at position I of the loops. Evidence against

calcium-binding is that the chemical shift of I438N moves upfield by 1.1 ppm upon addition of

calcium since a significant downfield movement upon binding is expected [36].

As reported previously, CLD N-lobe undergoes two-state unfolding with denaturation mid-

point temperatures of 64.4 ± 0.4˚C and 90 ± 3˚C for CLD N-lobeapo and CLD N-lobeCa,
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respectively [17]. In contrast, the thermal denaturation profiles for several samples of CLD C-

lobeCa were not compatible with two-state denaturation (see inset of Fig 2C and S1 Fig) and it

was not fruitful to estimate the midpoint temperature of denaturation. Purification of CLD C-

lobe in the absence of calcium was not possible and the NMR spectrum did not change even

after extensive dialysis against EDTA while direct addition of EDTA inevitably resulted in pro-

tein precipitation. It was thus not possible to study CLD C-lobe in the absence of calcium.

Structural ensemble from chemical shifts

The resonances were assigned by recording the standard suite of triple-resonance experiments

[18] and using the semi-automatic assignment software COMPASS [27]. The assignment com-

pleteness for amide moieties were 97.2%, 97.2% [sic] and 92.2% for CLD N-lobeapo, CLD N-

lobeCa and CLD C-lobeCa, respectively. Unassigned resonances were mostly localized to the N-

termini. Additionally, for CLD N-lobeapo as well as CLD N-lobeCa, Y456 that follows the only

proline residue in the amino acid sequence and for CLD C-lobeCa, F500 and K548 could not

be identified. The chemical shifts were used to predict the secondary structure, which yielded

the classical EF-hand helix-loop-helix-linker-helix-loop-helix motif.

CS-Rosetta [33] was used to generate structural ensembles. After structural clustering, the

lowest energy model that also had predicted chemical shifts that agreed well with the experi-

mentally observed chemical shifts was selected (Fig 3A–3C). For CLD N-lobeapo and CLD N-

lobeCa the selected structural model was also the lowest energy structural representative from

the largest cluster. For CLD C-lobeCa, the lowest energy model did not agree well with experi-

mental chemical shifts, thus the third lowest energy model (depicted by the arrow in Fig 3F)

was selected as the structural representative. Coordinates for the selected structural models for

CLD N-lobeapo, CLD N-lobeCa and CLD C-lobeCa are presented in S1–S3 Tables. As hinted by

the secondary structure pattern predicted by the chemical shifts, the selected models are simi-

lar to EF-hand domains. The calcium bound models are similar to their corresponding frag-

ment of the CAD crystal structure (PDB ID: 3K21) (Fig 3E and 3F). For CLD N-lobeCa the

agreement is especially good with an RMSD of 1.3 Å. The hydrogen bonds that explain the

high chemical shifts of the amide protons of the glycines at loop position VI were readily iden-

tified, also for the loop carrying substitutions. The RMSD of 2.5 Å for CLD C-lobeCa is slightly

larger with regions of poor agreement largely confined to the linker between the two EF-

hands. CLD N-lobeapo shows larger RMSD, above 3.5 Å, for the selected representative (Fig

3D). The larger RMSD for the apo structure is mostly attributed to the different orientation

of the N-terminal helix and the linker connecting helices 2 and 3. The differences can be

Fig 2. 15N-HSQC spectra for (A) CLD N-lobeapo, (B) CLD N-lobeCa and (C) CLD C-lobeCa. The inset in panel C shows a circular

dichroism thermal denaturation profile for CLD C-lobeCa in the temperature range 16–94˚C.

https://doi.org/10.1371/journal.pone.0181721.g002
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summarized as that the CLD N-lobeapo adopts a more compact structure, with smaller angles

between the helices of the first EF-hand like other calcium-sensing EF-hand proteins in their

apo states [37]. Apparently, binding of a single calcium ion to the C-terminal loop is sufficient

for triggering the conformational switch.

Only CLD N-lobe responds to changes in calcium concentration

The calcium dissociation constant of CLD N-lobe was determined by isothermal calorimetry

(ITC). The data was well fitted to one-site model with a stoichiometric ratio of 1:1 and yielded

a a Kd of 38 ± 3 μM (Fig 4). As expected from the literature [13] and our NMR data, the N-lobe

thus only binds one calcium ion with substantial affinity. As mentioned, we could not prepare

calcium-free CLD C-lobe but we were able to purify intact CLD at concentrations suitable for

ITC. After extensive dialysis against EDTA and then buffer its ITC profile resembled that of

CLD N-lobe and could be fitted to a one-site 1:1 model with Kd = 18 ± 2 μM (Fig 4). Impor-

tantly, attempts to fit the data to 2:1 or 3:1 (calcium:protein) ratios were only possible if the

protein concentration was set fixed to unrealistically low values. Our interpretation is that also

in the context of full length CLD, CLD C-lobe remains calcium bound even at low calcium

concentrations and that the experiments reflected binding of an additional calcium ion to the

N-lobe.

CLD C-lobeCa forms dimers in solution

To characterize molecular tumbling and backbone flexibility, we measured R1, R2 and the het-

eronuclear NOE. The most striking feature of the relaxation data is that R1 and R2 are very

Fig 3. Selected models generated by CS-Rosetta using chemical shifts as restraints of (A) CLD N-lobeapo, (B) CLD N-lobeCa and

(C) CLD C-lobeCa overlaid with the corresponding fragments of the CAD crystal structure (PDB ID: 3K21). The models are colored as

a rainbow (blue N-terminus and red C-terminus) while the crystal structure is in dark gray with calcium ions shown as orange spheres. (D-F)

The corresponding RMSD vs. Rosetta Energy scatter plots for models generated for CLD N-lobeapo, CLD N-lobeCa and CLD C-lobeCa,

respectively. The RMSD is calculated against the corresponding fragment of the CAD crystal structure. The dashed line shows the cutoff for

the 1% lowest energy models, circled points (orange) indicate models that are among the 1% lowest energy and have a chemical shift

RMSD that is one standard deviation better than the ensemble mean. The arrows point to the selected models shown in (A-C).

https://doi.org/10.1371/journal.pone.0181721.g003
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different for CLD N-lobeapo/Ca and CLD C-lobeCa (Fig 5). The ratio of these parameters were

used to calculate correlation time for molecular reorientation [38]. The correlation times of

5.3 ± 0.1 ns and 5.9 ± 0.4 ns for CLD N-lobeapo and CLD N-lobeCa, respectively, are fully com-

patible with the domains tumbling as monomers and the slightly larger correlation time for

CLD N-lobeCa is consistent with its more expanded structure. In contrast, the estimated corre-

lation time of 15.0 ± 0.1 ns for CLD C-lobeCa can only be explained by formation of dimers in

solution. These results are corroborated by hydrodynamic calculations [35] based on the calcu-

lated structures from which we obtained rotational correlation times of 5.0 ns, 5.2 ns and 7.1

ns for monomeric CLD N-lobeapo, CLD N-lobeCa and CLD C-lobeCa, respectively.

CLD N-lobeapo and CLD N-lobeCa exchange with alternative states

Relaxation dispersions were measured to characterize μs–ms motions. These experiments are

sensitive to the population of an alternative state, pB, the exchange rate constant, kex, and the

magnitude of the difference in chemical shifts, |Δϖ|, between exchanging states [39]. The first

two parameters report on the thermodynamics and kinetics of the exchange while |Δϖ| is

related to the structure of alternative state. Examples of 15N CPMG dispersion profiles for

CLD N-lobeapo, CLD N-lobeCa and CLD C-lobeCa are shown in Fig 6. There were few resi-

dues with μs—ms dynamics for CLD C-lobeCa and these residues are primarily localized to

the N- and C-termini. There is no evidence that these dynamics are due to dimer-monomer

exchange since the exchange rate of kex = 860 ± 90 s-1 and population of the alternative state

Fig 4. Calcium affinity of (A) CLD N-lobe and (B) CLD analyzed by isothermal calorimetry. The experiments were

recorded in triplicates and representative profiles are shown. The data was fitted to a one set of sites binding model. The

dissociation constants were 38 ± 3 μM and 18 ± 2 μM for CLD N-lobe and intact CLD, respectively.

https://doi.org/10.1371/journal.pone.0181721.g004
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Fig 5. 15N relaxation rate constants and the {1H}-15N NOE for CLD N-lobeapo, CLD N-lobeCa and CLD C-lobeCa. Order parameters,

calculated by the RCI method and shown as red bars, have been included in the panels representing the heteronuclear NOE. The vertical

axes have been scaled identically for all proteins.

https://doi.org/10.1371/journal.pone.0181721.g005

Fig 6. Examples of dispersion profiles for (A) CLD N-lobeapo, (B) CLD N-lobeCa and (C) CLD C-lobeCa. The lines represent the

best fit to a local two-state process for CLD N-lobeapo and to a global two-state process for CLD N-lobeCa and CLD C-lobeCa. The data

was recorded at a static magnetic field of 14.1 T at 25˚C. The values of the fitted global exchange parameters are presented in the text.

Dispersion profiles for all residues with μs–ms dynamics can be found in S2–S4 Figs.

https://doi.org/10.1371/journal.pone.0181721.g006
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of pB = 1.7 ± 0.1% were unchanged when the sample was diluted two-fold. Millisecond

dynamics of CLD C-lobeCa will not be discussed further herein.

In contrast, conformational dynamics was detected for the majority of the residues of CLD

N-lobe in both its apo and calcium bound states. For CLD N-lobeapo, the exchange was not

quenched at the highest effective field and we therefore also recorded 1HN R1ρ dispersions and

identified chemical exchange for 39 residues. The dispersions were sizable with an average of

19 ± 30 s-1 and in two cases (K435 and I473) they exceeded 100 s-1 (S2 Fig). The exchange rates

spanned the range 4300–63000 s-1 and the data could not be fitted to a global two-state process.

Instead we used the k-means approach [40] to cluster the individual apparent two-state

exchange rates into four groups and residues belonging to the respective groups were color

coded onto the structure of CLD N-lobeapo (Fig 7A) to gain insight into their spatial distribu-

tion. Exchange is most abundant in helices 1 and 4 where most residues are in the class with

an exchange rate centered at 15400 s-1 and in the calcium binding loops where most residues

are in the class with and average exchange rate of 6900 s-1. The square root of the exchange

parameter ϕex is proportional to |Δϖ| (see Eq 2) and can thus be used as a proxy for the ‘ampli-

tude’ of the structural fluctuations at different positions to provide insight into the nature of

the alternative state. When compared with the difference between the observed chemical shifts

and expected random coil chemical shifts a descent correlation with Pearson’s coefficient of

correlation of 0.60 was obtained (Fig 7B).

For CLD N-lobeCa the 15N CPMG experiment revealed millisecond dynamics for almost all

residues. In addition of the N-terminal residues G415-D419, the only exceptions for assigned

residues were K422, L452, G469, S470, G471 and D484. The dynamics differed from that of

the apo state of the domain in two regards. First, the exchange is considerably slower and sec-

ond, the process is simpler since the data could be satisfactory fitted to a global two-state

model with kex = 1640 ± 70 s-1 and pB = 1.13 ± 0.04%. The average |ΔϖCPMG| was 2.1 ± 1 ppm

and largest values were found for residues L428 (4.4 ppm), I438 (5.1 ppm), I479 (5.9 ppm). We

also recorded 13CO relaxation dispersions that mainly are sensitive to modulation of the back-

bone dihedral angles and identified dynamics for 21 residues (Fig 8B). Exchange was particu-

larly abundant in helices 1, 2 and 4 and in the unoccupied calcium binding loop. It is

Fig 7. Conformational dynamics of CLD N-lobeapo. (A) K-means (k = 4) cluster analysis of exchange rates

for CLD N-lobeapo. The mean values of the clusters are 6900 s-1 (n = 8; red), 15400 s-1 (n = 20; green), 30800

s-1 (n = 8; blue) and 57100 s-1 (n = 3; violet). The black line represents the sum of the four clusters. The inset

shows the structure of CLD N-lobeapo (colored as in Fig 3) with exchanging amide protons as spheres, color

coded according to cluster identity. (B) Correlation between �
0:5

ex and magnitude of differences between

observed chemical shifts and expected chemical shifts for a random coil.

https://doi.org/10.1371/journal.pone.0181721.g007
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noteworthy that we did not identify a single residue with 13CO dispersions in the second, occu-

pied, calcium binding loop.

Discussion

Reassuringly, the individual domains of CLD adopt solution structures that are typical of EF-

hand proteins and the calcium bound forms are very similar to the corresponding fragments

of the crystal structure of calcium bound CAD as gauged by the CS-Rosetta structural ensem-

bles. It is thus valid to study the lobes in isolation for many purposes although we refrain from

interpretating the details of the structures. It is however noteworthy that binding of a single

calcium ion to the N-lobe is sufficient for triggering the structural change associated with acti-

vation of EF-hand domains [41]. The larger deviation between the solution and crystal struc-

tures of CLD C-lobeCa than of CLD N-lobeCa may in part be explained by our observation that

the isolated fragment of the former forms dimers in solution.

The failure to remove calcium from CLD C-lobe and our ITC results for intact CLD point

to a very high calcium affinity for the lobe. If the results can be generalized to full-length

pfCDPK3 they could mean that CLD C-lobe binds calcium immediately after synthesis and

thus does not change its structure in response to fluctuating calcium levels as has been pro-

posed for CPK-1 from Arabidopsis thaliana [9]. Another possibility is that magnesium or

other metal ions occupy the loops of CLD C-lobe at low calcium levels as has been suggested

for other apicomplexan CDPKs [7]. Regardless, activation of pfCDPK3 would then be due to

the structural reorganization associated with calcium binding to the CLD N-lobe. The dissoci-

ation constant for this binding is approximately two orders of magnitude lower than for cal-

cium binding to calmodulin at similar conditions [42] and since only one of the CLD N-lobe

loops binds calcium there can be no cooperativity within the lobe. This means that very high

levels of calcium are needed for the activation of pfCDPK3 although the dissociation constant

is lowered by a factor two in the context of intact CLD and possibly more for full length

pfCDPK3. We stress that future studies on full length pfCDPK3 or at least CAD are necessary

to confirm these hypotheses and that mutational data would be helpful to conclusively estab-

lish the binding mechanism.

Fig 8. Spatial distribution of exchanging backbone 15N and 13CO nuclei of CLD N-lobeCa. Exchanging

nuclei are shown as spheres on the structure of CLD N-lobeCa colored as in Fig 3. (A) Exchanging backbone
15N nuclei. The color coding is |ΔϖCPMG| <2 ppm (indigo), 2 < |ΔϖCPMG| < 3 ppm (green) and |ΔϖCPMG| >
3 ppm (red). (B) Exchanging backbone 13CO nuclei. The color coding is |ΔϖCPMG| <0.75 ppm (indigo), 0.75 < |

ΔϖCPMG| < 1.0 ppm (green) and |ΔϖCPMG| > 1.0 ppm (red).

https://doi.org/10.1371/journal.pone.0181721.g008
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The most important finding from the analysis of the relaxation rate constants that report

on molecular motions was that CLD C-lobeCa dimerizes at all concentrations tested and the

instability of the protein in monomeric form explains the unusual denaturation profile

shown in Fig 2. Interestingly, the software PISA [43] predicts that CAD forms dimers in the

presence of calcium. However, the interaction surface between two individual CLD C-lobe

units in these dimers is small and it is unlikely that the dimerization observed here takes

place in vivo. A more plausible biological implication of our observation is thus that CLD

C-lobe requires an interaction partner. In the crystal structure of intact CAD at high cal-

cium levels, this role is fulfilled by the junction region [13]. If indeed CLD C-lobe always is

calcium bound, the requirement would also apply to conditions of low calcium. pfCDPK3

could then once again resemble the model for CPK-1 from Arabidopsis thaliana, where

there is interaction between CLD C-lobe and the junction region also at low calcium levels

[9].

While only a few CLD C-lobeCa residues are sensitive to μs–ms motions, there is global

exchange with alternative states for CLD N-lobe in its apo as well as calcium bound state. The

dynamics of CLD N-lobeapo are more complex than a simple two-state process since the data

had to be fitted on a per-residue basis. The so obtained exchange rates could however be

divided onto four clusters. For the largest cluster 16 out of 20 members were located in helix 1,

helix 4 and the N-terminal part of the first loop, making it likely that this region of the protein

experiences a common dominant process. Based on the correlation between �
0:5

ex and the abso-

lute value of the difference between observed and random coil chemical shifts a possible model

is that CLD N-lobeapo is in equilibrium with a sizable fraction of a conformation where the

lobe is partially unfolded although the less than perfect correlation and the failure to fit the

data to a two-state process demonstrates additional processes.

We found no evidence for a ‘conformational selection’ model for calcium binding since

there was no correlation between �
0:5

ex and the magnitude of the difference between CLD N-

lobeapo and CLD N-lobeCa chemical shifts and on the same grounds we ruled out that dynam-

ics for CLD N-lobeCa, are the result of exchange with the apo state. Additional evidence

against this is that there were 13CO dispersions for most regions of CLD N-lobeCa but none

for the occupied calcium binding loop. In contrast, 13CO dispersions for several residues of

the unoccupied loop could mean transient binding calcium binding that remained unde-

tected by the ITC experiments and the dynamics of CLD N-lobeCa may reflect necessary plas-

ticity for activation of pfCDPK3. Since the dynamics seem to reflect a concerted two-state

process it should be possible to explore the structure of the alternative conformation in detail

[44].

In conclusion, our results show that the solution structures of the calcium bound forms

of the two lobes are similar to the corresponding fragment of the crystal structure of CAD

while the structure of CLD N-lobeapo is typical of EF-hand domains in absence of calcium.

Our failure to prepare calcium-free CLD C-lobe suggests that the activation of pfCDPK3 is

due to the conformational switch resulting from the binding of a single calcium ion to CLD

N-lobe. In contrast to CLD C-lobe, the N-lobe is highly dynamic on the μs–ms time-scale.

For CLD N-lobeapo the dynamics may reflect a folding-unfolding transition and for CLD N-

lobeCa they could be required for activation. Because of the low affinity for calcium and the

lack of cooperativity within CLD N-lobe it is likely that higher calcium levels are needed to

activate pfCDPK3 than most other calcium sensors including other pfCDPKs. If CLD C-lobe

indeed is calcium-bound at low calcium levels, an interpretation of our observation that iso-

lated CLD C-lobe forms dimers is that it interacts with the junction region also in the inac-

tive state.
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