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Abstract

Background—Alzheimer’s disease (AD) could be regarded as a brain form of diabetes since 

insulin resistance and deficiency develop early and progress with severity of neurodegeneration. 

Preserving insulin’s actions in the brain restores function and reduces neurodegeneration. 

T3D-959 is a dual nuclear receptor agonist currently in a Phase 2a trial in mild-to-moderate AD 

patients (ClinicalTrials.gov identifier NCT02560753). Herein, we show that T3D-959 improves 

motor function and reverses neurodegeneration in a sporadic model of AD.

Methods—Long Evans rats were administered intracerebral (i.c.) streptozotocin (STZ) or normal 

saline (control) and dosed orally with T3D-959 (1.0 mg/kg/day) or saline for 21 or 28 days. 
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Rotarod tests evaluated motor function. Histopathology with image analysis was used to assess 

neurodegeneration.

Results—T3D-959 significantly improved motor performance, and preserved both cortical and 

normalized white matter structure in i.c STZ-treated rats. T3D-959 treatments were effective when 

dosed therapeutically, whether initiated 1 day or 7 days after i.c. STZ.

Conclusion—T3D-959’s targeting neuro-metabolic dysfunctions via agonism of PPAR delta and 

PPAR gamma nuclear receptors provides potential disease modification in AD.
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Introduction

Effective disease modifying therapy is critically needed for the treatment of Alzheimer’s 

disease (AD). Despite extensive research and large-scale, long-term treatment with drugs 

that target symptoms including acetylcholinesterase inhibitors, NMDA receptor antagonists 

and amyloid vaccines, the clinical course of AD has not been significantly remediated. The 

most likely explanation for these failures is that AD multifaceted and is caused by inter-

related cellular, biochemical and molecular abnormalities that culminate in loss of neurons, 

deposition of amyloid beta, accumulation of phospho-tau-containing neuronal cytoskeletal 

lesions, activation of cell death cascades, deficits in energy metabolism, mitochondrial 

dysfunction, increased inflammation, DNA damage and oxidative stress. Importantly, these 

pathophysiological responses closely resemble effects of insulin resistance and insulin 

deficiency as occur in diabetes mellitus, except the alterations selectively or predominantly 

affect the brain. This concept regarding the pathogenesis of AD as a consequence of neuro-

metabolic dysfunction led to the term ‘Type-3 Diabetes’ [1,2]. Correspondingly, the earliest 

abnormalities, preceding the onset of cognitive impairment, include impairments in glucose 

utilization and energy metabolism [3–5].

After the brain is totally dependent on glucose as an energy source, and reduced brain 

glucose metabolism is both a hallmark of AD and the future best predictor of cognitive 

decline [6–9]. Insulin is needed for efficient utilization of glucose by brain cells, and is the 

master hormone whose signaling regulates major biological responses including: Cell 

growth, neuronal and oligodendroglial survival, neuronal plasticity, energy metabolism, 

acetylcholine production, inhibition of oxidative stress, and myelin maintenance. Reductions 

in brain insulin signaling due to insulin deficiency or insulin receptor resistance could 

account for the majority of molecular, biochemical, and histopathological lesions, as well as 

cognitive impairment in AD [2,10–18]. Furthermore, disruption of neuronal insulin 

signaling networks enhances apoptosis [19,20], promotes oxidative injury induced by 

Aβ1–42 [21], increases secretion of Aβ1–42 [22], blocks removal of extracellular Aβ-

oligomers [23] and increases plaque burden [24].

Growing evidence suggests that brain insulin resistance promotes or triggers key pathologies 

in AD [2,3,11,25–34], corresponding with the observed changes in levels of insulin 
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signaling molecules in AD forebrains and associated declines in memory [2,11,12,27,32,34–

36]. What is particularly alarming is that peripheral insulin resistance, as occurs in Type 2 

diabetes mellitus (T2DM), contributes to AD and cognitive impairment by reducing brain 

insulin uptake and increasing brain levels of Aβ, tau-phosphorylation, oxidative stress, pro-

inflammatory cytokines, advanced glycation end products, dyslipidemia, and apoptosis 

[12,13,37–41]. However, AD shares many pathophysiological features including insulin 

resistance, oxidative stress, inflammation amyloid aggregation and cognitive impairment 

with T2DM and other peripheral insulin resistance diseases such as metabolic syndrome and 

non-alcoholic fatty liver disease [25,26,37,42,43], yet these disease processes can occur 

independently or overlap with one another. One consideration is that insulin resistance 

diseases share the same or similar underlying causes, but individual factors govern the 

targeting of specific organ-systems.

Given the spectrum of abnormalities in AD, disease remediation will likely require treatment 

of multiple molecular and biochemical targets [44]. Peroxisome proliferator-activated 

receptors (PPARs) are nuclear hormone receptors that function as transcription factors and 

regulate gene expression [45–48]. PPAR-β/δ, the primary target of T3D-959, are highly 

expressed in brain, and PPAR-γ, the secondary target of T3D-959, is widely expressed 

throughout the body. Hetero-dimerization of PPARs with retinoid x receptors regulates target 

genes [45–48], and the attendant alterations in intracellular signaling enhance energy 

metabolism, cell growth and differentiation, and inhibit inflammation and oxidative stress 

[49–53]. Since previous studies showed that PPAR-β/δ agonists can effectively treat 

experimental STZ [10,54] and 5XFAD [55] models of AD, such agonists are attractive 

therapeutic targets for AD. Since PPAR-β/δ is abundantly expressed in the brain, and both 

PPAR-β/δ and PPAR-γ [56,57] agonists exhibit therapeutic efficacy in experimental AD 

models, dual activation of their receptors may provide enhanced therapeutic benefit in 

humans with AD.

T3D-959 is a brain penetrating dual nuclear receptor agonist in which PPAR-δ is the 

primary target (human ED50=19 nM) while PPAR-γ is the secondary target (human 

ED50=297 nM). In a previous study, we demonstrated efficacy of T3D-959 for preserving 

spatial learning and memory and preventing cellular and molecular indices of 

neurodegeneration in an established experimental model of sporadic AD [54]. The present 

work characterizes the structural and functional therapeutic effects of T3D-959 on i.c. STZ-

induced cerebellar degeneration in the same model.

The cerebellum was studied because it is targeted by neurodegeneration in AD [2,58], 

insulin signaling is an important regulator of cerebellar structure and function [59], and the 

cerebellum is a major target of brain insulin resistance, irrespective of cause 

[17,18,30,44,59–62]. Since 1999, at least 53 human research articles have been published 

demonstrating that besides its role in coordination of voluntary movement, gait, posture, 

speech and motor function, the cerebellum helps control cognitive functions that require 

precise timing and behavior [63–67]. It is also believed that cell loss in the cerebellum could 

be related to coordination deficits that often occur in mid-to-late stages of AD [67–71]. The 

present work was designed to increase understanding of the nature and degree to which a 
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novel δ/γ PPAR agonist might be beneficial for treating or reducing severity of 

neurodegeneration in structural targets of brain insulin resistance in AD.

Methods

Intracerebral Streptozotocin (STZ)

Intracerebral (i.c.) treatment with STZ was used to cause brain metabolic dysfunction and 

insulin resistance as occur in human sporadic AD [3,16]. Long Evans male and female rats 

(8–12/group) were anesthetized by intraperitoneal (i.p.) injection of ketamine (100 mg/kg)/

xylazine (10 mg/kg) and administered i.c. STZ (0.9 mg/kg) or saline (1–2 μL volumes) into 

the lateral ventricle (1 mm caudal, 2 mm lateral to the bregma) as previously described [72]. 

Rats were administered 5 mL/kg of subcutaneous sterile saline to avoid post-operative 

dehydration, and kept warm using a temperature-controlled blanket until they were fully 

recovered.

Formulation and administration

T3D-959 was formulated as a solution in 0.9% NaCl at a concentration of 4.44 mg/ml and 

prepared fresh daily. Rats were treated by oral gavage with 1.0 mg/kg T3D-959 or normal 

saline vehicle, once daily from 1 day or 7 days after the i.c. STZ or vehicle treatments. Oral 

gavage was performed using a ball ended feeding needle to inject drug or vehicle.

Rotarod studies

We used rotarod tests to assess long-term effects of i.c. STZ treatment and the therapeutic 

effects of T3D-959 on motor function [73]. Rats were administered 10 trials at incremental 

speeds up to 10 rpm, with 10 min rest between trials. The latency to fall was automatically 

detected and recorded with photocells placed over the rod. Trials were stopped after 30 s to 

avoid exercise fatigue. Data from trials 1–3 (2–5 rpm), 4–7 (5–7 rpm), and 8–10 (8–10 rpm) 

were culled and analyzed using the Mann-Whitney test.

Histological and image analysis studies

The rats were sacrificed by isoflurane inhalation. Cerebella were cut in the mid-sagittal 

plane, weighed, immersion fixed in 10% formalin, and embedded in paraffin. Histological 

sections (4 μm thick) generated 5 mm from the midline were stained with Luxol Fast Blue, 

hematoxylin and eosin (LHE) and used for histopathological assessments and image 

analysis. Assessments of regional brain atrophy can be achieved by several approaches that 

may differ in sensitivity, including measurement of cortical thickness and cross-sectional 

area [74]. Therefore, two approaches were used to extract information about cortical and 

white matter thicknesses in relation to i.c. STZ and T3D-959 treatment: 1) image analysis to 

measure cross-sectional areas; and 2) semi-quantitative assessments of cortical and white 

matter thicknesses and cellularity within the granule and Purkinje cell layers. ImageJ/Fiji 

was used to determine cross-sectional areas of the entire slice, molecular and granule cell 

layers, and white matter (Figure 1). In addition, histological sections were scored with 

respect to uniformity of thickness or cellularity of the molecular, granule cell, Purkinje cell, 

and white matter regions of the vermis using a semi-quantitative grading system (Table 1). 

All slides analyses were performed under code.
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Statistics

Graphs depict group means and standard deviations. Inter-group comparisons were made 

using one-way or two-way analysis of variance (ANOVA) and the Tukey post hoc test 

(GraphPad Prism 6, San Diego, CA).

Results

T3D-959 treatments restore i.c. STZ-mediated impairments of motor function

Rotarod data were grouped and analyzed using the Mann-Whitney test. With increasing 

difficulty of the trials (based on rotation speed of the rod), latency to fall declined in all 

groups (Figure 2). However, with regard to the least challenging series of trials (#1–#4), the 

mean latency to fall was significantly reduced by i.c. STZ relative to control (Figure 2A). 

Treatment with T3D-959 improved performance in the STZ group, but the difference 

relative to control was still significant. For intermediate-level trials (#5–#7), T3D-959 

treatment significantly increased mean latency to fall in both control and STZ-exposed rats 

relative to corresponding vehicle-treated rats (Figure 2B). For the most challenging group of 

trials (#8–#10), latency to fall was significantly shorter in the STZ-exposed relative to the 

other 3 groups, and performances of vehicle-treated controls, T3D-959 treated controls, and 

T3D-959 treated STZ-exposed rats were similar to each other (Figure 2C).

T3D-959 effects on STZ-associated cerebellar degeneration

There were no statistically significant inter-group differences in the mean cerebellar weights 

(Figure 3A), or the mean relative cross-sectional areas of the molecular (Figure 3B) or 

granule (Figure 3C) cell layers. In contrast, i.c. STZ significantly reduced the mean relative 

cross-sectional area of white matter. Treatment with T3D-959 from 1 or 7 days after i.c. STZ 

prevented white matter atrophy; however, the 7 day delayed treatment results more closely 

approximated the findings in controls (Figure 3D).

T3D-959 effects on STZ-mediated cerebellar histopathology

Although the image analysis of cross-sectional areas demonstrated white matter atrophy in 

the i.c. STZ group and therapeutic responses to T3D-959, visual inspection of the 

histopathology revealed clear inter-group differences in cortical layer cellularity and 

thickness that were not detected by that approach. Therefore, systematic analysis (Figure 4) 

and scoring (Figure 5) of cellular pathology in the cerebellar vermis under code was used to 

provide more detailed assessments of i.c. STZ’s effects and the therapeutic responses to 

T3D-959. In all samples, the cerebellar architecture had the expected organization including 

an outer molecular layer, middle Purkinje cell layer, and thick, densely populated granule 

cell layer with clearly delineated white matter cores. In controls, the cerebellar architecture 

was relatively uniform within each layer and exhibited minimal or no evidence of cell injury 

or loss (Figures 4A and 4E). The i.c.-STZ treatment caused cortical atrophy with thinning of 

the molecular layer, reduced populations of Purkinje cells with large gaps corresponding to 

regions of neuronal loss, as well as multiple neurons exhibiting shrinkage and eosinophilia 

reflecting ongoing necrosis. In addition, i.c. STZ caused irregular thinning of the granule 

cell layer and white matter cores (Figures 4B and 4F). T3D-959 treatments initiated either 1 
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day or 7 days post i.c. STZ increased the molecular layer thickness, reduced neuronal loss 

and necrosis in the Purkinje layer, and expanded the white matter core thickness (Figures 

4C, 4D, 4G and 4H). But, did not restore the thickness of the granule cell layer. Although 

T3D treatment conspicuously increased cell density within the granule layer, the granule cell 

layer thickness remained irregularly thinned. These results suggest that T3D may be 

neuroprotective for both granule and Purkinje cells.

Semi-quantitative histological grading of cerebellar structure

Since the histological abnormalities in the cortex were not well reflected by the image 

analysis results, we evaluated the tissue sections using a semi-quantitative grading scheme to 

systematically assess effects of STZ and T3D treatments on cerebellar vermis architecture 

(Table 1). H&E stained sections of cerebellar vermis were scored under code using semi-

quantitative assessments (Table 1). The mean ± S.D. scores corresponding to uniformity and 

thickness of the molecular layer, cellularity of the Purkinje layer, and thickness and 

cellularity of the granule cell layer are depicted in Figure 5. Two-way ANOVA demonstrated 

significant inter-group differences with respect to all three regions of cortex. STZ treatment 

significantly reduced the thickness and uniformity of the molecular layer, and cellularity in 

the Purkinje and granule cell layers relative to control (Figure 5). The differences in 

molecular layer thickness and Purkinje cellularity relative to control remained significant for 

the group that was treated withT3D-959 beginning 1 day after i.c. STZ. However, cellularity 

and thickness uniformity of the granule cell layer were restored by early treatment with 

T3D-959. Furthermore, T3D-959 treatment beginning 7 days after i.c. STZ restored or 

preserved the integrity of all three cortical layers relative to control.

Discussion

Since 2005, over 60 published works have shown that the i.c. STZ model of brain diabetes 

mimics most aspects of sporadic AD with respect to molecular, biochemical, 

histopathological, and/or neurobehavioral abnormalities [1,54,75–78]. In this regard, the i.c. 

STZ model causes amyloid-β deposition, pTau accumulation, cortical-limbic pathway 

degeneration, deficits in spatial learning and memory, neuro-inflammation, and oxidative 

stress in the brain, including in regions that are characteristically damaged in AD. In 

addition, the data show the importance of brain insulin resistance as a mediator of 

neurodegeneration and amyloid deposition, and vice versa [28,29,36,44,79,80].

AD like diabetes mellitus is associated with insulin resistance, except brain rather than 

skeletal muscle is the principal organ. In the brain, insulin is a key regulator of glucose 

utilization and signal transduction networks that mediate cell growth, plasticity, metabolism, 

neuronal survival, myelin maintenance and acetylcholine biosynthesis, and it inhibits 

oxidative stress and apoptosis [1,14,15,30,44,59]. Proof of principle for this concept has 

been provided by experiments in which i.c. administration of STZ, a pro-diabetes toxin, was 

shown to cause AD-type neurodegeneration [16], and early treatment with PPAR agonists 

was demonstrated to prevent cognitive impairment and neurodegeneration [10]. The PPAR-δ 
agonist proved to be considerably more neuroprotective in preserving cognitive function and 
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hippocampal/temporal lobe structure compared with the PPAR-γ agonist [10], 

corresponding with the greater abundance of δ versus γ receptor expression in brain [55].

A major advantage of PPAR agonists is that they mediate their effects within the nucleus, 

circumventing impairments in insulin signaling caused by reductions in surface receptor 

binding and receptor tyrosine kinase activation, which are features of AD [2,11]. The 

neuroprotective effects of PPAR-δ and PPAR-γ agonists overlap but are non-identical with 

respect to downstream insulin-responsive targets [45–48]. T3D-959 is small molecule hybrid 

PPAR-δ/γ agonist that can be administered as a once daily oral dose and exhibits a high 

degree of CNS penetrance.

PPAR agonists of all classes that bind to nuclear hormone receptors can cause cellular harm 

at high concentrations a purported selective. In the manuscript by Peri et al. [81] and another 

by Rohn et al. [82], the concentrations of PPAR-gamma agonist at high caused neuronal 

apoptosis at 10 micro-M but not 500 nM. Our experimental conditions produced nM tissue 

concentrations of T3D-959 [54]. Interestingly, the manuscript by Rohn et al. [82] does show 

nice neurite process extension and improved neuronal viability at the lowest doses of the 

PPARgamma agonist used, 15-PGJ2. Furthermore, 15d-PGJ2 [82] is not a selective PPAR 

gamma agonist as it also interacts with GPR44; acting through this receptor inhibits hair 

growth. The high doses of 15d-PGJ2 needed to induce apoptosis are not biologically relevant 

and can produce off-target effects. In addition, this compound acts as a PGD2 receptor 

agonist with an EC50 of 10nM, and can have PPAR gamma–independent effects [83], calling 

into question the conclusion that the PPAR gamma activation caused neuronal apoptosis. In 

contrast, T3D-959 has been demonstrated to increase cell survival (see Figure 4a and article 

by Tong et al. [54]).

The preclinical studies reported herein assessed the neurobehavioral effects of T3D-959 in 

an established model of sporadic AD in which adult Long Evans rats were treated by i.c. 

STZ which is known to cause neurodegeneration, impairments in brain insulin and insulin-

like growth factor (IGF) signaling, and increased oxidative stress [10,16]. In addition to 

assessing T3D-959’s efficacy, we examined responses to early and late therapeutic 

intervention. The delayed time point of initiating treatment addresses the fact that many 

people are first diagnosed at clinically intermediate rather than early stages of disease. At the 

same time, it was important to assess responses to early intervention because as diagnostic 

tools improve, early treatment protocols will become feasible.

The rotarod tests demonstrated that i.c. STZ impaired cerebellar motor function and that 

T3D-959 prevented this effect along with neurodegeneration. It was of further interest that 

these therapeutic responses to T3D-959 were similar and slightly better when treatment was 

initiated 7 days as opposed to 1 day post i.c. STZ. Histopathological studies demonstrated 

that the i.c. STZ mediated neuronal loss in Purkinje and granule cell layers and atrophy of 

white matter were reversed by T3D-959 treatment. Therefore, the neuroprotective effects of 

T3D-959 correlate with preservation of motor function.

The therapeutic effects of T3D-959 on cerebellar structure and function correspond with the 

abundant expression of insulin receptors and prominence of insulin signaling networks in the 
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cerebellum [59]. Previous studies using various experimental models showed that inhibition 

of insulin signaling in the cerebellum or cerebellar neurons correlates with neuronal loss and 

impaired motor function [17,60,62]. In addition, earlier studies showed that treatment with a 

PPAR-δ agonist effectively restored cerebellar structure and function [10], consistent with 

findings in the present study. An additional novel finding was the reversal of white matter 

atrophy in T3D-959 treated i.c. STZ exposed rats. This observation is of particular interest 

because myelin-producing oligodendrocytes are maintained by insulin/IGF signaling, and 

white matter atrophy is an early feature of AD [84–86]. Altogether, these data suggest that 

motor impairments mediated by neuronal loss and white matter atrophy in AD may be 

ameliorated by T3D-959 therapy.

In conclusion, this study demonstrates that T3D-959 has cleared therapeutic and 

neuroprotective effects in an established model of sporadic AD. The main effects were 

associated with improved (normalized) motor function and reversal of cerebellar 

degeneration. Importantly, therapeutic effects occurred even after a delay in treatment, 

suggesting that individuals with mild or moderate AD would benefit from this highly 

effective small molecule drug that has the benefit of oral, once-daily delivery.
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Figure 1. 
Image analysis approach. (A) Histological sections of the cerebellar vermis were stained 

with LHE to highlight the cerebellar cortex and white matter. Image J/Fiji software was used 

to measure (highlighted in red) (B) Total cross-sectional areas of the vermis, (C) The 

molecular layer, (D) Granule cell layer, and (E) White matter.
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Figure 2. 
T3D-959 rescue of i.c. STZ-mediated of motor impairment. Long Evans rats were 

administered i.c. STZ or normal saline (Control). The control rats and a subset of the i.c. 

STZ rats were gavage with saline. Two other sub-groups of i.c. STZ rats were gavage with a 

single daily dose of 1.0 mg/kg of T3D-959 beginning 1 day or 7 days after the i.c. STZ 

injections. Sixteen days later, the rats were subjected to Rotarod testing with 10 incremental 

speed trials. Latency to fall was measured optically. Data culled from Trials (A) 1–4, (B) 5–

6, and (C) 8–10 are depicted in the graphs (mean ± S.E.M. per group/trial). Inter-group 

comparisons were made using the Mann-Whitney test. *P<0.05; **P<0.01; ****P<0.0001.
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Figure 3. 
Effects of T3D-959 on i.c. STZ-induced alterations in cerebellar structure. Long Evans male 

rats (4-weeks old) were used to generate a sporadic model of AD by i.c. STZ. The rats (n=6–

8 per group) were treated with saline or 1 mg/kg of T3D-959 by daily oral gavage. Rats were 

sacrificed on Experimental day 28. (A) Fresh cerebellar weights in rats treated with i.c. 

saline (Con), ic-STZ (STZ), T3D-959 beginning 1 day after i.c. STZ (STZ T3D-1), or 

T3D-959 beginning 7 days after i.c.-STZ (STZ T3D-7). After formalin-fixation, cerebella 

were cut in the mid-sagittal plane and embedded in paraffin. Histological sections (4 μm 

thick) stained with hematoxylin and eosin (H&E) were used for image analysis (Image-J) to 

measure relative cross-sectional areas (percentages of overall area) of the (B) molecular 

layer, (C) granule cell layer, and (D) white matter. All graphs depict the mean ± S.E.M. of 

results. Inter-group comparisons were made by one-way ANOVA with the Tukey post-hoc 

significance test. F-ratios are indicated in the panels. Significant inter-group differences are 

specified.
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Figure 4. 
T3D-959 Prevents STZ-induced neurodegeneration. H&E stained sections of the cerebellar 

vermis from rats treated with (A, E) i.c. saline or (B–D, F–H) i.c. STZ, and then treated with 

(A, B, E, F) vehicle (saline) or (C, D, G, H) 1 mg/kg/day T3D by gavage. T3D after delays 

of (C, G) 1 day or (D, H) 7 days. Rats were sacrificed 4 weeks after i.c. STZ or vehicle 

injections. Cerebella were fixed in formalin, embedded in paraffin and sectioned (4 μthick). 

(A, E) Control cerebella had relatively thick and uniform molecular (black bars) and granule 

cell (red bars, yellow ‘G’), (E) well populated Purkinje cell layers (black arrows), and 

uniform white matter cores (green bars). Relative to control, i.c. STZ treatment caused 

cortical atrophy with (B) thinning of the molecular and (B, F) granule cell layers, (F) loss 

(bracket) and on-going necrosis (red arrows) of Purkinje cells, and modest reductions in 

white matter thickness. (C, D, G, H) T3D-959 normalized or expanded the molecular layer 

and increased white matter core thickness, reduced cell loss and necrosis in the Purkinje 
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layer, but did not reverse the irregular thinning and neuronal loss in the granule cell layer. 

Original magnification: (A–D) 100x; (E–H) 425x.
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Figure 5. 
Semi-quantitative grading of cerebellar histopathology. H&E stained sections of cerebellar 

vermis were scored under code using semi-quantitative assessments of the uniformity and 

thickness of the molecular layer, cellularity within the Purkinje layer, and thickness and 

cellularity of the granule cell layer (Table 1). The mean ± S.D. scores corresponding were 

compared across experimental groups by two-way ANOVA (results tabulated below graph) 

with the Tukey post-hoc multiple comparisons test (*P<0.05; **P<0.01; ***P<0.001; 

****P<0.0001).
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Table 1

Semi-quantitative grading of cerebellar vermis histopathology.

Cortical Layer Grade 4 Grade 3 Grade 2 Grade 1

Molecular Uniformly thick and 
cellular

Variable thinning, normal 
cellularity

Variable thinning and 
reduced cellularity Uniformly thin

Purkinje
Well populated with 
histologically intact 
pyramidal neurons

Isolated neuronal loss or 
eosinophilic degeneration 
(necrosis)

Moderate gaps and 
scattered loss of neurons

Large gaps and 
conspicuously increased 
neuronal necrosis

Granule Uniformly thick and 
densely cellular

Irregular thinning but 
densely cellular

Irregular thinning with 
modest reductions in cell 
density

Irregular thinning and 
conspicuous reductions in 
cell density

H&E stained sections of cerebellar vermis were graded using the semi-quantitative criteria indicated in the table. The mean scores obtained for 
each layer were compared across the 4 experimental groups by two-way ANOVA (see Figure 5).
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