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Anti‑EGFR antibody 528 binds 
to domain III of EGFR at a site 
shifted from the cetuximab epitope
Koki Makabe1, Takeshi Yokoyama2,3, Shiro Uehara2, Tomomi Uchikubo‑Kamo3, 
Mikako Shirouzu3, Kouki Kimura4, Kouhei Tsumoto5,6, Ryutaro Asano4, Yoshikazu Tanaka2 & 
Izumi Kumagai4*

Antibodies have been widely used for cancer therapy owing to their ability to distinguish cancer cells 
by recognizing cancer-specific antigens. Epidermal growth factor receptor (EGFR) is a promising target 
for the cancer therapeutics, against which several antibody clones have been developed and brought 
into therapeutic use. Another antibody clone, 528, is an antagonistic anti-EGFR antibody, which 
has been the focus of our antibody engineering studies to develop cancer drugs. In this study, we 
explored the interaction of 528 with the extracellular region of EGFR (sEGFR) via binding analyses and 
structural studies. Dot blotting experiments with heat treated sEGFR and surface plasmon resonance 
binding experiments revealed that 528 recognizes the tertiary structure of sEGFR and exhibits 
competitive binding to sEGFR with EGF and cetuximab. Single particle analysis of the sEGFR–528 Fab 
complex via electron microscopy clearly showed the binding of 528 to domain III of sEGFR, the domain 
to which EGF and cetuximab bind, explaining its antagonistic activity. Comparison between the two-
dimensional class average and the cetuximab/sEGFR crystal structure revealed that 528 binds to a site 
that is shifted from, rather than identical to, the cetuximab epitope, and may exclude known drug-
resistant EGFR mutations.

Epidermal growth factor receptor (EGFR) is a member of the closely related family of ErbB transmembrane 
protein tyrosine kinase receptors. Upon binding with its ligand, epidermal growth factor (EGF), EGFR triggers 
cellular growth and proliferation via phosphorylation signaling cascades1,2. In normal tissues, the function of 
EGFR is to ensure tissue homeostasis via a range of control mechanisms. EGF binds to the extracellular region of 
EGFR (sEGFR). Crystal structure analyses have revealed that sEGFR contains four domains and that EGF binds 
to the sEGFR sandwiched by domains I and III3–6. EGFR overexpression is widely observed in a variety of cancer 
cells, and in some cases, its signal is critical for cell survival and tumorigenesis. Therefore, the development of 
EGFR-targeting drugs to interrupt its signaling, either by blocking the EGF binding site or inhibiting its tyrosine 
kinase activity, is a promising approach for cancer therapy7–10. To date, three anti-EGFR therapeutic antibodies; 
namely cetuximab, necitumumab, and panitumumab, are available in the market11. Crystal structure analysis 
have revealed that these antibodies bind to domain III of EGFR and thereby inhibit binding of EGF, which in 
turn blocks the signaling and proliferation of cancer cells12–14.

Our studies have focused on an sEGFR binding clone 52815,16. To date, we have used antibody 528 as a basis to 
engineer various bispecific antibodies by combining the antigen-binding region of 528 and OKT-3, an anti-CD3 
antibody17–20. These bispecific antibodies bridge EGFR on a cancer cell to CD3 on a T cell and induce effective T 
cell-mediated cancer cell killing. We have also reported the crystal structure of the antigen-free form of the 528 
Fab fragment21. The structure revealed a concave surface to the antigen-binding site; however, detailed analysis 
of antigen binding is limited by the lack of structural determination of the complex between the 528 Fab frag-
ment and sEGFR. Such detailed analysis of the recognition mechanism is crucial for developing highly effective 
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therapeutic antibodies. In the present study, we performed structural analysis of the recognition of EGFR by 528 
together with detailed binding analyses and confirmed the specificity of the binding to the tertiary structure by 
our demonstration that 528 cannot recognize heat-treated sEGFR samples.

Results and discussions
Dot blotting analyses using heat‑treated sEGFR (the extracellular region of EGFR).  Heat treat-
ment of sEGFR will disrupt its tertiary structure. Therefore, these experiments allow the preliminary investiga-
tion of sEGFR recognition by the 528 antibody with respect to establishing whether the full tertiary structure 
is required for binding or whether 528 simply binds a short segment of an amino acid sequence. Dot blotting 
analyses were thus conducted using heat-treated sEGFR as antigen samples. Figure 1A shows that 528 can rec-
ognize dot-blotted sEGFR which has been heat-treated at 55 °C and 75 °C. On the contrary, for samples heated 
at 95  °C showed weaker staining, indicating decreased binding of 528 to sEGFR. This observation indicates 
that the integral sEGFR tertiary structure is required for recognizing the 528 antibody. Control experiments 
using cetuximab, which binds to the folded structure of domain III of sEGFR, as confirmed by crystal structure 
analysis, produced similar results, further confirming that the 528 antibody, similar to cetuximab, will recognize 
the tertiary structure of sEGFR. The results suggest that specific recognition of sEGFR by 528, to the extent that 
binding requires a folded soluble extracellular domain of the receptor. However, further evidence of specificity 
of binding is required.

Competitive binding assay.  Direct monitoring of the interaction between 528 and sEGFR was achieved 
using surface plasmon resonance (SPR). The experiments included the addition of competitor molecules 
for sEGFR to assess the specificity of binding by 528. Figure 1B,C show the results of a competitive binding 
experiment for 528 binding to sEGFR in the presence of EGF (the natural ligand) or cetuximab. As reported 
previously15,22, the addition of EGF or cetuximab to sEGFR before application to the sensor chips blocks the 
binding of 528 to sEGFR. These data suggest that 528 competes for binding to domain III of sEGFR and shares 
at least part of its binding site with that of EGF and cetuximab.

528 Fab binds to the surface of domain III in the vicinity of the cetuximab/EGF binding site.  To 
gain further detailed information on the recognition between sEGFR and 528, in the absence of successful crys-
tallization, we pursued structural information using electron microscopy (EM) and single particle analysis. A 
sample of the 528 Fab–sEGFR complex on a carbon microscopy mesh grid was negatively stained and imaged 
using a Tecnai TF20 transmission electron microscope. The images obtained were subjected to single particle 
analysis. Upon two-dimensional (2D) classification, the particles were sorted into structurally homogeneous 
subgroups. Most particles converged into the representative 2D class averaged images of the 528 Fab–sEGFR 
complex, which clearly demonstrate the distinct mass of density corresponding to 528 Fab and sEGFR in a teth-

Figure 1.   (A) Dot blot of heat-treated sEGFR detected by antibodies 528 and cetuximab. Each blotting image 
was a consecutive membrane strip without cropping. (B,C) Competitive Biacore assay between 528 and EGF 
(B) and between 528 and cetuximab (C) for binding sEGFR. sEGFR (100 nM) was loaded onto the antibody-
immobilized sensor chips with or without its competitor.
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ered state (Fig. 2A,B). The new structural information provided by these images clearly sheds light on the ability 
of the 528 antibody to inhibit growth factor signaling. For comparison, Fig. 2C shows the crystal structure of 
the sEGFR–cetuximab complex12. Figure 2D shows the surface of domain III of sEGFR, colored to indicate the 
intermolecular contact regions with cetuximab and EGF. Both proteins bind to the same surface of domain III 
and their contact sites are overlapped. Based on the EM images of the sEGFR-528 Fab complex (Fig. 2A–C) and 
the biochemical data demonstrating competition of 528 binding by EGF and cetuximab, it can be concluded 
that 528 binds to the same side of domain III of sEGFR as cetuximab and EGF. Interestingly, close inspection 
of the EM images and the sEGFR-cetuximab crystal structure revealed that, although both 528 and cetuximab 
bind to domain III, there is a marginal but distinct difference in their binding positions. This slight positional 
shift of the binding site of 528 is illustrated in Fig. 2D. The view from a certain direction of the crystal structure 
of free sEGFR (PDBID: 1NQL) is nicely overlapped with an outline trace of the class average shown in Fig. 2B 
(Fig. 2C,D(1)). On the other hand, an sEGFR crystal structure complexed with the cetuximab Fab fragment 
(Fig.  2D(2)) shows a little different orientation of domain III, which was not observed in the EM measure-
ments. To compare the antibody binding sites between cetuximab and 528, the domain III structure of the com-
plex structure (1YYE) was superposed onto that of the free sEGFR structure (1NQL). The resulting structure is 
shown in Fig. 2D(3) and has the sEGFR (light purple) of 1NQL with the cetuximab Fab portion (orange) from 
1YY9. Overlapping the outline trace of Fig. 2C onto the sEGFR structure of Fig. 2D(3) clearly indicates that the 
binding site of 528 is shifted compared with that of cetuximab. Figure 2E shows the domain III surface view from 
the antibody side. The possible binding site of 528 overlaps with that of cetuximab and EGF. Such a difference in 

Figure 2.   Negative-staining electron microscopy of the 528 Fab–sEGFR complex. (A) Two-dimensional 
(2D) class averages of the negatively stained 528 Fab–sEGFR complex. The purified complex was subjected to 
single particle image analysis via negative-staining electron microscopy. Upper panel: representative 2D class 
averages of the 528 Fab–sEGFR complex in their different orientation classes. Lower panel: dissociated 528 
Fab. (B) Magnified representation of a 2D class average shown in (A) (orange square in (A), 90° rotated). Four 
domains of sEGFR are labeled. (C) An outline trace of the averaged image of (B) the sEGFR portion is shown 
in light purple and the 528 Fab portion is shown in green. (D) (1) A crystal structure of sEGFR (light purple, 
PDBID: 1NQL) overlapping with the outline trace (blue dashed line: sEGFR, green: 528 Fab). (2) A crystal 
structure of the cetuximab Fab–sEGFR complex (sEGFR: light purple, Cetuximab: orange, PDBID: 1YY9). (3) 
Cetuximab Fab onto the 1NQL sEGFR structure by superposing the domain III of both structures. The outline 
trace is overlapped onto the sEGFR structure (blue dashed line: sEGFR, green: 528 Fab). (E) Domain III surface 
from the view of the cetuximab side. Atoms within 3.5 Å from cetuximab and EGF are colored with orange 
(cetuximab), pink (EGF), and red (both). A possible binding area of 528 is indicated with a dashed green circle. 
Ser 492 is shown in blue.



4

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5790  | https://doi.org/10.1038/s41598-021-84171-3

www.nature.com/scientificreports/

the binding sites is critical so as to offer 528 as a potential as a new antibody drug for the treatment of cancers 
that have become resistant to existing antibody therapies due to mutations in EGFR. For example, the three 
major anti-EGFR antibody drugs available in the market, namely cetuximab, necitumumab, and panitumumab, 
target relatively close epitopes (Fig. 3A)12–14. A cancer that has become drug-resistant due to a mutation within 
the shared epitope regions for these three antibodies, preventing their binding to EGFR, may still respond to 
528 therapy. For example, the S492R mutation on domain III is a well-known mutation for cetuximab-treated 
patients who develop drug resistance23,24. Figure 2D shows that residue 492 of EGFR is located outside of the 
proposed binding epitope of 528 and it is, therefore, feasible that 528 may retain its binding activity to the S492R 
EGFR mutant and inhibit signaling and tumor growth. It should be noted that panitumumab also shows toler-
ance against the S492R mutation by accommodating the arginine sidechain to a central cavity at the antigen 
binding cleft (Fig.  3A,C)14. However, because of the high similarity of the epitopes between cetuximab and 
panitumumab, some cetuximab-resistant mutations, such as S464L, G465R, K467T, and I491M24, overlap with 
the panitumumab epitope (Fig. 3C). Thus, these mutations must affect the panitumumab binding to EGFR. On 
the other hand, the 528 epitope is shifted from the cetuximab epitope and cetuximab-induced mutation sites 
(Fig. 3C).

The previously determined crystal structure of a free form of 528 Fab revealed an interesting U-shaped cleft 
of approximately 15 Å, formed by the complementarity determining region (CDR) loops between heavy and 
light chains (Fig. 3B)21. This shape of the 525 Fab antigen-binding surface contrasts with that of cetuximab, 
which is relatively flat (Fig. 3A). Guided by our EM images of the sEGFR–528 Fab complex, manual inspection 
of the surface of domain III of sEGFR, in the region of the potential 528 binding site, identified a loop formed by 
residues 353–362, that forms a convex surface that may fit nicely within the cleft of 528 (Fig. 3B). Although this 
loop is a promising candidate for the epitope of 528, the determination of the structure of 528–sEGFR complex 
with atomic accuracy using x-ray crystallography or cryo-EM would provide the ultimate detail regarding the 
interaction. Such structural information would place our antibody engineering studies on firmer ground and 
expand their scope to wider design parameters and features, such as the development of bispecific and bipara-
topic antibodies.

Figure 3.   (A) Superposed anti-sEGFR antibody structure. Crystal structures of cetuximab (PDBID 1YY9, 
orange), panitumumab (PDBID 5SX4, blue), and necitumumab (PDBID 6B3S, magenta) antibodies complexed 
with domain III of sEGFR (light purple). Possible positioning of 528 Fab deduced from the electron micrograph 
images is indicated with a green dashed line. A black arrow indicates the viewpoint direction for (B). A loop 
comprising residues 353–362 is shown in cyan. (B) Manual docking model between domain III (light purple) 
and 528 (green). CDR loops are colored in blue and the 353–362 loop of sEGFR is in cyan. (C) Mutational 
residues of domain III induced by the cetuximab treatment (labeled with black characters). The possible 
binding site of 528 is indicated with a green dashed circle. Panitumumab epitope is colored with purple. The 
panitumumab epitope overlapping with the cetuximab-induced mutation is colored with yellow. Ser 492 is 
shown in blue.
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Methods
Sample preparation.  sEGFR with a C-terminal hexahistidine tag was expressed using the Chinese ham-
ster ovary (CHO) cell expression system. The detailed expression method was as previously described21. The 
antibody samples were prepared from hybridoma cell cultures. The antibodies secreted into the culture medium 
were purified using protein A columns. Fab was prepared by using the Pierce Fab preparation Kit. EGF was 
purchased from Pepro Tech.

Dot blotting analysis.  Samples of sEGFR (1  μM in PBS) in microtubes were heat treated for 5  min at 
55 °C, 75 °C, and 95 °C, respectively, and were subsequently dot-blotted onto a cellulose nitrate membrane. The 
membrane was blocked using 5% skimmed milk in PBS–Tween and was then incubated with 1 μg of primary 
antibody per 10 ml (528 IgG or cetuximab). A subsequent incubation with secondary antibody, anti-mouse IgG 
HRP conjugate for 528 or anti-human Fc IgG HRP conjugate for cetuximab, was followed by detection with an 
TMB chromogenic substrate (Kirkegaard & Perry Laboratories, Inc.). Between each step, the membrane was 
washed three times with PBS–Tween.

Surface plasmon resonance (SPR) measurements.  A competitive binding assay was performed using 
a Biacore T200 SPR instrument with CM5 sensor chips in HBS-EP buffer, pH 7.4. Antibodies were immobilized 
onto the sensor chips (2000 ~ 3000 RU) and 100 nM sEGFR samples with competitors were loaded for passing 
over the sensor chips. Binding sensorgrams were analyzed using the BIAevaluation program. Qualitative com-
petition experiments were performed twice and all sensorgrams were reference subtracted.

528 Fab‑sEGFR complex preparation, negative‑staining electron microscopy and single par-
ticle analysis..  A 250 µL aliquot of 20 µM 528 Fab and a 300-µL aliquot of 20 µM sEGFR were mixed and 
incubated for 30 min at 4 °C. After filtration, a 500-µL aliquot was loaded onto a Superdex 200 10/300 GL col-
umn. The peak fractions, eluted at around 12 mL, were combined and used for further analyses (Supplemental 
Fig. 1A,B). A 3 µL portion of the purified 528 Fab–sEGFR complex was applied onto a continuous amorphous 
carbon surface attached to a R1.2/1.3 Cu 300 mesh grid (Quantifoil), which was glow-discharged at 5 mA for 
30 s before use. A sample adsorbed to the carbon surface was negatively stained three times with 10 µL of 2% 
uranyl acetate solution. After the grid was completely dried, it was transferred onto a Tecnai TF20 transmis-
sion electron microscope (Thermo Fisher Scientific) operating at an accelerating voltage of 200 kV. The 528b 
Fab–sEGFR complex particles were imaged at a nominal magnification of × 80,000 and recorded using a Falcon 
II direct electron detector (Thermo Fisher Scientific) within the TF20. At this magnification, the corresponding 
objective pixel size at the specimen level is 1.3 Å. Automated data collection was performed using the Serial EM 
program25. Single particle image processing was performed using the RELION 3.0 program26. Briefly, 45,421 
particles from 124 micrographs were picked using the AutoPick function in RELION. CTF parameters were esti-
mated using the CTFFIND4 programyyy27. After 2D classification, images were converged to 2D class averages 
to obtain averaged 528 Fab–sEGFR complex images and isolated 528 Fab images (both in different orientations).
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